PUNCTURED COMBINATORIAL NULLSTELLENSÄTZE [SIMEON BALL*](#page-11-0)†, [ORIOL SERRA](#page-11-0)†

Received May 28, 2008

In this article we extend Alon's Nullstellensatz to functions which have multiple zeros at the common zeros of some polynomials g_1, g_2, \ldots, g_n , that are the product of linear factors. We then prove a punctured version which states, for simple zeros, that if f vanishes at nearly all, but not all, of the common zeros of $g_1(X_1),...,g_n(X_n)$ then every residue of f modulo the ideal generated by g_1, \ldots, g_n , has a large degree.

This punctured Nullstellensatz is used to prove a blocking theorem for projective and affine geometries over an arbitrary field. This theorem has as corollaries a theorem of Alon and Füredi which gives a lower bound on the number of hyperplanes needed to cover all but one of the points of a hypercube and theorems of Bruen, Jamison and Brouwer and Schrijver which provides lower bounds on the number of points needed to block the hyperplanes of an affine space over a finite field.

1. Introduction

The Combinatorial Nullstellensatz proved by Alon in [[1](#page-11-0)] has been used for a host of applications, some recent examples of which can be found in [[6](#page-11-0)], [[10\]](#page-11-0), [[11](#page-11-0)], [[13](#page-11-0)] and [[14\]](#page-11-0). In this article we prove two extensions of Alon's Nullstellensatz. The first one, [Theorem 3.1](#page-3-0) in [Section 3](#page-2-0), is an extension which handles the multiplicities of zeros of multivariate polynomials. The

Mathematics Subject Classification (2000): 12E99, 51E21

^{*} The first author acknowledges the support of the Ramon y Cajal programme of the Spanish Ministry of Science and Education.

[†] Both authors acknowledge the support of the projects MTM2005-08990-C02-01 and MTM2008-06620-C03-01 of the Spanish Ministry of Science and Education and the project 2005SGR00256 of the Catalan Research Council.

second one, [Theorem 4.1](#page-5-0) in [Section 4](#page-5-0), considers the punctured case in which a polynomial vanishes over almost all, but not all, of the common zeros of a family of univariate polynomials.

These two results allow us to prove a blocking theorem for projective and affine geometries over an arbitrary field, [Theorem 5.1](#page-8-0) in [Section 5](#page-8-0). It has as corollaries the classical result of Jamison [[9\]](#page-11-0) on the minimum number of points of a set blocking all hyperplanes in the affine geometry $AG(n,q)$, its extension to multiple incidences by Bruen [\[5](#page-11-0)] and results on almost blocking sets of the hypercube by Alon and Füredi $[2]$. Our blocking theorem can be illustrated by the following problem.

Consider two lines l_1 and l_2 of a projective plane over a field $\mathbb F$ and finite non-intersecting subsets of points S_i of l_i . Let A be a set of points with the property that every line joining a point of S_1 to a point of S_2 is incident with a point of A . If we asked ourselves how small can A be then obviously we could simply choose A to be the smaller of the S_i and clearly we can do no better. If, however, we impose the restriction that one of the lines joining a point P_1 of S_1 to a point P_2 of S_2 is not incident with any point of A then it is not so obvious how small A can be. According to [Theorem 5.1](#page-8-0) we need at least $|S_1|+|S_2|-2$ points, which is clearly an attainable bound, for example take A to be $(S_1 \cup S_2) \setminus \{P_1, P_2\}$. [Theorem 5.1](#page-8-0) generalises this bound to arbitrary dimension and to sets that have not just one point incident with the lines joining a point of S_1 to a point of S_2 , but a fixed number t of points.

2. Combinatorial Nullstellensatz

Let F be a field and let f be a non-zero polynomial in $\mathbb{F}[X_1, X_2, \ldots, X_n].$ Suppose that S_1, S_2, \ldots, S_n are arbitrary non-empty finite subsets of $\mathbb F$ and define

$$
g_i(X_i) = \prod_{s_i \in S_i} (X_i - s_i).
$$

Alon's Combinatorial Nullstellensatz [[1](#page-11-0), Theorem 1.1] is the following, which differs from the classical Nullstellensatz of Hilbert, see for example [[7](#page-11-0), pp. 21], in that the polynomials in Alon's version are univariate and the field is arbitrary, whereas in the classical version the polynomials are arbitrary and the field is algebraically closed.

Theorem 2.1. If f vanishes over all the common zeros of q_1, q_2, \ldots, q_n , in *other words* $f(s_1, s_2,...,s_n) = 0$ *for all* $s_i \in S_i$ *, then there are polynomials* h_1, h_2, \ldots, h_n , elements of $\mathbb{F}[X_1, X_2, \ldots, X_n]$, satisfying $\deg(h_i) \leq \deg(f)$ – deg(gi) *with the property that*

$$
f = \sum_{i=1}^{n} h_i g_i.
$$

Although not explicitly stated in his article, the following generalisation of Theorem 2.2 in [[1](#page-11-0)] is easily proven. Note that under the hypothesis, there is always at least one point of the grid where f does not vanish. This corollary also incorporates Theorem 5 from Alon and Füredi [\[2\]](#page-11-0).

Corollary 2.2. If f has a term of maximum degree $X_1^{r_1} \cdots X_n^{r_n}$, where $r_i =$ $|S_i|$ −t_i and $t_i \geq 1$ for all i, then a grid which contains the points of $S_1 \times \cdots \times S_n$ where f does not vanish, has size at least $t_1 \times \cdots \times t_n$.

Proof. Suppose that there is a grid $M_1 \times \cdots \times M_n$, where $n_j = |M_j| < t_j$ for some j, containing all the points of $S_1 \times \cdots \times S_n$ where f does not vanish. Let

$$
e_j(X_j) = \prod_{m \in M_j} (X_j - m).
$$

The polynomial fe_j is zero at all points of $S_1 \times \cdots \times S_n$ and has a term of maximum degree $X_1^{r_1}\cdots X_{j-1}^{r_{j-1}}X_j^{r_j+n_j}X_{j+1}^{r_{j+1}}\cdots X_n^{r_n}$. Note that $r_j + n_j < |S_j|$ and $r_i < |S_i|$ for $i \neq j$. By [Theorem 2.1](#page-1-0) the polynomial $fe_j = \sum_{i=1}^n g_i h_i$ for some polynomials h_i of degree at most $\deg(f) - \deg(g_i) + n_i$. Since f is not zero, the terms of maximum degree in fe_j have degree in X_i at least $|S_i|$ for some *i*, a contradiction.

3. Combinatorial Nullstellensätze with multiplicity

In this section we take into account the multiplicities of the zeros of the polynomial f. The following proof of [Theorem 3.1](#page-3-0) is based on the proof of Theorem 1.3 in [\[5](#page-11-0)].

If $a \in \mathbb{F}^n$ is a zero of the polynomial $f \in \mathbb{F}[X_1,\ldots,X_n]$ then the expansion of the polynomial $f_a(X_1,\ldots,X_n)=f(X_1+a_1,\ldots,X_n+a_n)$ has no monomials of degree zero. Following Fulton [\[7,](#page-11-0) pp. 66] and Bruen [[5](#page-11-0)], an element $a \in \mathbb{F}^n$ is a zero of multiplicity t of a non-zero polynomial $f \in \mathbb{F}[X_1, X_2, \ldots, X_n]$, where t is defined to be the minimum degree of the terms that occur in $f(X_1 + a_1, X_2 + a_2, \ldots, X_n + a_n)$. By convention the zero polynomial has a zero of multiplicity t at every point and for every positive integer t .

Let $T(n,t)$ be the set of all non-decreasing sequences of length t on the set $\{1,2,\ldots,n\}$. For any $\tau \in T(n,t)$, let $\tau(i)$ denote the *i*-th element in the sequence τ , and we write $j \in \tau$ if and only if j appears in the sequence τ .

Let F be a field and let f be a polynomial in $\mathbb{F}[X_1, X_2, \ldots, X_n]$. Suppose that S_1, S_2, \ldots, S_n are arbitrary non-empty finite subsets of $\mathbb F$ and define

$$
g_i(X_i) = \prod_{s \in S_i} (X_i - s).
$$

Theorem 3.1. *If* f *has a zero of multiplicity* t *at all the common zeros of* g_1, g_2, \ldots, g_n then there are polynomials h_{τ} in $\mathbb{F}[X_1, X_2, \ldots, X_n]$, satisfying $\deg(h_{\tau}) \leq \deg(f) - \sum_{i \in \tau} \deg(g_i)$ *, such that*

$$
f = \sum_{\tau \in T(n,t)} g_{\tau(1)} \cdots g_{\tau(t)} h_{\tau}.
$$

Proof. We shall prove this by double induction on n and t. If $n=1$ and f has a zero of degree t for all $s_1 \in S_1$ then $f = g(X_1)^t h(X_1)$ for some polynomial h. If $t=1$ then the theorem is Alon's Nullstellensatz, [Theorem 2.1](#page-1-0).

Assume that the theorem holds whenever $m < n$ and $u \leq t$ or whenever $m \leq n$ and $u \leq t$.

Let $\alpha \in S_n$. Write $f = (X_n - \alpha)A_\alpha + B_\alpha$, where $A_\alpha \in \mathbb{F}[X_1, X_2, \dots, X_n]$ and $B_{\alpha} \in \mathbb{F}[X_1, X_2, \ldots, X_{n-1}]$. The polynomial B_{α} has a zero of multiplicity t at all elements of $S_1 \times S_2 \times \cdots \times S_{n-1}$, so by induction with $m=n-1$

$$
B_{\alpha} = \sum_{\tau \in T(n-1,t)} g_{\tau(1)} \cdots g_{\tau(t)} h_{\tau},
$$

where $\deg(h_{\tau})$ is at most $\deg(f) - \sum_{i \in \tau} \deg(g_i)$.

We will show that we can write $f = g_n(X_n)A + B$ where A has degree at most deg(f) – deg(g_n) and

$$
B = \sum_{\tau \in T(n-1,t)} g_{\tau(1)} \cdots g_{\tau(t)} o_{\tau},
$$

where o_{τ} has degree at most $\deg(f) - \sum_{i \in \tau} \deg(g_i)$.

If $|S_n| = 1$ then we are done. If not then there is a $\beta \in S_n$ with $\beta \neq$ α . Write $A_{\alpha} = (X_n - \beta)A_{\beta} + B_{\beta}$, where $A_{\beta} \in \mathbb{F}[X_1, X_2, \dots, X_n]$ and $B_{\beta} \in$ $\mathbb{F}_q[X_1,X_2,\ldots,X_{n-1}]$. Again by induction with $m=n-1$, the polynomial

$$
B_{\beta} = \sum_{\tau \in T(n-1,t)} g_{\tau(1)}, \ldots, g_{\tau(t)} l_{\tau},
$$

for some polynomials l_{τ} , where $\deg(l_{\tau}) \leq \deg(B_{\beta}) - \sum_{i \in \tau} \deg(g_i) \leq \deg(f) 1-\sum_{i\in\tau}\deg(g_i).$

Thus we can write $f = (X_n - \alpha)(X_n - \beta)A_\beta + U_{\alpha\beta}$ for some

$$
U_{\alpha\beta} = \sum_{\tau \in T(n-1,t)} g_{\tau(1)}, \dots, g_{\tau(t)} m_{\tau},
$$

where m_{τ} has degree at most $\deg(f) - \sum_{i \in \tau} \deg(g_i)$.

Continuing in this way for all elements of S_n we are able to write $f =$ $g_n(X_n)A+B$ where A has degree at most $\deg(f) - \deg(g_n)$ and

$$
B=\sum_{\tau\in T(n-1,t)}g_{\tau(1)},\ldots,g_{\tau(t)}o_{\tau},
$$

where o_{τ} has degree at most $\deg(f) - \sum_{i \in \tau} \deg(g_i)$.

The polynomial $g_n(X_n)A$ has a zero of multiplicity t at all points of $S_1 \times S_2 \times \cdots \times S_n$ and so A has a zero of multiplicity $t-1$ at all points of $S_1 \times S_2 \times \cdots \times S_n$. By induction, with $u=t-1$,

$$
A = \sum_{\tau \in T(n,t-1)} g_{\tau(1)}, \dots, g_{\tau(t-1)} p_{\tau},
$$

where p_{τ} has degree at most $\deg(A) - \sum_{i \in \tau} \deg(g_i)$.

Therefore, f can be written in the desired way.

[Theorem 3.1](#page-3-0) has the following corollary.

Corollary 3.2. *Let* F *be a field and let* f *be a non-zero polynomial in* $\mathbb{F}[X_1, X_2, \ldots, X_n]$ *. Let* $X_1^{r_1} X_2^{r_2} \cdots X_n^{r_n}$ be a term of f of maximum de*gree.* If S_1, S_2, \ldots, S_n *are non-empty subsets of* \mathbb{F} *with the property that for all non-negative integers* $\alpha_1, \ldots, \alpha_n$ *satisfying* $\sum_{i=1}^n \alpha_i = t$, one has

$$
r_i < \alpha_i |S_i|,
$$

for some i, then there is a point $a = (a_1, a_2, \ldots, a_n)$, with $a_i \in S_i$, where f has *a zero of multiplicity at most* t−1*.*

Proof. Suppose that f has a zero of degree at least t at all elements of $S_1\times S_2\times\cdots\times S_n$. By [Theorem 3.1](#page-3-0), there are polynomials $h_\tau\in\mathbb{F}[X_1,X_2,\ldots,X_n]$ with the property that

$$
f=\sum_{\tau\in T}g_{\tau(1)},\ldots,g_{\tau(t)}h_{\tau},
$$

and h_{τ} has degree at most $\deg(f) - \sum_{i \in \tau} \deg(g_i)$. On the right hand side of this equality the terms of highest degree are divisible by $\prod_{i \in \tau} X_i^{|S_i|}$ for some τ . Therefore, there is a τ for which $r_i \geq \sum_{i \in \tau} |S_i|$ for all $i \in \tau$. Let α_i be the number of times i occurs in the sequence τ . The sum $\sum_{i=1}^{n} \alpha_i = t$ and $r_i \geq \alpha_i |S_i|$ for all i, a contradiction.

Note that the above corollary with $t=1$ is the original corollary to Alon's Nullstellensatz that has proven so useful. Specifically, if $r_i < |S_i|$ for all i then there is a point $(a_1, a_2,..., a_n)$, with $a_i \in S_i$, where f does not vanish.

4. Punctured Combinatorial Nullstellensatz

In Alon's Combinatorial Nullstellensatz, [Theorem 2.1](#page-1-0), the function f was assumed to have zeros at all points of the grid $S_1 \times S_2 \times \cdots \times S_n$. In the case that there is a point in $S_1 \times S_2 \times \cdots \times S_n$ where f does not vanish a slightly different conclusion holds. The following can be thought of as a punctured version of Alon's Combinatorial Nullstellensatz.

Let F be a field and let f be a polynomial in $\mathbb{F}[X_1, X_2, \ldots, X_n]$. For $i = 1, \ldots, n$, let D_i and S_i be finite non-empty subsets of \mathbb{F} , where $D_i \subset S_i$, and define

$$
g_i(X_i) = \prod_{s \in S_i} (X_i - s),
$$
 and $l_i(X_i) = \prod_{d \in D_i} (X_i - d).$

Theorem 4.1. *If* f *has a zero of multiplicity at least* t *at all the common zeros of* g_1, g_2, \ldots, g_n , except at least one point of $D_1 \times D_2 \times \cdots \times D_n$ *where it has a zero of multiplicity less than* t, then there are polynomials h_{τ} *in* $\mathbb{F}[X_1, X_2, \ldots, X_n]$ *, satisfying* $\deg(h_i) \leq \deg(f) - \sum_{i \in \tau} \deg(g_i)$ *, and a nonzero polynomial* u *satisfying* deg(u) \leq deg(f) $-\sum_{i=1}^{n}$ (deg(g_i) $-\deg(l_i)$)*, such that*

$$
f = \sum_{\tau \in T(n,t)} g_{\tau(1)} \cdots g_{\tau(t)} h_{\tau} + u \prod_{i=1}^n \frac{g_i}{l_i}.
$$

Moreover, if there is a point of $D_1 \times D_2 \times \cdots \times D_n$ *where* f *is non-zero, then,*

$$
\deg(f) \ge (t-1) \max_{j} (|S_j| - |D_j|) + \sum_{i=1}^{n} (|S_i| - |D_i|).
$$

Proof. Let $I(n,t)$ be the ideal generated by the polynomials $\{g_{\tau(1)} \cdots g_{\tau(t)}\}$ $\tau \in T(n,t)$. We can write

$$
f = \sum_{\tau \in T(n,t)} g_{\tau(1)} \cdots g_{\tau(t)} h_{\tau} + w,
$$

where w, a polynomial in the same equivalence class as f modulo $I(n,t)$, has no terms $X_1^{r_1}\cdots X_n^{r_n}$ for which there is a $\tau \in T(n,t)$ with $r_j \geq \sum_{j\in\tau} |S_j|$ for all i .

By hypothesis, for all *i*, fl_i^t has zeros of multiplicity t at all common zeros of g_1, g_2, \ldots, g_n and hence, so does wl_i^t . By [Theorem 3.1](#page-3-0) there are polynomials v_{τ} with the property that

(4.1)
$$
wl_i^t = \sum_{\tau \in T(n,t)} g_{\tau(1)} \cdots g_{\tau(t)} v_{\tau}.
$$

However wl_i^t has no terms $X_1^{r_1} \cdots X_n^{r_n}$ for which there is a $\tau \in T(t,n)$ with $r_j \ge \sum_{j \in \tau} |S_j|$ for all j, unless $i \in \tau$. Thus

$$
wl_i^t = g_i(X_i) \sum_{\tau \in T(n,t-1)} g_{\tau(1)} \cdots g_{\tau(t-1)} o_{\tau},
$$

for some polynomials o_{τ} , from which it follows that g_i divides wl_i^t for each i. However l_i divides g_i and $(g_i/l_i, l_i) = 1$, from which we deduce that g_i/l_i divides w. Thus we can write

$$
f = \sum_{\tau \in T(n,t)} g_{\tau(1)} \cdots g_{\tau(t)} h_{\tau} + u \prod_{i=1}^n \frac{g_i}{l_i},
$$

for some polynomial u, where $u \neq 0$ since f does not belong to the ideal $I(n,t)$.

To prove the lower bound on the degree of f , we will prove a lower bound on the degree of u.

Suppose that, after a suitable relabelling of the subscripts, the maximum value of $|S_i| - |D_i|$ occurs when $j = 1$.

Let $(d_1,...,d_n)$ be a point of $D_1 \times \cdots \times D_n$ where f is not zero. Equation 4.1 with $i=1$ gives

$$
u(X_1, d_2, \dots, d_n)l_1^t \frac{g_1}{l_1} = g_1^t v_1,
$$

for some polynomial v_1 , and hence $(g_1/l_1)^{t-1}$ divides $u(X_1,d_2,\ldots,d_n)$.

It only remains to show that $u(X_1,d_2,\ldots,d_n)$ is not zero. This follows immediately since $f(X_1,...,d_n)$ is not zero at $X_1 = d_1$, it follows that $u(X_1,d_2,\ldots,d_n)g_1/l_1$ is not zero and hence neither is $u(X_1,d_2,\ldots,d_n)$.

The following corollary is a converse of the corollary to Alon's Nullstellensatz, [Corollary 2.2](#page-2-0).

Corollary 4.2. If $D_1 \times \cdots \times D_n$ is a grid containing all the points of the grid $S_1 \times \cdots \times S_n$ where f does not vanish and $D_i \subset S_i$ for all *i*, then f has a term $X_1^{r_1} \cdots X_n^{r_n}$, where $|S_i| - 1 \ge r_i \ge |S_i| - |D_i|$.

Proof. Let

$$
g_i(X_i) = \prod_{s \in S_i} (X_i - s),
$$
 and $l_i(X_i) = \prod_{d \in D_i} (X_i - d).$

By [Theorem 4.1](#page-5-0) we can write

$$
f = \sum_{i=1}^{n} h_i g_i + w,
$$

and

$$
w = u \prod_{i=1}^{n} \frac{g_i}{l_i},
$$

for some non-zero polynomial u, where the degree in X_i of u is less than $|D_i|$. Therefore the degree in X_i of w is less than $|S_i|$ and at least $|S_i|-|D_i|$. Ш

Note that Corollary 4.2 is not the exact converse of [Corollary 2.2](#page-2-0) since we cannot conlude that the term $X_1^{r_1}\cdots X_n^{r_n}$ will be of maximum degree. Indeed it is easy to construct examples where f does not have such a term of maximum degree. For $i = 1,2$ let $D_i = \{0\}$ and $S_i = \{0,1\}$ and therefore $g_i(X_1)=X_i(X_i-1)$. The polynomial

$$
f(X_1, X_2) = X_1^2(X_1 - 1) + (X_1 - 1)(X_2 - 1)
$$

is zero at all points of the grid $S_1 \times S_2$ except at the origin which is the unique point in $D_1 \times D_2$. According to Corollary 4.2, the polynomial f has a term X_1X_2 , which is the case, but it is not a term of maximum degree.

The following corollary to [Theorem 4.1](#page-5-0) is Theorem 5 from [\[2\]](#page-11-0).

Corollary 4.3. Let S_1, \ldots, S_n be finite non-empty subsets of \mathbb{F} and let f *be a polynomial in* $\mathbb{F}[X_1,\ldots,X_n]$ *. If there is a point of* $S_1 \times \cdots \times S_n$ *where* f is not zero then there are at least $\min \prod_{i=1}^{n} y_i$ points of $S_1 \times \cdots \times S_n$ where f is not zero, where the minimum is taken over all positive integers $y_i \leq |S_i|$ *the sum of which are at least* $\sum_{i=1}^{n} |S_i| - \deg(f)$ *.*

Proof. The proof is by induction on n. The result holds for $n = 1$ since a polynomial of degree m has at most m zeros.

Let D_n be the subset of S_n for which $x \in D_n$ implies $f(X_1,...,X_{n-1},x) \neq$ 0. Since there is a point of $S_1 \times \cdots \times S_n$ where f is not zero, it follows that D_n is non-empty.

Let $x \in D_n$. By [Theorem 4.1](#page-5-0) there is a polynomial w of degree at most $\deg(f) - |S_n| + |D_n|$ where $w(s_1,...,s_{n-1}) = f(s_1,...,s_{n-1},x)$ for all $(s_1,\ldots,s_{n-1})\in S_1\times\cdots\times S_{n-1}.$

By induction there are at least min $\prod_{i=1}^{n-1} y_i$ points of $S_1 \times \cdots \times S_{n-1}$ where w is not zero, where the minumum is taken over all positive integers y_i where $y_1 + \cdots + y_{n-1} \ge \sum_{i=1}^{n-1} |S_i| - \deg(w).$

Put $y_n = |D_n|$ and use $-\deg(w) \geq |S_n| - y_n - \deg(f)$ to complete the induction.

5. Applications to geometry

Let $\mathbb F$ be an arbitrary field and let $PG(n,\mathbb F)$ denote the *n*-dimensional projective geometry over F. The following theorem solves, in a more general setting, the geometrical problem mentioned in the introduction.

Theorem 5.1. Let t be a positive integer and let l_1, l_2, \ldots, l_n be n concur*rent lines, all incident with the point x, spanning* $PG(n, \mathbb{F})$ *. Let* S_i *be a* subset of points of $l_i \setminus \{x\}$ and let D_i be a proper non-empty subset of S_i . *Suppose that there is a set* A *of points with the property that every hyperplane* $\langle s_1, s_2, \ldots, s_n \rangle$ *where* $(s_1, \ldots, s_n) \in (S_1 \times \cdots \times S_n) \setminus (D_1 \times \cdots \times D_n)$ *is incident with at least t points of A. If there is a hyperplane* $\langle d_1, d_2, \ldots, d_n \rangle$, *where* $(d_1, \ldots, d_n) \in D_1 \times \cdots \times D_n$ *, which is incident with no point of A, then*

$$
|A| \ge (t-1) \max_{j} (|S_j| - |D_j|) + \sum_{i=1}^{n} (|S_i| - |D_i|).
$$

Proof. Let H be a hyperplane that meets the lines l_i in a point of S_i but is not incident with any point of A. Apply a collineation of $PG(n, \mathbb{F})$ that takes l_1, l_2, \ldots, l_n to the axes of AG(n, F), the affine space obtained from PG(n, F) by removing the hyperplane H, and takes the point $H \cap l_i$ to the point $\langle e_i \rangle$, where e_i is the canonical basis vector with a 1 in the *i*-th coordinate and zero in the others.

Thus we can then assume that H is the hyperplane defined by the equation $X_{n+1} = 0$, that A is a subset of $AG(n, \mathbb{F})$, the affine space obtained from $PG(n, \mathbb{F})$ by removing the hyperplane H, and that l_i is the line $\langle e_i, e_{n+1} \rangle$.

Let T_i be the subset of F containing 0 with the property that $s^{-1} \in T_i \setminus \{0\}$ if and only if $\langle se_i+e_{n+1} \rangle$ is a point of S_i . Similarly, let E_i be the subset of $\mathbb F$ containing 0 with the property that $d^{-1} \in E_i \setminus \{0\}$ if and only if $\langle de_i + e_{n+1} \rangle$

is a point of D_i . Note that $|T_i|=|S_i|$ and $|E_i|=|D_i|$. Define

$$
f(X_1, X_2, \ldots, X_n) = \prod_{a \in A} \left(\left(\sum_{i=1}^n a_i X_i \right) - 1 \right).
$$

The affine hyperplanes $\sum_{i=1}^{n} t_i X_i = 1$, where $t_i \in T_i$ are not all zero, are the affine hyperplanes spanned by points s_1, s_2, \ldots, s_n , where $s_i \in S_i$. By hypothesis there are t points of A incident with these hyperplanes, unless $t_i \in E_i$ for all i, and so f has a zero of multiplicity t at each point of $(T_1 \times \cdots \times T_n) \setminus (E_1 \times \cdots \times E_n)$. Moreover, f is not zero at the origin, which is a point of $E_1 \times \cdots \times E_n$.

[Theorem 4.1](#page-5-0) implies that

$$
|A| = \deg(f) \ge (t-1) \max_{j}(|T_j| - |E_j|) + \sum_{i=1}^{n} (|T_i| - |E_i|).
$$

Note that the above proof also shows that the theorem holds for any multi-set A.

The condition that there is a hyperplane that is not incident with a point of A is essential. If we do not impose this condition then there is always an appropriate choice of τ , a sequence of length t whose elements come from $\{1, 2, ..., n\}$, so that if we put $A = \bigcup_{i=1}^{n} S_{\tau(i)}$ then A would satisfy the hypothesis of the theorem with $D_i = \emptyset$ for all i, but

$$
|A| = |S_{\tau(1)}| + \cdots + |S_{\tau(t)}| < (t-1) \max_{j} |S_j| + \sum_{i=1}^{n} |S_i|,
$$

contradicting the conclusion.

For $t=1$ the bound is tight, take

$$
A = \bigcup_{i=1}^{n} (S_i \setminus D_i).
$$

[Theorem 5.1](#page-8-0) has some corollaries. The following theorem is due to Bruen [\[5](#page-11-0)] and together with Alon's Nullstellensatz was the inspiration for this article. It was initially proven for $t=1$ by Jamison [\[9](#page-11-0)] but more pertinent here is the independent proof found by Brouwer and Schrijver [\[4\]](#page-11-0).

If F is a finite field \mathbb{F}_q we usually write PG(n,q) instead of PG(n, \mathbb{F}_q) and AG (n,q) instead of AG (n,\mathbb{F}_q) .

Theorem 5.2. If every hyperplane of $AG(n,q)$ is incident with at least t points of a set of points A, then A has at least $(n+t-1)(q-1)+1$ points. **Proof.** Let l_1, l_2, \ldots, l_n be n lines of $PG(n,q)$ incident with the same point x of A and spanning $PG(n,q)$. Let H be the hyperplane of $PG(n,q)$ which is incident with no point of A and set $S_i = l_i\{x\}$ and $D_i = l_i \cap H$. [Theorem 5.1](#page-8-0) implies $|A| - 1 \ge (t-1)(q-1) + n(q-1)$.

The bound in [Theorem 5.2](#page-9-0) can be improved slightly in many cases when $t \leq q$, as was proven in [\[3](#page-11-0)].

The following theorem is almost the dual of [Theorem 5.1](#page-8-0). It is slightly easier to prove since here we fix a coordinate system.

Theorem 5.3. Let A be a set of hyperplanes of $AG(n, \mathbb{F})$ and let D_i be *a* non-empty proper subset of S_i , $1 \leq i \leq n$, a finite subset of \mathbb{F} . If every *point* (s_1, s_2, \ldots, s_n) *, where* $s_i \in S_i$ *, is incident with at least t hyperplanes of* A except at least one point of $D_1 \times D_2 \times \cdots \times D_n$, which is incident with *no hyperplane of* A*, then*

$$
|A| \ge (t-1) \max_{j} (|S_j| - |D_j|) + \sum_{i=1}^{n} (|S_i| - |D_i|).
$$

Proof. Define

$$
f(X_1, X_2, \ldots, X_n) = \prod \left(\left(\sum_{i=1}^n a_i X_i \right) - a_{n+1} \right),
$$

where each factor in the product corresponds to a hyperplane, defined by the equation $\sum_{i=1}^{n} a_i X_i = a_{n+1}$, in A. By hypothesis the polynomial f has a zero of multiplicity t at all the points of $S_1 \times S_2 \times \cdots \times S_n$ except at least one point of $D_1 \times D_2 \times \cdots \times D_n$ where it is not zero. By [Theorem 4.1](#page-5-0) the bound follows.

If $S_i = \mathbb{F}_q$ and $D_i = \{0\}$ then Theorem 5.3 implies that a set of hyperplanes A with the property that every point of $AG(n,q)$, different from the origin, is incident with at least t hyperplanes of A has cardinality at least $(n+t-1)(q-1)$. This is the dual of [Theorem 5.2.](#page-9-0)

Theorem 5.3 has the following immediate corollary for $t=1$, which is due to Alon and Füredi [[2](#page-11-0)].

Theorem 5.4. Let h_1, h_2, \ldots, h_n be positive integers and let G be the set *whose points are* (y_1, \ldots, y_n) *, where* $y_i \in \mathbb{Z}$ *and* $0 \le y_i \le h_i$ *.* A set of hyper*planes of* AG(n,R) *which covers all but one point of* G *has cardinality at least* $h_1 + h_2 + \cdots + h_n$ *.*

The following is Theorem 4 from [[2](#page-11-0)] and follows directly from [Corol](#page-7-0)la[ry 4.3.](#page-7-0)

Theorem 5.5. Let S_1, \ldots, S_n be finite non-empty subsets of \mathbb{F} . If m hy*perplanes of* $AG(n, \mathbb{F})$ *do not cover* $S_1 \times \cdots \times S_n$ *, then they do not cover at* $\frac{d}{dt}$ least min $\prod_{i=1}^{n} y_i$, where the minimum is taken over positive integers $y_i \leq |S_n|$ *whose sum is at least* $\sum_{i=1}^{n} |S_i| - m$.

6. Acknowledgements

The authors would like to thank the anonymous referee for his/her careful reading of the manuscript and his/her suggestions.

References

- [1] N. Alon: Combinatorial Nullstellensatz, Combin. Probab. Comput. **8** (1999), 7–29.
- [2] N. ALON and Z. FÜREDI: Covering the cube by affine hyperplanes, *European J.* Combin. **14** (1993), 79–83.
- [3] S. Ball: On intersection sets in Desarguesian affine spaces, European J. Combin. **21** (2000), 441–446.
- [4] A. E. Brouwer and A. Schrijver: The blocking number of an affine space, J. Combin. Theory Ser. A **24** (1978), 251–253.
- [5] A. A. Bruen: Polynomial multiplicities over finite fields and intersection sets, J. Combin. Theory Ser. A **60** (1992), 19–33.
- $[6]$ M. CÁMARA, J. MORAGAS and A. LLADÓ: On a Häggkavist's conjecture with the polynomial method, Electr. Notes in Discrete Math. **29** (2007), 559–563.
- [7] W. FULTON: *Algebraic Curves*, Benjamin, 1969.
- $[8]$ D. HEFETZ: Anti-magic graphs via the combinatorial Nullstellensatz, J. Graph Theory **50** (2005), 263–272.
- [9] R. Jamison: Covering finite fields with cosets of subspaces, J. Combin. Theory Ser. A **22** (1977), 253–266.
- [10] Gy. KAROLYI: A compactness argument in the additive theory and the polynomial method, Discrete Math. **302** (2005), 124–144.
- [11] A. KÉZDY: ρ -valuations for some stunted trees, *Discrete Math.* **306** (2006), 2786– 2789.
- [12] T. G. Ostrom and F. A. Sherk: Finite projective planes with affine subplanes, Canad. Math. Bull. **7** (1964), 549–559.
- [13] U, Schauz: Colorings and orientations of matrices and graphs, Electron. J. Combin. **13** (2006), 12 pp.
- [14] Z-W. Sun and Y-N. Yeh: On various restricted sumsets, J. Number Theory **114** (2005), 209–220.

Simeon Ball, Oriol Serra

Departament de Matem`atica Aplicada IV Universitat Politècnica de Catalunya, Jordi Girona $1-3$ Mòdul C3, Campus Nord 08034 Barcelona, Spain [simeon@ma4.upc.edu,](mailto:simeon@ma4.upc.edu) oserra@ma4.upc.edu