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In this article we extend Alon’s Nullstellensatz to functions which have multiple zeros at
the common zeros of some polynomials g1,g2, . . . ,gn, that are the product of linear factors.
We then prove a punctured version which states, for simple zeros, that if f vanishes at
nearly all, but not all, of the common zeros of g1(X1), . . . ,gn(Xn) then every residue of f
modulo the ideal generated by g1, . . . ,gn, has a large degree.

This punctured Nullstellensatz is used to prove a blocking theorem for projective and
affine geometries over an arbitrary field. This theorem has as corollaries a theorem of
Alon and Füredi which gives a lower bound on the number of hyperplanes needed to cover
all but one of the points of a hypercube and theorems of Bruen, Jamison and Brouwer
and Schrijver which provides lower bounds on the number of points needed to block the
hyperplanes of an affine space over a finite field.

1. Introduction

The Combinatorial Nullstellensatz proved by Alon in [1] has been used for
a host of applications, some recent examples of which can be found in [6],
[10], [11], [13] and [14]. In this article we prove two extensions of Alon’s
Nullstellensatz. The first one, Theorem 3.1 in Section 3, is an extension
which handles the multiplicities of zeros of multivariate polynomials. The
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second one, Theorem 4.1 in Section 4, considers the punctured case in which
a polynomial vanishes over almost all, but not all, of the common zeros of a
family of univariate polynomials.

These two results allow us to prove a blocking theorem for projective and
affine geometries over an arbitrary field, Theorem 5.1 in Section 5. It has
as corollaries the classical result of Jamison [9] on the minimum number of
points of a set blocking all hyperplanes in the affine geometry AG(n,q), its
extension to multiple incidences by Bruen [5] and results on almost blocking
sets of the hypercube by Alon and Füredi [2]. Our blocking theorem can be
illustrated by the following problem.

Consider two lines l1 and l2 of a projective plane over a field F and finite
non-intersecting subsets of points Si of li. Let A be a set of points with the
property that every line joining a point of S1 to a point of S2 is incident
with a point of A. If we asked ourselves how small can A be then obviously
we could simply choose A to be the smaller of the Si and clearly we can do
no better. If, however, we impose the restriction that one of the lines joining
a point P1 of S1 to a point P2 of S2 is not incident with any point of A
then it is not so obvious how small A can be. According to Theorem 5.1 we
need at least |S1|+ |S2|−2 points, which is clearly an attainable bound, for
example take A to be (S1∪S2)\{P1,P2}. Theorem 5.1 generalises this bound
to arbitrary dimension and to sets that have not just one point incident
with the lines joining a point of S1 to a point of S2, but a fixed number t of
points.

2. Combinatorial Nullstellensatz

Let F be a field and let f be a non-zero polynomial in F[X1,X2, . . . ,Xn].
Suppose that S1,S2, . . . ,Sn are arbitrary non-empty finite subsets of F and
define

gi(Xi) =
∏

si∈Si

(Xi − si).

Alon’s Combinatorial Nullstellensatz [1, Theorem 1.1] is the following, which
differs from the classical Nullstellensatz of Hilbert, see for example [7,
pp. 21], in that the polynomials in Alon’s version are univariate and the
field is arbitrary, whereas in the classical version the polynomials are arbi-
trary and the field is algebraically closed.

Theorem 2.1. If f vanishes over all the common zeros of g1,g2, . . . ,gn, in
other words f(s1,s2, . . . ,sn) = 0 for all si ∈ Si, then there are polynomials
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h1,h2, . . . ,hn, elements of F[X1,X2, . . . ,Xn], satisfying deg(hi) ≤ deg(f)−
deg(gi) with the property that

f =
n∑

i=1

higi.

Although not explicitly stated in his article, the following generalisation
of Theorem 2.2 in [1] is easily proven. Note that under the hypothesis, there
is always at least one point of the grid where f does not vanish. This corollary
also incorporates Theorem 5 from Alon and Füredi [2].

Corollary 2.2. If f has a term of maximum degree Xr1
1 · · ·Xrn

n , where ri =
|Si|−ti and ti≥1 for all i, then a grid which contains the points of S1×·· ·×Sn

where f does not vanish, has size at least t1×·· ·× tn.

Proof. Suppose that there is a grid M1×·· ·×Mn, where nj = |Mj |<tj for
some j, containing all the points of S1×·· ·×Sn where f does not vanish. Let

ej(Xj) =
∏

m∈Mj

(Xj − m).

The polynomial fej is zero at all points of S1×·· ·×Sn and has a term of
maximum degree Xr1

1 · · ·Xrj−1

j−1 X
rj+nj

j X
rj+1

j+1 · · ·Xrn
n . Note that rj +nj < |Sj|

and ri < |Si| for i �= j. By Theorem 2.1 the polynomial fej =
∑n

i=1 gihi for
some polynomials hi of degree at most deg(f)−deg(gi)+nj. Since f is not
zero, the terms of maximum degree in fej have degree in Xi at least |Si| for
some i, a contradiction.

3. Combinatorial Nullstellensätze with multiplicity

In this section we take into account the multiplicities of the zeros of the
polynomial f . The following proof of Theorem 3.1 is based on the proof of
Theorem 1.3 in [5].

If a∈F
n is a zero of the polynomial f ∈F[X1, . . . ,Xn] then the expansion

of the polynomial fa(X1, . . . ,Xn)=f(X1+a1, . . . ,Xn+an) has no monomials
of degree zero. Following Fulton [7, pp. 66] and Bruen [5], an element a∈F

n

is a zero of multiplicity t of a non-zero polynomial f ∈ F[X1,X2, . . . ,Xn],
where t is defined to be the minimum degree of the terms that occur in
f(X1 + a1,X2 + a2, . . . ,Xn + an). By convention the zero polynomial has a
zero of multiplicity t at every point and for every positive integer t.
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Let T (n,t) be the set of all non-decreasing sequences of length t on the
set {1,2, . . . ,n}. For any τ ∈ T (n,t), let τ(i) denote the i-th element in the
sequence τ , and we write j∈τ if and only if j appears in the sequence τ .

Let F be a field and let f be a polynomial in F[X1,X2, . . . ,Xn]. Suppose
that S1,S2, . . . ,Sn are arbitrary non-empty finite subsets of F and define

gi(Xi) =
∏

s∈Si

(Xi − s).

Theorem 3.1. If f has a zero of multiplicity t at all the common zeros
of g1,g2, . . . ,gn then there are polynomials hτ in F[X1,X2, . . . ,Xn], satisfying
deg(hτ )≤deg(f)−

∑
i∈τ deg(gi), such that

f =
∑

τ∈T (n,t)

gτ(1) · · · gτ(t)hτ .

Proof. We shall prove this by double induction on n and t. If n=1 and f has
a zero of degree t for all s1∈S1 then f =g(X1)th(X1) for some polynomial h.
If t=1 then the theorem is Alon’s Nullstellensatz, Theorem 2.1.

Assume that the theorem holds whenever m < n and u≤ t or whenever
m≤n and u<t.

Let α∈Sn. Write f =(Xn−α)Aα+Bα, where Aα∈F[X1,X2, . . . ,Xn] and
Bα∈F[X1,X2, . . . ,Xn−1]. The polynomial Bα has a zero of multiplicity t at
all elements of S1×S2×·· ·×Sn−1, so by induction with m=n−1

Bα =
∑

τ∈T (n−1,t)

gτ(1) · · · gτ(t)hτ ,

where deg(hτ ) is at most deg(f)−
∑

i∈τ deg(gi).
We will show that we can write f =gn(Xn)A+B where A has degree at

most deg(f)−deg(gn) and

B =
∑

τ∈T (n−1,t)

gτ(1) · · · gτ(t)oτ ,

where oτ has degree at most deg(f)−
∑

i∈τ deg(gi).
If |Sn| = 1 then we are done. If not then there is a β ∈ Sn with β �=

α. Write Aα = (Xn − β)Aβ + Bβ , where Aβ ∈ F[X1,X2, . . . ,Xn] and Bβ ∈
Fq[X1,X2, . . . ,Xn−1]. Again by induction with m=n−1, the polynomial

Bβ =
∑

τ∈T (n−1,t)

gτ(1), . . . , gτ(t)lτ ,
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for some polynomials lτ , where deg(lτ )≤deg(Bβ)−
∑

i∈τ deg(gi)≤deg(f)−
1−

∑
i∈τ deg(gi).

Thus we can write f =(Xn−α)(Xn−β)Aβ +Uαβ for some

Uαβ =
∑

τ∈T (n−1,t)

gτ(1), . . . , gτ(t)mτ ,

where mτ has degree at most deg(f)−
∑

i∈τ deg(gi).
Continuing in this way for all elements of Sn we are able to write f =

gn(Xn)A+B where A has degree at most deg(f)−deg(gn) and

B =
∑

τ∈T (n−1,t)

gτ(1), . . . , gτ(t)oτ ,

where oτ has degree at most deg(f)−
∑

i∈τ deg(gi).
The polynomial gn(Xn)A has a zero of multiplicity t at all points of

S1 ×S2×·· ·×Sn and so A has a zero of multiplicity t− 1 at all points of
S1×S2×·· ·×Sn. By induction, with u= t−1,

A =
∑

τ∈T (n,t−1)

gτ(1), . . . , gτ(t−1)pτ ,

where pτ has degree at most deg(A)−
∑

i∈τ deg(gi).
Therefore, f can be written in the desired way.

Theorem 3.1 has the following corollary.

Corollary 3.2. Let F be a field and let f be a non-zero polynomial
in F[X1,X2, . . . ,Xn]. Let Xr1

1 Xr2
2 · · ·Xrn

n be a term of f of maximum de-
gree. If S1,S2, . . . ,Sn are non-empty subsets of F with the property that for
all non-negative integers α1, . . . ,αn satisfying

∑n
i=1 αi = t, one has

ri < αi|Si|,

for some i, then there is a point a=(a1,a2, . . . ,an), with ai∈Si, where f has
a zero of multiplicity at most t−1.

Proof. Suppose that f has a zero of degree at least t at all elements of
S1×S2×·· ·×Sn. By Theorem 3.1, there are polynomials hτ ∈F[X1,X2, . . . ,Xn]
with the property that

f =
∑

τ∈T

gτ(1), . . . , gτ(t)hτ ,
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and hτ has degree at most deg(f)−
∑

i∈τ deg(gi). On the right hand side
of this equality the terms of highest degree are divisible by

∏
i∈τ X

|Si|
i for

some τ . Therefore, there is a τ for which ri≥
∑

i∈τ |Si| for all i∈τ . Let αi be
the number of times i occurs in the sequence τ . The sum

∑n
i=1 αi = t and

ri≥αi|Si| for all i, a contradiction.

Note that the above corollary with t=1 is the original corollary to Alon’s
Nullstellensatz that has proven so useful. Specifically, if ri < |Si| for all i then
there is a point (a1,a2, . . . ,an), with ai∈Si, where f does not vanish.

4. Punctured Combinatorial Nullstellensatz

In Alon’s Combinatorial Nullstellensatz, Theorem 2.1, the function f was
assumed to have zeros at all points of the grid S1×S2×·· ·×Sn. In the case
that there is a point in S1×S2×·· ·×Sn where f does not vanish a slightly
different conclusion holds. The following can be thought of as a punctured
version of Alon’s Combinatorial Nullstellensatz.

Let F be a field and let f be a polynomial in F[X1,X2, . . . ,Xn]. For
i = 1, . . . ,n, let Di and Si be finite non-empty subsets of F, where Di ⊂Si,
and define

gi(Xi) =
∏

s∈Si

(Xi − s), and li(Xi) =
∏

d∈Di

(Xi − d).

Theorem 4.1. If f has a zero of multiplicity at least t at all the com-
mon zeros of g1,g2, . . . ,gn, except at least one point of D1 ×D2 × ·· ·×Dn

where it has a zero of multiplicity less than t, then there are polynomials hτ

in F[X1,X2, . . . ,Xn], satisfying deg(hi)≤ deg(f)−
∑

i∈τ deg(gi), and a non-
zero polynomial u satisfying deg(u)≤deg(f)−

∑n
i=1(deg(gi)−deg(li)), such

that

f =
∑

τ∈T (n,t)

gτ(1) · · · gτ(t)hτ + u

n∏

i=1

gi

li
.

Moreover, if there is a point of D1×D2×·· ·×Dn where f is non-zero, then,

deg(f) ≥ (t − 1)max
j

(|Sj | − |Dj |) +
n∑

i=1

(|Si| − |Di|).

Proof. Let I(n,t) be the ideal generated by the polynomials {gτ(1) · · ·gτ(t) |
τ ∈T (n,t)}. We can write

f =
∑

τ∈T (n,t)

gτ(1) · · · gτ(t)hτ + w,
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where w, a polynomial in the same equivalence class as f modulo I(n,t),
has no terms Xr1

1 · · ·Xrn
n for which there is a τ ∈T (n,t) with rj ≥

∑
j∈τ |Sj|

for all j.
By hypothesis, for all i, flti has zeros of multiplicity t at all common

zeros of g1,g2, . . . ,gn and hence, so does wlti . By Theorem 3.1 there are
polynomials vτ with the property that

(4.1) wlti =
∑

τ∈T (n,t)

gτ(1) · · · gτ(t)vτ .

However wlti has no terms Xr1
1 · · ·Xrn

n for which there is a τ ∈ T (t,n) with
rj ≥

∑
j∈τ |Sj| for all j, unless i∈τ . Thus

wlti = gi(Xi)
∑

τ∈T (n,t−1)

gτ(1) · · · gτ(t−1)oτ ,

for some polynomials oτ , from which it follows that gi divides wlti for each i.
However li divides gi and (gi/li, li) = 1, from which we deduce that gi/li
divides w. Thus we can write

f =
∑

τ∈T (n,t)

gτ(1) · · · gτ(t)hτ + u

n∏

i=1

gi

li
,

for some polynomial u, where u �= 0 since f does not belong to the
ideal I(n,t).

To prove the lower bound on the degree of f , we will prove a lower bound
on the degree of u.

Suppose that, after a suitable relabelling of the subscripts, the maximum
value of |Sj|−|Dj | occurs when j=1.

Let (d1, . . . ,dn) be a point of D1×·· ·×Dn where f is not zero. Equation 4.1
with i=1 gives

u(X1, d2, . . . , dn)lt1
g1

l1
= gt

1v1,

for some polynomial v1, and hence (g1/l1)t−1 divides u(X1,d2, . . . ,dn).
It only remains to show that u(X1,d2, . . . ,dn) is not zero. This follows

immediately since f(X1, . . . ,dn) is not zero at X1 = d1, it follows that
u(X1,d2, . . . ,dn)g1/l1 is not zero and hence neither is u(X1,d2, . . . ,dn).

The following corollary is a converse of the corollary to Alon’s Nullstel-
lensatz, Corollary 2.2.
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Corollary 4.2. If D1×·· ·×Dn is a grid containing all the points of the grid
S1×·· ·×Sn where f does not vanish and Di⊂Si for all i, then f has a term
Xr1

1 · · ·Xrn
n , where |Si|−1≥ri≥|Si|−|Di|.

Proof. Let

gi(Xi) =
∏

s∈Si

(Xi − s), and li(Xi) =
∏

d∈Di

(Xi − d).

By Theorem 4.1 we can write

f =
n∑

i=1

higi + w,

and

w = u
n∏

i=1

gi

li
,

for some non-zero polynomial u, where the degree in Xi of u is less than |Di|.
Therefore the degree in Xi of w is less than |Si| and at least |Si|−|Di|.

Note that Corollary 4.2 is not the exact converse of Corollary 2.2 since
we cannot conlude that the term Xr1

1 · · ·Xrn
n will be of maximum degree.

Indeed it is easy to construct examples where f does not have such a term
of maximum degree. For i = 1,2 let Di = {0} and Si = {0,1} and therefore
gi(X1)=Xi(Xi−1). The polynomial

f(X1,X2) = X2
1 (X1 − 1) + (X1 − 1)(X2 − 1)

is zero at all points of the grid S1 ×S2 except at the origin which is the
unique point in D1×D2. According to Corollary 4.2, the polynomial f has
a term X1X2, which is the case, but it is not a term of maximum degree.

The following corollary to Theorem 4.1 is Theorem 5 from [2].

Corollary 4.3. Let S1, . . . ,Sn be finite non-empty subsets of F and let f
be a polynomial in F[X1, . . . ,Xn]. If there is a point of S1×·· ·×Sn where f
is not zero then there are at least min

∏n
i=1 yi points of S1×·· ·×Sn where

f is not zero, where the minimum is taken over all positive integers yi≤|Si|
the sum of which are at least

∑n
i=1 |Si|−deg(f).

Proof. The proof is by induction on n. The result holds for n = 1 since a
polynomial of degree m has at most m zeros.

Let Dn be the subset of Sn for which x∈Dn implies f(X1, . . . ,Xn−1,x) �=
0. Since there is a point of S1×·· ·×Sn where f is not zero, it follows that
Dn is non-empty.
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Let x ∈ Dn. By Theorem 4.1 there is a polynomial w of degree at
most deg(f)− |Sn|+ |Dn| where w(s1, . . . ,sn−1) = f(s1, . . . ,sn−1,x) for all
(s1, . . . ,sn−1)∈S1×·· ·×Sn−1.

By induction there are at least min
∏n−1

i=1 yi points of S1×·· ·×Sn−1 where
w is not zero, where the minumum is taken over all positive integers yi where
y1 + · · ·+yn−1≥

∑n−1
i=1 |Si|−deg(w).

Put yn = |Dn| and use −deg(w) ≥ |Sn| − yn − deg(f) to complete the
induction.

5. Applications to geometry

Let F be an arbitrary field and let PG(n,F) denote the n-dimensional pro-
jective geometry over F. The following theorem solves, in a more general
setting, the geometrical problem mentioned in the introduction.

Theorem 5.1. Let t be a positive integer and let l1, l2, . . . , ln be n concur-
rent lines, all incident with the point x, spanning PG(n,F). Let Si be a
subset of points of li \{x} and let Di be a proper non-empty subset of Si.
Suppose that there is a set A of points with the property that every hy-
perplane 〈s1,s2, . . . ,sn〉 where (s1, . . . ,sn)∈(S1×·· ·×Sn)\(D1×·· ·×Dn) is
incident with at least t points of A. If there is a hyperplane 〈d1,d2, . . . ,dn〉,
where (d1, . . . ,dn)∈D1×·· ·×Dn, which is incident with no point of A, then

|A| ≥ (t − 1)max
j

(|Sj | − |Dj |) +
n∑

i=1

(|Si| − |Di|).

Proof. Let H be a hyperplane that meets the lines li in a point of Si but is
not incident with any point of A. Apply a collineation of PG(n,F) that takes
l1, l2, . . . , ln to the axes of AG(n,F), the affine space obtained from PG(n,F)
by removing the hyperplane H, and takes the point H∩ li to the point 〈ei〉,
where ei is the canonical basis vector with a 1 in the i-th coordinate and
zero in the others.

Thus we can then assume that H is the hyperplane defined by the
equation Xn+1 = 0, that A is a subset of AG(n,F), the affine space ob-
tained from PG(n,F) by removing the hyperplane H, and that li is the
line 〈ei,en+1〉.

Let Ti be the subset of F containing 0 with the property that s−1∈Ti\{0}
if and only if 〈sei+en+1〉 is a point of Si. Similarly, let Ei be the subset of F

containing 0 with the property that d−1∈Ei\{0} if and only if 〈dei +en+1〉
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is a point of Di. Note that |Ti|= |Si| and |Ei|= |Di|. Define

f(X1,X2, . . . ,Xn) =
∏

a∈A

(( n∑

i=1

aiXi

)
− 1

)
.

The affine hyperplanes
∑n

i=1 tiXi = 1, where ti ∈ Ti are not all zero, are
the affine hyperplanes spanned by points s1,s2, . . . ,sn, where si ∈ Si. By
hypothesis there are t points of A incident with these hyperplanes, unless
ti ∈ Ei for all i, and so f has a zero of multiplicity t at each point of
(T1×·· ·×Tn)\(E1×·· ·×En). Moreover, f is not zero at the origin, which
is a point of E1×·· ·×En.

Theorem 4.1 implies that

|A| = deg(f) ≥ (t − 1)max
j

(|Tj | − |Ej |) +
n∑

i=1

(|Ti| − |Ei|).

Note that the above proof also shows that the theorem holds for any
multi-set A.

The condition that there is a hyperplane that is not incident with a
point of A is essential. If we do not impose this condition then there is
always an appropriate choice of τ , a sequence of length t whose elements
come from {1,2, . . . ,n}, so that if we put A=∪n

i=1Sτ(i) then A would satisfy
the hypothesis of the theorem with Di =∅ for all i, but

|A| = |Sτ(1)| + · · · + |Sτ(t)| < (t − 1)max
j

|Sj | +
n∑

i=1

|Si|,

contradicting the conclusion.
For t=1 the bound is tight, take

A =
n⋃

i=1

(Si \ Di).

Theorem 5.1 has some corollaries. The following theorem is due to
Bruen [5] and together with Alon’s Nullstellensatz was the inspiration for
this article. It was initially proven for t=1 by Jamison [9] but more pertinent
here is the independent proof found by Brouwer and Schrijver [4].

If F is a finite field Fq we usually write PG(n,q) instead of PG(n,Fq)
and AG(n,q) instead of AG(n,Fq).

Theorem 5.2. If every hyperplane of AG(n,q) is incident with at least
t points of a set of points A, then A has at least (n+t−1)(q−1)+1 points.
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Proof. Let l1, l2, . . . , ln be n lines of PG(n,q) incident with the same point x
of A and spanning PG(n,q). Let H be the hyperplane of PG(n,q) which is
incident with no point of A and set Si = li\{x} and Di = li∩H. Theorem 5.1
implies |A|−1≥(t−1)(q−1)+n(q−1).

The bound in Theorem 5.2 can be improved slightly in many cases when
t≤q, as was proven in [3].

The following theorem is almost the dual of Theorem 5.1. It is slightly
easier to prove since here we fix a coordinate system.

Theorem 5.3. Let A be a set of hyperplanes of AG(n,F) and let Di be
a non-empty proper subset of Si, 1 ≤ i ≤ n, a finite subset of F. If every
point (s1,s2, . . . ,sn), where si ∈ Si, is incident with at least t hyperplanes
of A except at least one point of D1×D2×·· ·×Dn, which is incident with
no hyperplane of A, then

|A| ≥ (t − 1)max
j

(|Sj | − |Dj |) +
n∑

i=1

(|Si| − |Di|).

Proof. Define

f(X1,X2, . . . ,Xn) =
∏(( n∑

i=1

aiXi

)
− an+1

)
,

where each factor in the product corresponds to a hyperplane, defined by
the equation

∑n
i=1 aiXi =an+1, in A. By hypothesis the polynomial f has a

zero of multiplicity t at all the points of S1×S2×·· ·×Sn except at least one
point of D1×D2×·· ·×Dn where it is not zero. By Theorem 4.1 the bound
follows.

If Si = Fq and Di = {0} then Theorem 5.3 implies that a set of hyper-
planes A with the property that every point of AG(n,q), different from the
origin, is incident with at least t hyperplanes of A has cardinality at least
(n+ t−1)(q−1). This is the dual of Theorem 5.2.

Theorem 5.3 has the following immediate corollary for t=1, which is due
to Alon and Füredi [2].

Theorem 5.4. Let h1,h2, . . . ,hn be positive integers and let G be the set
whose points are (y1, . . . ,yn), where yi ∈Z and 0≤ yi ≤ hi. A set of hyper-
planes of AG(n,R) which covers all but one point of G has cardinality at
least h1 +h2 + · · ·+hn.

The following is Theorem 4 from [2] and follows directly from Corol-
lary 4.3.
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Theorem 5.5. Let S1, . . . ,Sn be finite non-empty subsets of F. If m hy-
perplanes of AG(n,F) do not cover S1×·· ·×Sn, then they do not cover at
least min

∏n
i=1 yi, where the minimum is taken over positive integers yi≤|Sn|

whose sum is at least
∑n

i=1 |Si|−m.
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Universitat Politècnica de Catalunya, Jordi Girona 1–3
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