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It is shown that given a connected graph T with at least one edge and an arbitrary finite
simplicial complex X, there is a graph G such that the complex Hom(T', G) is homotopy
equivalent to X. The proof is constructive, and uses a nerve lemma. Along the way several
results regarding Hom complexes, exponentials of graphs, and subdivisions are established
that may be of independent interest.

1. Introduction

The Hom complex is a functorial way to assign a poset (and hence topological
space) Hom(T,G) to a pair of graphs T and G. Versions of these spaces
were introduced by Lovész in his proof of Kneser’s conjecture ([9]), and later
further investigated by Babson and Kozlov in [2] and [3]. The automorphism
group of T naturally acts on the space Hom(T,G), and in the case that
T=K> is an edge and G is graph without loops, the complex Hom(7T,G) is
a space with a free Zs-action. In [5] Csorba shows that any free Zs-space
can be realized (up to Zs-homotopy type) as Hom (K9, G) for some suitably
chosen graph G. His proof involves a simple and elegant construction in
which one obtains a graph G whose vertices are precisely those of the given
Zo-simplicial complex.

A natural question to ask is what homotopy types can be realized as
Hom(T,7?) for other test graphs T'. As Csorba points out, arbitrary homotopy
types cannot be realized by Hom complexes of loopless graphs even with
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T = K5 as the test graph; all such Hom complexes will be free Zs-spaces
and hence will present topological obstructions (e.g. parity of the Euler
characteristic). However, if we allow loops on our graphs, and do not concern
ourselves with group actions, we are able to prove the following ‘universality’
of Hom complexes.

Theorem 1.1. Let T be a connected graph with at least one edge, and
suppose X is a finite simplicial complex. Then there exists a graph Gy, x
(depending on X and the diameter of T') and a homotopy equivalence

Hom(T, Gy x) ~ X.

The graph Gy x will be reflexive (that is, has loops on all the vertices),
and hence the space Hom(T', G}, x) will no longer carry a free Aut(7") action.
The idea behind our proof of this theorem will be to consider X*=hd*(X),
a high enough (depending on the diameter of T") barycentric subdivision of
the given simplicial complex X, and to define G}, x as the 1-skeleton of X k
with loops placed on each vertex. To show that Hom(T,Gj x) has the de-
sired homotopy type, we will first replace it with a homotopy equivalent
space X' (which will be the clique complex of some graph). We then deter-
mine the homotopy type of X’ by covering it with a collection of contractible
subcomplexes (with contractible intersections) and then employing a nerve
lemma.

The structure of the paper is as follows. In section 2 we provide some
necessary background on graphs, Hom complexes, and their properties. Sec-
tion 3 is devoted to the proof of the main result and some related lemmas.
We conclude in section 4 with some open questions.

Acknowledgments. The author wishes to thank Carsten Schultz for fruit-
ful discussions, an anonymous referee for helpful comments, and especially
his advisor, Eric Babson, who suggested the construction of the graph G, x.

2. Main objects of study

In this section we record some basic facts about graphs and Hom complexes.
For us, a graph G=(V(G),E(G)) consists of a vertex set V(G) and an edge
set E(G) CV(G)xV(G) such that if (v,w) € E(G) then (w,v) € E(G). Hence
our graphs are undirected and do not have multiple edges, but may have
loops (if (v,v) € E(G)). If (v,w) € E(G) we will often say that v and w are
adjacent and denote this as v~w. Given a pair of graphs G and H, a graph
homomorphism (or graph map) f: G — H is a mapping of the vertex set
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f: V(G)—V(H) that preserves adjacency: if v~w in G, then f(v)~ f(w)
in H. With these as our objects and morphisms we obtain a category of
graphs which we will denote G.

If v and w are vertices of a graph G, the distance d(v,w) is the length
of the shortest path in G from v to w. The diameter of a finite connected
graph G, denoted diam(G) is the maximum distance between two vertices
of G. The neighborhood of a vertex v, denoted N¢(v) (or N(v) if the context
is clear), is the set of vertices that are precisely distance 1 from v (so that
vE€ N (v) if and only if v has a loop). If v and w are vertices of a graph such
that N(v) C N(w) then we call the map f: G — G\ v that sends v to w a
folding of the vertex v; we will also say that G folds onto the graph G\ v.

There are several simplicial complexes one can associate with a given
graph G. One such construction is the cligue complez A(G), a simplicial
complex with vertices given by all looped vertices of GG, and with faces given
by all cliques (complete subgraphs) on the looped vertices of G.

We next recall the definition of our main object of study, the Hom com-
plex. (Versions of) this construction were originally used by Lovész, Babson
and Kozlov, and others to provide so-called topological lower bounds on the
chromatic numbers of graphs (see [8] for a nice survey). We will use the
following definition.

Definition 2.1. For graphs G and H, we define Hom(G, H) to be the poset
whose elements are given by all functions n: V(G) — 2V )\ {¢}, such that
if (z,y) € E(G), then for any € n(x) and gy € n(y) we have (Z,9) € E(H).
The partial order is given by containment, so that n<n' if n(x) Cn'(x) for
all zeV.

B Cc B A Cc A A
A A C A B C B

Figure 1. The graphs G and H, and the poset Hom(G, H).



436 ANTON DOCHTERMANN

One can check that for a fixed graph G, Hom(G,?) (resp. Hom(?, H))
is a covariant (resp. contravariant) functor from the category of graphs to
the category of posets. We will often speak of topological properties of the
Hom complex. In this context we will mean the space obtained as the ge-
ometric realization of the order compler of the poset Hom (G, H). When
the context is clear, we will refer to this topological space (realization of a
simplicial complex) with the same Hom(G, H) notation.

Example 2.2. In Figure 1 we provide an example of graphs G and H with
the associated poset Hom(G, H), where elements of the latter are labeled
with the images of the top and bottom vertices of G. In Figure 2 we depict the
complex whose face poset is Hom(G, H); hence the realization of Hom (G, H)
will be the simplicial complex given by the barycentric subdivision of this
space. We point out that the polyhedral complex depicted here is the original
construction of Hom (G, H) described in [2]. For us it will be more convenient
to work with the poset.

or
> >
w >

w
wo

B C
AB,C A
A A

Figure 2. The realization of the poset Hom(G, H) (up to barycentric subdivision).

The category G has a product with a right adjoint given by the exponen-
tial graph construction. We recall these constructions below.

Definition 2.3. If G and H are graphs, then the categorical product Gx H
is a graph with vertex set V(G)xV (H) and adjacency given by (g,h)~(¢',h’)
in Gx H if both g~¢ in G and h~h' in H.

Definition 2.4. For graphs G and H, the categorical exponential graph HE
is a graph with vertex set {f: V(G) — V(H)}, the collection of all vertex
set maps, with adjacency given by f ~ f’ if whenever v~ in G we have

f)~f(v') in H.
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The exponential graph construction provides a right adjoint to the cate-
gorical product. This gives the category of graphs the structure of an inter-
nal hom associated with the (monoidal) categorical product (see [6] for the
meaning of these statements). It turns out that the Hom complex interacts
well with this adjunction, as described in the following proposition (see [§]
or [6] for a proof).

Proposition 2.5. For A,B,C any graphs, Hom(A x B,C') can be included
in Hom(A,CP) so that Hom(A x B,C) is a strong deformation retract
of Hom(A,CB). In particular, we have Hom(A x B,C)~Hom(A,CB).

Note that, as a result of the proposition, we have Hom(G,H) =~
Hom(1, HY), where 1 is the graph with a single looped vertex. The latter
space is homeomorphic to the (realization) of the clique complex A(H®).
Hence, up to homotopy type, the space Hom(G, H) is just the clique com-
plex on the looped vertices of the graph HY. We will use this identification
in the proof of the main theorem.

3. Proof of the main theorem

In this section we provide the proof of Theorem 1.1. Note that if T'=1 is
a single looped vertex, we have Hom(1,G) ~ A(G), the clique complex on
the looped vertices of G. Hence to obtain the result in this case, we define
Gr.x to be the graph obtained by taking the 1-skeleton of bd(X)= X1, the
first barycentric subdivision of the given complex X. Since the barycentric
subdivision of a simplicial complex is a flag complex, we get that the 1-
skeleton provides an inverse to the A functor in this case, and hence X ~
X1 = A(Gy x). We note that the same graph works more generally if T is
dismantlable (see [6]) since in this case we have Hom(7T',G) ~Hom(1,G) by
results of [2].

In the general case we will similarly obtain G x as the looped 1-skeleton
of some iterated subdivision of X, but this time we have to take into account
the diameter of the test graph 7T'. Recall the setup: we are given a connected
graph T with at least one edge, and a finite simplicial complex X. If d =
diam(7) is the diameter of T, we fix an integer k>2 such that

k=1 _ 1> .

Next, we let X¥ =bd*(X) denote the k" barycentric subdivision of the
simplicial complex X. We define G}, x to be the graph given by the 1-skeleton
of X*, with loops placed at every vertex.
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Figure 3. The complexes X, X!, X2 and the reflexive graph G2 x.

We claim that Hom(7,Gj x) ~ X. From Proposition 2.5, we have
Hom(T, Gy, x) ~ Hom(1,(Gy x)T) (where 1 is the graph with one looped
vertex). The latter space is homeomorphic to A((Gy x)T), the clique com-
plex on the (looped vertices of the) graph A((Gy x)T). Hence to prove the
main result (Theorem 1.1) it is enough to prove the following restatement.

Theorem 3.1. Let T be an arbitrary connected graph with at least one
edge, and let X be a finite simplicial complex. Then for all integers k >
log,(d+1)+1 there is a homotopy equivalence

X ~ A((Gk7x)T)

Proof. We consider subcomplexes of A((Gy, x)T) of the form A((Gi’X)T)
(see Definition 3.2 below for the definition of the graph Gg +). By Lemma 3.4

the collection of these subcomplexes form a cover of A((Gy x)T), and by
Lemma 3.5 the nerve of this cover is isomorphic to the simplicial complex X.
By Lemma 3.7 and Lemma 3.8, these subcomplexes and all nonempty inter-
sections are contractible. The result follows from the nerve lemma of [1].

We next turn to the definition of our subcomplexes and the proofs of the
lemmas mentioned above. Recall that the simplicial complex A((Gg x)7) is
determined by its 1-skeleton (GY, x)T, whose vertices are given by all graph
maps f: T — Gy x, and with edges {f,f'} whenever f(t) ~ f'(t') for all
t~t"in T. We note that the vertices of the original complex X are naturally
vertices of the graph G}, x. We will work with certain graph theoretic ‘open
neighborhoods’ of these vertices, as described in the following definition.
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Definition 3.2. For a fixed vertex x of the original complex X, define G‘,’;"’ X
to be the subgraph of Gy x induced by the vertices {w € Gy, x: d(z,w) <
2k —1}.

Hence the vertices of the graph G7, - are the vertices of G, x that are dis-

tance at most 2¥ —1 from the vertex z.

Figure 4. The graph G5 x (without the loops).

It is this collection of subcomplexes {A<(G‘}§,X)T)}er(X) that we wish to

show cover the complex A((G, x)7). For this we will need a general lemma
regarding clique complexes of exponential graphs. For graphs T' and G, and
a simplex a = {f1,...,f.} € A(GT), define G, to be the subgraph of G
induced by the vertices {fi(t): 1 <i < a,t € V(T)}. We then make the
following observation.

Lemma 3.3. Let T be a finite connected graph with diameter d=diam(T),
and suppose G is any graph. Then diam(G,) <max{2,d} for all a€ A(GT).

Proof. Suppose T' and G are as above, and suppose a={f1,..., f,} is a face
of A(GT). Let v=f;(t) and v' = f;(#') be any two elements of G,. We will
find a path in G, from v to v' of length <d. If t #¢', then by assumption
we have a path in T from ¢ to ¢’ given by (t=to,t1,...,t;=t'), with j<d. If
t=t', we take our path to be (t,t1,t2=t), where t; is any neighbor of ¢. So
we have j <max{2,d}.

Now, since « is a clique (with looped vertices) in the graph GT, we
have that f; ~ f; for all 1 < 4,j < k, and hence f;(t) ~ f;(t') for
all adjacent t ~ ¢. Hence we can take our desired path to be f;(t) =

filto), fi(t1),- -, filti—1), fur (t5) = fur (V).

We can now show that our subcomplexes indeed form a cover.
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Lemma 3.4. The collection of complexes {A((G%,X)T)}er(X) covers the
complex A((Gy.x)T).

Proof. To simplify indices, in our notation for graphs we will suppress
reference to the integer k and the simplicial complex X, so that for this
proof G:=Gj, x and G":=G} . If o is a face of A(GT) then by Lemma 3.3
we have either d=diam(7T)=1 and k=2, or else diam(G,) <21 —1 (where
k is taken as in Theorem 3.1). We claim that G, C G* for some z € V(X),
which would prove the lemma.

Let m = min{d(w,z): w € Gu,z € V(X)}. Note that m < 2¥~! since
every vertex of X* is within distance 2°~! of some vertex of the original
complex X.

If m=0 then we have y € G, for some vertex y € V(X). Hence G, C GY
since GY contains all vertices distance at most 2¥ —1 from y (this number is
at least 2 since k> 2).

If m>0 let w be a vertex of G, such that d(w,z) =m for some vertex
x € X, and choose w such that it is contained in the interior of a face of
X of minimum dimension. We need to show that G, C G*. To see this,
first consider the case that k> 2. By Lemma 3.3, all vertices w’ in G, are
distance at most d < 25=1 —1 from w. So all vertices of G, are at most
m4d<2k-142F-1 _1=9F _1 away from z, which implies G, C GZ.

If k=2, then we have m=1 or m=2. If m =1 then all vertices of G,
are distance at most 1+2 =3 =2F —1 away from z, as desired. If m = 2,
then all vertices of GG, are distance at least 2 from every vertex of X. Now,
w is contained in the interior of some face Fy, ={z,x1,...,z;} of the original
complex X. If w’ is any other vertex of G, then w’ cannot be contained in
any proper face of F,, since otherwise we would have taken w=w’. Hence w’
is contained in the interior of F,, so that d(w’,x) <2F —1, as desired. This
shows that G, CG*.

We next turn to the combinatorics of our cover. Recall that the nerve
of a covering of a space by subspaces is the simplicial complex with ver-
tices given by the subspaces and with faces corresponding to all non-empty
intersections. We then have the following observation.

Lemma 3.5. The nerve of the covering of A((Gy x)T) given by the sub-
complexes A(( 4 +)T) is isomorphic to the simplicial complex X.

Proof. By construction, the vertices of the nerve determined by the
A((Gy, o)) are indexed by V(X), the vertices of the simplicial complex X.
A collection I C V(X) of such subcomplexes has nonempty intersection if
and only if there exists a vertex z within distance 2¥ —1 from each v € T
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in X*, the k" barycentric subdivision of X. But this occurs if and only if
the collection I of vertices form a face of X.

Next we wish to show that each subcomplex A((G¥ X)T) is contractible.
To do this we will show that each graph G% kx 18 1n fact dismantlable. Recall
that a finite graph G is called dismantlable if it can be folded down to the
looped vertex 1 (see [4] and [6] for other characterizations). It follows from
the results of [7] that if G is dismantlable, then Hom(S,G) is contractible
for any graph S. Hence to show that the subcomplexes Hom(T, G%’ x)

A(( %7X)T) are each contractible, it suffices to show that each graph G}
is dismantlable.

For this we will describe a recursive folding procedure for the graph G%’ -
In our induction we will need the fact that barycentric subdivision preserves
dismantlability, as described by the following lemma.

Lemma 3.6. If G is a dismantlable graph and A(G) is its clique complex
(on its looped vertices), then the looped one-skeleton of bd(A(G)) is again
dismantlable.

Proof. Suppose G is a dismantlable graph, and let G’ denote the graph
obtained by taking the looped one-skeleton of bd(A(G)). We can think of
G’ as the graph whose vertices are the elements of the poset Hom(1,G),
with adjacency given by x~y if  and y are comparable.

To show that G’ is dismantlable, we proceed by induction on n, the
number of looped vertices of G. If n =1 we have that G = G’ is a single
looped vertex, and hence dismantlable.

Next suppose n>1, and let v and w be distinct looped vertices of G such
that Ng(v) C Ng(w). For future reference, we let Ng(v) ={v,w,v1,...,0m}
denote the neighboring vertices of v in the graph G. We will use the following
running example, in which the loops (present on all vertices) will be omitted

for the sake of space.
1%
. ‘k\ .
w

Figure 5. The containment Ng(v) C Ng(w).



442 ANTON DOCHTERMANN

For the inductive step, we need to fold away all vertices in G’ that are
barycenters of simplices that have v as a vertex (including the vertex v
itself). But this is precisely Ngv(v), the collection of neighboring vertices
of v in the graph G'.

We will first fold away the vertices in N¢v(v) that are furthest from w.
We let S denote the collection of vertices in Ng(v) that are barycenters of
simplices that do not contain w. So S is the collection of vertices in bd(A(G))
that are barycenters of simplices with vertices among the set {v,v1,...,0m}.

Each vertex s € S is the barycenter of a face of a certain dimension,
and we will fold away the elements of S in descending order according to
this dimension. If s is the barycenter of a face {v,v;,,...,v;.} of maximal
dimension then we have Ng/(s) C Ngr(y), where y € G’ is the barycenter of
the face {v,v;,,...,v;,,w}; this collection forms a face of A(G) since Ng(v) C
N¢g(w). Hence we can fold away s in this case.

In general, s is the barycenter of a face Fy = {v,v;,,...,v;,} and, as we
have folded away the vertices of greater dimension in S (barycenters of faces
that contain Fj), we have N(s) C N(y) in the resulting graph, where again
y is the barycenter of the face {v,vj,,...,vj;,,w}.

Figure 6. Folding away the vertices of S.

In the diagram above, the first step is to fold away the barycenters
of {v,v1}, {v,v2,v3}, and {v,vs3,v4} (the vertices in white). In the second
step we fold away the barycenters of {v,va}, {v,v3}, and {v,v4}.

Next we fold away the vertex v. If w € N(v) is a neighbor of v in the
graph at this stage of the folding, then u is the barycenter of some face
that contains both v and w, and hence we have N(v) C N(z), where z is
the barycenter of {v,w}. We fold away v and now have that all neighbors
of z are barycenters of faces that contain the vertex w. Hence we now have
N(z)C N(w), and we proceed to fold away the vertex z.

At this point, we are left with a subset Y C N¢/(v) that consists of
vertices that are barycenters of faces that contain v, w, and at least one
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Figure 7. Folding away v and z.

vertex from {vi,...,v,}. We fold away these vertices in ascending order
according to their dimension. If y €Y is the barycenter of a face {v,w,v;} of
minimal dimension, then N(y)C N(z), where z is the barycenter of the face
consisting of {w,v;} (since vertices that are barycenters of faces including
v have been folded away). In the general case, y is the barycenter of a
face {U,w,vil,...,vij} and, as we have folded away the vertices of smaller
dimension in Y, we now have N(y) C N(z), where again z is the barycenter
of the face {w,v;,,...,v;; }. See Figure 8.

Figure 8. Folding away the remaining vertices of Ng(v).

We can now use this to prove the following result concerning the Gy
graphs.

Lemma 3.7. For any vertex x € X, the graph GY, s is dismantlable.

Proof. Recall that GCI?,X is the subgraph of G}, x induced by the vertices
that are distance at most 2°—1 from z. We will prove the claim by induction
on k. For k=1 the graph G} y consists of Ng, (), the neighbors of the
vertex x in Gy x (including @ itself). Hence G y folds down to the single
looped vertex x, as desired.

Next suppose k> 1. Our plan is to first fold away the vertices in Gi; ¥
that are distance ezactly 2 — 1 from z. The resulting subgraph one ob-
tains is the looped 1-skeleton of the barycentric subdivision of the clique
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complex A(G}_; x) (this graph is called (G§_; y)" in the notation of the
proof of Lemma 3.6). By induction, together with Lemma 3.6, this graph is
dismantlable and hence our claim will be proved.

Let V, denote the collection of vertices in G y that are distance exactly
2F _1 from z; it is this collection of vertices that we wish to fold away. First
we set up some notation. Note that every vertex v in the graph G x has a
pair of parameters a(v)=(i,j) associated with it, where i is the dimension
of the face in X that v lies in, and where j is the dimension of the face of
XFk=1 that v is the barycenter of (note that j <i). We will say that v is of
type (i,) if a(v)=(i, 7).

Figure 9. The types (i,7) of various vertices in the graph G, x.

We will fold away the vertices of V,, C Gi; y in lexicographic order accord-
ing to their type (7,7). First note that if v €V, is of type (i,7) then j>1, and
hence our base case to consider is when v €V, is of type (1,1). In this case v
is the barycenter of an edge {a,b} in X*#=1 where b is a vertex of X, and a
is distance 2F~1 —2 from z. Any neighbor w€ Ngz  (v) of v is a barycenter
of a simplex that has a as a vertex; hence we have w ~a. We conclude that
v can be folded onto the neighboring vertex a.

Next we consider the case v is of type (i,7), where i > 1 is fixed. We
proceed by induction on j. If j=1 then v is the barycenter of an edge {c,d},
where c¢ V, and d is of type (i,0) and is distance 2¥ —2 from x. Any other
neighbor we Ngz (v) is the barycenter of a simplex that has d as a vertex;
we conclude that w~d. Hence in this case v can be folded onto d.

For the same fixed i > 1, we next consider the case that v is of type (i, ),
where j>1. By induction, we have that all vertices in V. of type (i',k) and
of type (i,') have been folded away, where ¢’ <i and j' <j. Pick a vertex
w€ N(v) in the neighborhood of v such that w€ G§_;  and such that the
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Figure 10. Folding away the vertex v when v is of type (4,1).

type of w is largest in the lexicographic order — that is, of type (7,j) where
7 1s maximum among maximum 4.
We claim that Ngz (v) C Nz (w), so that the vertex v can be folded

onto w. To see this, suppose u€ Nz (v). If u€V,, (so that d(u,) =2F 1),

then by induction we know that u is of type (i’,5"), where either i’ > or else
i'=1 and j' > j. In either case we see that u is the barycenter of a simplex
U that contains the vertex w, and hence u~w as claimed. If u¢ V,, so that
d(u,z) =2% — 2, then either u=1w or else the type of u is lexicographically
smaller than the type of w. In this latter case w is the barycenter of a
simplex U’ that contains the vertex w, and hence again u~w. We conclude
that uwe Ngz (w) and hence Nasz (v) € Ner (w) as desired.

° O

Figure 11. Folding away vertices of type (1,1) and of type (2,1) in G5 x.

This completes the induction on j and hence we have now folded away
all vertices of V, that are of type (i,7). This in turn completes the induction
on ¢ and we conclude that all vertices in V, can be folded away. As we
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X X

Figure 12. Folding away vertices of type (2,2) and the resulting (GY x)’.

noted above, the resulting graph is (Gf_; y)’, the barycentric subdivision
of G_ x, which we conclude is dismantlable by induction on k and by
applying Lemma 3.6. The result follows.

The final step in proving our theorem is to consider the intersections of
the subcomplexes GY, .

Lemma 3.8. All nonempty intersections of the subcomplexes

{( I T}xGV X)

are contractible.

Proof. We prove this in much the same way as we handled the contractibil-
ity of the subcomplexes themselves. In particular it is enough to show that
the subgraphs obtained as nonempty intersections of {G‘,’; X}er( x) are dis-
mantlable. A vertex of such a graph is, by definition, within a distance of
2k —1 of every vertex x €V (X) in some index set I CV(X). Note that this
intersection is empty unless the vertices of I constitute a face of X.

Suppose Gk x s such a graph. Again, we will show that Gf k.x is disman-
tlable by induction on k. If k=1 then the vertices of the graph Gk x are
all barycenters of the faces in the star of I, the collection of all faces ‘which
contain I as a subface. In the induced graph every such vertex is adjacent
to the single looped vertex which is the barycenter of the face of X defined
by I. Hence the graph is dismantlable in this case.

For the case k> 1 we will, as above, fold away the vertices of Gk X that
are distance 2F — 1 from some vertex z € I. We will refer to these vertices
as V7, so that VI—{UEGkX d(v,x)=2% —1 for some x€I}.

Again, we fold away the vertices of V7 in lexicographic order according
to their type (7,7). Since Vi CV, (for any = € I), we can follow the same
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procedure as we described in the proof of Lemma 3.7. In particular, to fold
away a vertex v € Vy of type (4,7), we choose a vertex w € Ny, (v) in the
neighborhood of v such that w € Géfl’X and such that the type of w is
largest in the lexicographic order.

We just need to check that w is within 2¥ —1 of every vertex 2/ € I, so
that indeed w € V. But this follows from the choice of w: since v is in the
interior of the face of X determined by the vertices I, any neighbor w’ of v
that lies outside of V7 will be of type (i, ), where i’ <i. But v has neighbors
in Gifl,x that are of type (7,5'), so that the choice of w will indeed lie in Vj.

Hence the double induction follows through in this case, and we are left
with a graph (Gi—l,X)/’ the barycentric subdivision of the graph Gi—l,X
(informally speaking). Once again we employ Lemma 3.6 and by induction
we get that this graph is also dismantlable.

4. Further questions

Having constructed our graph Gy x as the l-skeleton of the kth iterated
subdivision of X, a natural question to ask is if this choice of k is best
possible. We have a feeling that it is not, and in fact, for the case diam(7)=1
(so that T' is a complete graph with possibly some loops) we conjecture that
k=1 will do the job.

Conjecture 4.1. If X is a finite simplicial complex, and T is a finite con-
nected graph with diam(7")=1, then there is a homotopy equivalence

Hom(T, G, x) ~ X.

Another thing to consider would be simplicial complexes with a specified
group action.

Question 4.2. Given a graph T with automorphism group I' = Aut(T),
and a ['-simplicial complex X, can one find a (loopless) graph G such that
Hom(T,G) is I'-homotopy equivalent to X7
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