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Consider the following seemingly rhetorical question: Is it crucial for a property-tester
to know the error parameter ε in advance? Previous papers dealing with various testing
problems, suggest that the answer may be no, as in these papers there was no loss of
generality in assuming that ε is given as part of the input, and is not known in advance.
Our main result in this paper, however, is that it is possible to separate a natural model
of property testing in which ε is given as part of the input from the model in which ε
is known in advance (without making any computational hardness assumptions). To this
end, we construct a graph property P , which has the following two properties:

(i) There is no tester for P accepting ε as part of the input, whose number of queries
depends only on ε.

(ii) For any fixed ε, there is a tester for P (that works only for that specific ε), which
makes a constant number of queries.

Interestingly, we manage to construct a separating property P , which is combinatorially
natural as it can be expressed in terms of forbidden subgraphs and also computationally
natural as it can be shown to belong to coNP .

The main tools in this paper are efficiently constructible graphs of high girth and high
chromatic number, a result about testing monotone graph properties, as well as basic ideas
from the theory of recursive functions. Of independent interest is a precise characterization
of the monotone graph properties that can be tested with ε being part of the input, which
we obtain as one of the main steps of the paper.
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1. Introduction

1.1. Definitions and Background

We start with definitions related to the area of property-testing. Let P be
a property of graphs, namely, a family of graphs closed under isomorphism.
All graph properties discussed in this paper are assumed to be decidable,
that is, we disregard properties for which it is not possible to tell whether
a given graph satisfies them, even if one has complete knowledge of the
graph. In this paper we focus on property-testing in the dense-graph model
as defined in [12]. In this model a graph G with n vertices is said to be ε-far
from satisfying P if one must add or delete at least εn2 edges in order to
turn G into a graph satisfying P. A tester for P is a randomized algorithm
which, given the size of the input n, and the ability to query, whether a
desired pair of vertices of the input are adjacent or not, distinguishes with
high probability (say, 2/3), between the case of G satisfying P and the case
of G being ε-far from satisfying P. The following notion of efficient testing
is the main focus of property-testing in the dense graph model:

Definition 1.1 (Testable). A graph property P is testable, if there is a
tester for P whose query complexity q(ε,n) can be bounded by a func-
tion Q(ε), which is independent of the size of the input.

We stress that the definition of a tester for a testable property allows the
query complexity to depend on n. It just requires that it will be possible to
upper bound q(ε,n) by some function Q(ε). Therefore, for example q(ε,n)=
1/ε+(−1)n is a legitimate query complexity as it can be bounded by Q(ε)=
1/ε +1. As we will see later, in some cases the distinction between query
complexity depending only on ε and query complexity bounded by a function
of ε may have interesting and non-trivial applications.

One of the most interesting phenomena in the area of property-testing
in the dense graph model is that many natural graph properties such as k-
colorability and having a large cut are testable (see [12]). A general tester
may err in both directions and is thus said to have two-sided error. A tester
is said to have one-sided error if whenever G satisfies P, the algorithm de-
clares that this is the case with probability 1. The general notion of property
testing was first formulated by Rubinfeld and Sudan [22], who were moti-
vated mainly by its connection to the study of program checking and by
Blum, Luby and Rubinfeld [7], who were mainly interested in testing prop-
erties of functions, such as linearity. The study of the notion of testability
for combinatorial structures, and mainly for labelled graphs, was introduced
in the seminal paper of Goldreich, Goldwasser and Ron [12], who showed
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that several natural graph properties are testable. In the wake of [12], many
other graph properties were shown to be testable, while others were shown
to be non-testable. See [3] for a recent combinatorial characterization of
the testable graph properties, and [10,11,21] for additional results and ref-
erences on graph property-testing as well as on testing properties of other
combinatorial structures.

One of the fundamental problems of complexity theory is in understand-
ing the relations between various models of computation. In particular, one
would like to know if two models are equivalent or if there are problems,
which can be solved in one model but not in the other. Regretfully, in many
cases, though it seems obvious that two models of computation are not
equivalent, the current techniques are far from enabling one to formally
prove that. In this paper we introduce two natural and realistic models of
property-testing1. Surprisingly, in our case, though it seems at first that
these models are equivalent, we manage to formally prove that they are in
fact distinct. We also show that in some cases a tester can make a non-trivial
usage of both the error parameter ε and the size of the input graph n, when
making its decisions.

1.2. The Main Result: Uniform vs. Non-Uniform Property
Testing

As we have mentioned in the previous subsection, in this paper we focus on
the dense-graph model. The main goal in the dense graph model is to design
a tester, whose query complexity can be bounded by a function, which is
independent of the size of the input graph, and thus establish that a certain
property is testable. In defining a tester in the previous subsection we have
allowed the tester to use the size of the input in order to make its decisions.
We now define a slightly weaker notion of a tester, which is not allowed to
use the size of the input graph in order to make its decisions.

Definition 1.2 (Oblivious Tester). A tester (one-sided or two-sided) is
said to be oblivious if it works as follows: given ε the tester computes an
integer Q = Q(ε) and asks an oracle for a subgraph induced by a set of
vertices S of size Q, where the oracle chooses S randomly and uniformly
from the vertices of the input graph. If Q is larger than the size of the input
graph then the oracle returns the entire graph. The tester then accepts or
rejects (possibly randomly) according to ε and the graph induced by S.

1 These models are natural and realistic in the sense that they capture all the previous
results on testing graph properties. See Subsection 1.2.
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The notion of an oblivious tester was defined in [5]. As was discussed
in [5], there are no natural graph properties for which even oblivious testers
are weaker than standard testers that are given access to n (= size of the
input). The intuition is that as the query complexity is independent of n, the
algorithm does not need to know the value of n. Indeed, essentially all the
testers that have been designed in the literature were in fact oblivious, or
could trivially be turned into oblivious testers. For example, k-colorability
(see [12]) can be tested by an oblivious tester that samples a set of ver-
tices S and accepts if and only if the graph spanned by S is k-colorable.
In fact, any hereditary property2 can be tested in a similar way, see [5,
17]. As another example, the property of having a cut of size, say, at least
1
8n2 (see [12]), can be tested by an oblivious tester that samples a set of
vertices S and accepts if and only if the graph spanned by S has a cut
of size at least (1

8 −
ε
2)|S|2. Note, that the property of having a large cut

can be tested by an oblivious tester although the definition of the property
involves the size of the graph. The notion of an oblivious tester was used
in [5] in order to derive a characterization of the “natural” graph prop-
erties that are testable with one-sided error. Of course, some properties
cannot be tested by an oblivious tester. In particular, properties whose def-
inition involves the size of the input cannot be so tested. An example is
the property P̃ of being bipartite if the number of vertices is even, and
being triangle-free if the number of vertices is odd. However, these proper-
ties are not natural. Informally, the notion of an oblivious tester means
that the size of the input is not an important resource when studying
property testing of “natural” graph properties in the dense graph model,
such as hereditary properties, whose definition is independent of the input
size. We stress that as opposed to the dense graph model, property-testing
in the bounded degree model [13] and the general density model [20,15],
usually requires query complexity, which depends on the size of the input
graph. Therefore, the notion of oblivious testing is not adequate for those
models.

The main resource that we seek to study in this paper, is the value of
the error parameter ε. In defining a tester in the previous subsection, we did
not mention whether the error parameter ε is given as part of the input, or
whether the tester is designed to distinguish between graphs that satisfy P
from those that are ε-far from satisfying it, when ε is a known fixed constant.
The current literature about property testing is not clear about this issue
as in some papers ε is assumed to be a part of the input while in others it
is not. We thus introduce the following two definitions:

2 A graph property is hereditary if it is closed under removal of vertices.
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Definition 1.3 (Uniformly testable). A graph property P is uniformly
testable if it can be tested by an oblivious tester as in Definition 1.2. Note
that such a tester accepts ε as part of the input.

Definition 1.4 (Non-uniformly testable). A graph property P is non-
uniformly testable if for every ε there is a tester Tε and an integer Q=Q(ε)
with the following properties: Tε is an algorithm for distinguishing between
graphs satisfying P from those that are ε-far from satisfying it, that operates
like an oblivious tester with the restriction that it asks the oracle for a
subgraph induced on a set of vertices of size at most Q.

Note, that in Definition 1.4 a tester Tε does not receive ε as part of
the input. Note also that we can think of a tester Tε as a uniform tester,
where the tester “knows” the quantity Q(ε) in advance and does not have
to compute it. For this reason it is clear that if P is uniformly testable
then it is also non-uniformly testable: For every ε define Tε to perform like
the uniform tester for P, while setting Q = Q(ε). As in the definition of
a tester in Subsection 1.1, we generally allow a property to be uniformly
(resp. non-uniformly) tested with two-sided error. If a property is uniformly
(resp. non-uniformly) testable in a way that graphs satisfying the property
are always accepted then the property is said to be uniformly (resp. non-
uniformly) testable with one-sided error.

We believe that the distinction between uniform and non-uniform test-
ing was not previously introduced in the literature because all the testable
graph (and non graph) properties that were previously studied were in fact
uniformly testable. As we have mentioned above, any property that is uni-
formly testable is also non-uniformly testable. It may thus seem, at least at
first glance, that uniformly and non-uniformly property-testing are identical
notions. However, the problem with trying to simulate a non-uniform tester
using a uniform one is that computing the query-complexity, Q(ε), may be
non-recursive. Our main result in this paper is that when considering obliv-
ious testers these two notions are in fact distinct. Moreover, these notions
can be shown to be distinct while confining ourselves to graph properties,
which are natural with respect to both their combinatorial structure and
their computational difficulty.

Theorem 1 (The Main Result). There is a graph property P with the
following properties:

1. P can be non-uniformly tested with one-sided error.
2. P cannot be uniformly tested, even with two-sided error.

Moreover, satisfying P belongs to coNP and can be expressed in terms of
forbidden subgraphs.
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For a family of graphs F we define the property of being F-free as the
property of not containing a copy of any graph F ∈F as a (not necessarily
induced) subgraph. The property P, which we construct in order to prove
Theorem 1, is simply the property of being F-free for some carefully defined
family of graphs F .

The reader should note that the difference between being uniformly
testable and non-uniformly testable, is not as sharp as, say, the difference
between P and P/Poly. The reason is that in P/Poly the non-uniformity
is with respect to the inputs, while in our case the non-uniformity is over
the error parameter. In particular, a non-uniform tester Tε should be able
to handle any input graph. We note that it is possible to prove Theorem 1
by defining an undecidable graph property that can be non-uniformly tested
with one-sided error, but obviously cannot be uniformly tested (because by
setting ε = 1/n2 we precisely solve the undecidable problem). Theorem 1
however, gives a natural separation of these two models of property-testing
by defining a decidable and combinatorially natural graph property, which
satisfies the assertions of Theorem 1. We note that the main focus of prop-
erty testing is in solving problems using the smallest possible amount of
information about the input. Hence, undecidable properties are particulary
unnatural in the context of property testing as such properties are not solv-
able/testable even if one has complete knowledge of the input.

1.3. Separations in Other Models of Property Testing

It is natural to ask if it is possible to prove versions of Theorem 1 for other
models of property testing. In particular, one can ask if such a separation
can be proved for the general model of property testing, where the tester
can use the size of the graph in order to determine its query complexity
(which should still be bounded by a function of ε). As it turns out such a
separation is not possible.

Proposition 1.5. The following holds in the general model of property-
testing (as defined in Subsection 1.1), where the tester can use the size of
the input: a property P is testable when ε is known in advance, if and only
if it is testable when ε is given as part of the input.

Theorem 1 asserts that in the oblivious model, there are properties that
can be tested by a tester if it knows ε in advance, which cannot be tested
if ε is part of the input. In other words, it asserts that there are non-trivial
computations the tester may perform with the error parameter ε. Therefore,
Proposition 1.5 can be interpreted as asserting that knowing the size of the
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input can help a tester in a non-trivial way. More precisely, it shows that
in some cases it is possible for the tester to compute the query complexity
with the aid of the size of the input, while by Theorem 1 it is impossible
to do so without this information. The main point is that given the size of
the input graph, a tester can “search” for the optimal query-complexity for
graphs of that size. See Subsection 5.2 for the proof.

We note that Proposition 1.5 has some additional interesting implica-
tions. Its proof gives a non-trivial example, where the query complexity of
a tester can be bounded by a function of ε only (as Definition 1.1 requires),
while at the same time the query complexity depends on the size of the
graph. It also gives a non-trivial example, where though the query complex-
ity of a tester can be bounded by a function of ε only, the running time of the
tester depends (exponentially!) on the size of the input. See Subsection 5.2
for the full details.

2. Overview of the Proof

We start with a short introduction of the main result of [4], which will be a
key tool in this paper. Throughout the paper we will make an extensive use
of the notion of graph homomorphism, which we turn to formally define.

Definition 2.1 (Homomorphism). A homomorphism from a graph F to
a graph K, is a mapping ϕ :V (F ) �→V (K) that maps edges to edges, namely
(v,u)∈E(F ) implies (ϕ(v),ϕ(u))∈E(K).

In the rest of the paper, F �→K will denote that there is a homomorphism
from F to K, and F ��→K will denote that no such homomorphism exists.
Just to practice the definition, note that if F �→ K then χ(F ) ≤ χ(K). In
particular, this means that a graph G has a homomorphism into a clique of
size k if and only if G is k-colorable. A key ingredient in the main result
of [4] as well as in this paper, is a certain graph theoretic functional, defined
below.

Definition 2.2 (The function ΨF). For any (possibly infinite) family of
graphs F , and any integer k let Fk be the following set of graphs: A graph
R belongs to Fk if it has at most k vertices and there is at least one F ∈F
such that F �→R. For any such family F and integer k, for which Fk �=∅, let

ΨF (k) = max
R∈Fk

min
{F∈F :F �→R}

|V (F )| . (1)

Furthermore, in case Fk =∅, define ΨF (k)=0.
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Practicing definitions again, note that if F is the family of odd cycles,
then Fk is precisely the family of non-bipartite graphs of size at most k.
Also, in this case ΨF (k) = k when k is odd, and ΨF (k) = k− 1 when k is
even. The “right” way to think of ΨF is the following: Let R be a graph of
size at most k and suppose we are guaranteed that there is a graph F ′∈F
such that F ′ �→R (thus R∈Fk). Then by this information only and without
having to know the structure of R itself, the definition of ΨF implies that
there is a graph F ∈F of size at most ΨF (k), such that F �→R.

As it turns out, ΨF (k), which seems to have little, if anything, to do with
property testing, is in fact crucial to testing monotone graph properties3.
Call a function recursive if there is an algorithm for computing it in finite
time (see [19]). The first connection between ΨF (k) and testing monotone
graph properties is part of the main result of [4], which can be formulated
as follows.

Theorem 2 ([4]). For every (possibly infinite) family of graphs F , the
property of being F-free is non-uniformly testable with one-sided error.
Moreover, if ΨF is recursive then being F-free is also uniformly testable
with one-sided error.

Comment 2.3. We remind the reader that we consider only decidable
graph properties. Hence, in the above theorem we assume that being F-free
is a decidable property.

Comment 2.4. The reader should note that Theorem 2 immediately ap-
plies also to any monotone property P. The reason is that given P we can
define F =FP to be the set of graphs, which are minimal with respect to
not satisfying the property P. For example, if P is the property of being
bipartite then FP is the (infinite) family of odd cycles. It is clear that satis-
fying P is equivalent to being F-free. For convenience and ease of notation,
in this paper we describe monotone properties via their family of forbidden
subgraphs.

The proof of Theorem 1 consists of two steps. In the first step we prove the
somewhat surprising fact, that ΨF (k) being recursive is not only sufficient
for inferring that being F-free is uniformly testable (this is guaranteed by
Theorem 2), but this condition is also necessary. This is formulated in the
following Theorem.

3 A graph property is monotone if it is closed under removal of both vertices and edges.
Standard examples are k-colorability and triangle-freeness.
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Theorem 3. Suppose F is a family of graphs for which the function ΨF is
not recursive. Then, the property of being F-free cannot be uniformly tested
with one-sided error.

Note, that in Definition 1.3 the tester is defined as one that may have ar-
bitrarily large query complexity, as long as it can be bounded by a (recursive)
function of ε only. Hence, in the case that ΨF is not recursive, Theorem 3
rules out the possibility of designing a uniform tester with arbitrarily large
query complexity that can be bounded by a function of ε only.

The main idea behind the proof of Theorem 3 is that by “inspecting”
the behavior of a property tester for the property of being F-free one can
compute the function ΨF . The main combinatorial tool in the proof of The-
orem 3 is a Theorem of Erdős [9] in extremal graph theory, which can be
considered as a hypergraph version of the Zarankiewicz problem [16]. As an
immediate corollary of Theorems 2 and 3 we obtain the following result,
which precisely characterizes the families of graphs F , for which the prop-
erty of being F-free can be tested uniformly (recall that by Theorem 2, for
any family F , being F-free is non-uniformly testable). By Comment 2.4,
this also gives a precise characterization of the monotone graph properties
that are uniformly testable.

Corollary 2.5. For every family of graphs F , the property of being F-free
is uniformly testable with one-sided error if and only if the function ΨF is
recursive.

An immediate consequence of Theorems 2 and 3 is that in order to sep-
arate uniform testing with one-sided error from non-uniform testing with
one-sided error, and thus (almost) prove Theorem 1, it is enough to con-
struct a family of graphs F with the following two properties: (i) There
is an algorithm for deciding whether a graph F belongs to F (recall that
we confine ourselves to decidable graph properties). (ii) The function ΨF is
non-recursive. The main combinatorial ingredient in the construction of F is
the fundamental theorem of Erdős [8] in extremal graph theory, which guar-
antees the existence of graphs with arbitrarily large girth and chromatic
number. As we want to prove Theorem 1 with a graph property, which is
not only decidable, but even belongs to coNP , we need explicit construc-
tions of such graphs. To this end, we use explicit constructions of expanders,
which are given in [18]. For the construction we also apply some ideas from
the theory of recursive functions. Finally, in order to obtain that being F-
free cannot be tested even with two-sided error, we use a result of the first
author ([14], Appendix D) about testing hereditary graph properties.
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Organization. The proof of Theorem 3 appears in Section 3, and the proof
of Theorem 1 appears in Section 4. Section 5 contains concluding remarks.
The proof of Proposition 1.5 appears in Subsection 5.2.

3. Computing ΨF via Testing F-freeness

In this section we describe the proof of Theorem 3. Recall that F �→ K
denotes the fact that there is a homomorphism from F to K (see Defini-
tion 2.1). In what follows, an s-blowup of a graph K is the graph obtained
from K by replacing every vertex vi ∈V (K) with an independent set Ii, of
size s, and replacing every edge (vi,vj) ∈ E(K) with a complete bipartite
graph, whose partition classes are Ii and Ij . It is easy to see that a blowup
of K is far from being K-free (recall that K-free is the property of not con-
taining a copy of K). It is also easy to see that if F �→K, then a blowup of K
is far from being F -free (see Lemma 3.3 in [1]). However, in this case the
distance of the blowup from being F -free is a function of the size of F . As
it turns out, for the proof of Theorem 3, we need a stronger assertion where
the distance is only a function of k= |V (K)|. This stronger assertion is guar-
anteed by Lemma 3.1 below, whose proof relies on the following theorem of
Erdős [9], which is a hypergraph extension of Zarankiewicz’s problem [16].

Theorem 4 ([9]). For every integer f there is an integer N = N(f) with
the following property: Every k-uniform hypergraph on n>N vertices that

contains at least nk−f1−k
edges, contains a copy of Kk

f , which is the complete
k-partite k-uniform hypergraph, where each partition class is of size f .

Lemma 3.1. Let F be a graph on f vertices with at least one edge, let
K be a graph on k vertices, and suppose F �→ K (thus, k ≥ 2). Then, for
every sufficiently large n≥N(f), an n/k-blowup of K, is 1

2k2 -far from being
F -free.

Proof. Denote by B the n-vertex n/k-blowup of K. Our goal is to show
that after removing any set of n2/2k2 edges from B, the resulting graph still
contains a copy of F . Name the vertices of K by 1, . . . ,k and the independent
sets that replaced them by I1, . . . ,Ik. Note, that for every choice of v1 ∈
I1, . . . ,vk ∈Ik, these k vertices span a copy of K with vi∈Ii playing the role
of vertex i∈V (K). We thus get that there are precisely (n/k)k such copies
of K in B. (B may very well contain more copies of K but it is simpler to
disregard them.) Denote the set of these (n/k)k copies of K by K, and note
that each edge in B belongs to precisely (n/k)k−2 copies of K that belong
to K. We conclude that removing any set of n2/2k2 edges, destroys at most
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1
2 (n/k)k of the copies of K that belong to K. Thus, after removing any set of
n2/2k2 edges, the new graph, denoted B′, contains at least 1

2(n/k)k copies
of K that belong to K.

We now define a k-uniform k-partite hypergraph H, based on B′. We
think of the k partition classes of H as the k vertex sets of B denoted above
by I1, . . . ,Ik. For every k vertices v1 ∈ I1, . . . ,vk ∈ Ik that span a copy of K
that belongs to K in B′, we put an edge in H containing v1, . . . ,vk. As B′

contains at least 1
2(n/k)k copies of K from K, the hypergraph H contains

at least 1
2(n/k)k edges. By Theorem 4 for large enough n (i.e., large enough

so that n≥N(f) and so that 1
2(n/k)k ≥nk−f1−k

), the k-uniform hypergraph
H contains a copy of Kk

f . For 1≤ i≤ k, let Si denote the f vertices in Ii,
which span this copy of Kk

f . By the definition of H, as well as the definition
of the copies of K that belong to K, we may conclude the following: In B′,
for every 1≤ i<j≤k for which (i,j)∈E(K), every vertex v∈Si is connected
to every vertex u∈Sj. As F �→K it is now obvious that the vertices

⋃k
i=1 Si

span a copy of F in B′, which is what we wanted to show.

To prove Theorem 3 we also need the following simple observation.

Claim 3.2. Let F be a family of graphs and let T be a one-sided error
uniform tester for the property of being F-free, whose query complexity
is Q(ε). Suppose that given an error parameter ε0, after T samples a set of
vertices S of size Q(ε0), the graph induced by S is F-free. Then T must
accept the input.

Proof. Suppose T does not accept the graph induced by S, and denote by
G′ the graph induced S. Suppose now that we were to execute T with the
same error parameter ε0 where the input graph is now G′. In that case the
algorithm would just get back from the oracle the same graph G′ and would
reject the input G′. This however contradicts the assumption that T has
one-sided error.

To simplify the proof of Theorem 3 we claim that we may assume that F
contains no edgeless graph. Indeed, if F contains such a graph on t vertices,
then by definition ΨF (k) ≤ t for any k (this is because an edgeless graph
has a homomorphism to a single vertex). Thus, it is easy to see (e.g. by
applying the algorithm described in the proof below) that in this case ΨF(k)
is recursive, and there is thus nothing to prove.

Proof of Theorem 3. We prove that if the property of being F-free is
uniformly testable with one-sided error and with arbitrary query complex-
ity Q(ε), then ΨF (k) is recursive. Given a family of graphs F with no edgeless
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graph, consider the following algorithm for (nearly) computing ΨF (k), which
simply implements its definition. The algorithm goes over all graphs R, of
size at most k. For each such graph R, it searches for the smallest (in terms
of number of vertices) F ∈F for which F �→R, if one such F exists4. The
algorithm then takes the maximum over all graphs R for which it found at
least one F ∈F such that F �→R. If for all graphs R of size at most k, there
is no F ∈F for which F �→R, the algorithm returns 0.

The only problem with implementing the above algorithm is that given R,
it is not clear when should the algorithm stop looking for a graph F for which
F �→ R, if none exists. However, note that in order to make sure that the
algorithm always terminates with the correct value of ΨF (k), it is enough
for the algorithm to be able to compute an upper bound on the size of such
a graph F . In other words, it is enough to be able to compute an integer M
such that if there is no F ∈F of size at most M for which F �→R, then no
such F ∈F exists.

We claim that for any k ≥ 2 we can take M = Q(1/2k2) as such an
upper bound, where Q(ε) is the upper bound for the query complexity of
the uniform tester for the property of being F-free5. Note, that M is thus
computable, since we can simulate the alleged uniform tester with input
ε = 1/2k2 and “see” what is the upper bound Q = Q(ε) that it is going to
use. Here we use the fact that a uniform tester operates by first computing
an upper bound for its query complexity Q=Q(ε). Thus, we can “run” the
tester on, say, an edgeless graph.

We thus only have to show that it cannot be the case that for some R
on k vertices, the smallest F ∈F for which F �→R is larger than Q(1/2k2).
Assume that one such R exists, let FR denote the smallest F ∈F for which
F �→R, and consider an n/k blowup of R, denoted by B. As by assumption
FR �→R, we get by Lemma 3.1, that for every sufficiently large n, this blowup
is 1

2k2 -far from being FR-free (here we also use the fact that FR contains at
least one edge). As FR ∈F , the graph B is also 1

2k2 -far from being F-free.
On the other hand, note that for any graph F ′ that is spanned by B (i.e.,
F ′ is a subgraph of B, which is not necessarily induced), there is a natural
homomorphism ϕ, from F ′ to R, which maps all the vertices of F ′ that belong
to the independent set that replaced vertex v, to v. Since by assumption FR

is the smallest F ∈ F for which F �→ R, and FR has more than Q(1/2k2)
vertices, we conclude that there is no F ′ ∈F on at most Q(1/2k2) vertices

4 As we assume that it is decidable to tell whether a graph belongs to F , we can go
over the graphs in F in order of increasing number of vertices, and for every graph try all
possible homomorphisms from F to R.

5 ΨF (1)=0 because F does not contain independent sets.
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which is spanned by B. Now, by Claim 3.2, a one-sided error tester must
find a member of F in order to declare that B is not F-free. However, as
the smallest member of F spanned by B has more than Q(1/2k2) vertices,
this cannot be done with query complexity Q(1/2k2).

Observe, that when computing the integer M in the above proof we do
not know the size of the smallest graph F such that F �→R. Hence, had we
used a version of Lemma 3.1 where the distance from being F free is also a
function of the size of F , we could not have computed the integer M , and
thus could not have inferred that ΨF is recursive. Note also that the proof
works no matter how large the query complexity Q(ε) is (this only affects
the running time of the algorithm for computing ΨF(k)), as long as it is a
function of ε only.

4. Separating Uniform Testing from Non-Uniform Testing

In this section we prove Theorem 1 by constructing a family of graphs F
for which it is possible to test the property of being F-free non-uniformly,
however it is impossible to test this property uniformly. The key combinato-
rial part of the construction of F is Lemma 4.1 below. For the proof of this
lemma, we need an algorithm that can efficiently produce graphs with arbi-
trary large chromatic number and girth, where the girth of a graph G denotes
the size of the smallest cycle spanned by G. We denote by χ(F ) and g(G)
the chromatic number and girth of a graph G. One of the best-known re-
sults of Erdős ([8], see also [6]), widely considered to be the most striking
early application of the Probabilistic Method, asserts that such graphs exist.
For our purposes however, we need explicit construction of such graphs. It
is known that the efficiently constructible d-regular expanders of [18], have
this property. This is formulated in the following theorem.

Theorem 5 ([18]). There is an algorithm Alg(k,g) that given a pair of
positive integers k and g, Alg(k,g) deterministically constructs a graph Fk,g

satisfying χ(Fk,g)>k and g(Fk,g)>g. Moreover, the running time of Alg(k,g)
is polynomial in |V (Fk,g)|.

The reader can find some additional details about the above theorem
in Subsection 5.1. Applying the above theorem we prove the following key
lemma.

Lemma 4.1. There is an infinite family of graphs F1,F2, . . . with the fol-
lowing properties:
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1. All the graphs F1,F2, . . . are connected and have no vertex of degree 1.
2. For any 1≤ i<j we have Fi ��→Fj and Fj ��→Fi.
3. There is an algorithm, which given i, constructs Fi.

Proof. We define the graphs F1,F2, . . . inductively as follows; F1 is defined
to be K3 (i.e., a triangle). For every i ≥ 2 we pick Fi to be the graph
returned by calling the algorithm Alg(k,g) of Theorem 5 with the parameters
k = χ(Fi−1) and g = |V (Fi−1)|. To get item (1) of the lemma we can now
remove repeatedly from Fi any vertex of degree 1 because removing such a
vertex does not change either the girth or the chromatic number of a graph
(observe that all Fi satisfy χ(Fi)≥ 3). Also, we can assume without loss of
generality that each graph Fi is connected, because if it is not, then we can
take as Fi an appropriate connected component of Fi, which has girth and
chromatic number at least as large as those of Fi. We thus get item (1) of
the lemma. As we can use Theorem 5 in order to generate these graphs one
after the other, we also get item (3).

We turn to prove item (2). First, note that if ϕ : V (F ) �→ V (K) is a
homomorphism then any legal c-coloring of the vertices of K induces a legal
c-coloring of the vertices of F ; we simply color v ∈ V (F ) with the color
of ϕ(v). Therefore, if χ(F ) > χ(K) then we have F ��→ K. Consider any
pair Fi and Fj with i < j. As χ(Fj) > χ(Fi) we immediately have that
Fj ��→ Fi. As g(Fj) > |V (Fi)|, every subgraph of Fj of size at most |V (Fi)|
does not span any cycle. In particular, any such subgraph is 2-colorable.
Hence, as χ(Fi)>2, we also have Fi ��→Fj , completing the proof.

In order to define the family of graphs F , which we need in order to prove
Theorem 1, we introduce the following definition.

Definition 4.2 (The language LBH). Fix any binary encoding of Turing-
Machines. Define LBH (short for Bounded Halting) to be the set of all
pairs i#j, such that the binary representation of i is a legal encoding of
a Turing-Machine, which halts on an empty string within at most j steps.

Clearly, LBH is a decidable language; we first check if the binary repre-
sentation of i is a legal encoding of a Turing-Machine. If it is not we reject.
Otherwise, we simulate this machine for j steps on an empty string and
check if during these j steps the machine halts.

In what follows Pj denotes a path of length j, and F +Pj denotes the
graph obtained by connecting Pj to an arbitrary vertex of F . We are now
ready to define F .
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Definition 4.3 (The family F). Let F1,F2, . . . be the graphs from
Lemma 4.1. Define

F =
⋃

i#j∈LBH

(Fi + Pj).

We now turn to prove that the family F has the required properties
needed in order to satisfy the two assertions of Theorem 1. As in this paper
we confine ourselves to decidable properties, we first show that being F-free
is a decidable property. In fact, we also need this in order to apply Theorem 2
(recall Comment 2.3). As shown in the next lemma, we can even show that
being F-free belongs to coNP .

Lemma 4.4. Being F-free, where F is the family of graphs from Defini-
tion 4.3, is in coNP .

Proof. We prove the equivalent statement that the property of having a
subgraph isomorphic to one of the graphs of F is in NP . Given a graph G
of size n, the non-deterministic algorithm guesses a (not necessarily induced)
subgraph of G, which we denote by T ′, a number 1≤ t≤n and an injective
mapping σ : [1, . . . , t] �→ [1, . . . ,n]. We next describe how the algorithm checks,
using t and σ, whether T ′∈F .

The algorithm first verifies that T ′ has the structure of the graphs in F .
To this end, it first counts the number of vertices of degree 1 in T ′. If this
number is not precisely 1, or if T ′ is not connected the algorithm rejects the
input (because by item (1) of Lemma 4.1 all the graphs in F are connected
and have precisely one vertex of degree 1). Otherwise, let j be the length of
the walk starting from the single vertex of degree 1, until the first vertex of
degree at least 3 (including this last vertex), and let T be the graph obtained
from T ′ by removing the j vertices of this path. The algorithm also rejects if
T is not of size t. The algorithm now turns to check if T is isomorphic to one
of the graphs Fi of Lemma 4.1, and if this is the case, whether i#j∈LBH .

The algorithm uses Theorem 5 in order to produce the graphs F1,F2, . . .
as they were defined in the proof of Lemma 4.1. Note, that by our definition
of these graphs each Fi must be strictly larger than Fi−1. If Theorem 5
produces a graph of size larger than t without first producing one of size
t the algorithm rejects. Assume now that Theorem 5 produces a graph,
say Fi, of size precisely t. The algorithm now checks whether for every edge
(i,j)∈E(Fi) the vertices (σ(i),σ(j)) also form an edge in G (recall that σ
is an injective mapping from [t] to n). If all these (at most

(t
2

)
≤

(n
2

)
) tests

succeed the algorithm moves to the last step, otherwise it rejects. Note, that
at this step we know that T is isomorphic to some graph Fi from Lemma 4.1.
To complete the verification that T ′ ∈F the algorithm runs the algorithm
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(which is polynomial in i and j, which are bounded by n) for checking if
i#j belongs to LBH and accepts if and only if this algorithm accepts.

The above algorithm clearly rejects any G that is F-free, and for any G
that is not F-free there is a choice of T ′, t, and σ, for which it accepts G.
Finally, as for any i we have |V (Fi)| > |V (Fi−1)|, we invoke Theorem 5 at
most n times. As by Theorem 5 the time needed to produce each of the
graphs Fi is polynomial in |V (Fi)|, we almost infer that the total running
time of this algorithm is polynomial in n. The only annoying technicality is
that it might be the case that we try to invoke Theorem 5 on inputs k and g
for which the size of the graph it produces is super-polynomial in the size of
the input graph G. To overcome this difficulty we can simply simulate the
algorithm of Theorem 5 and reject if it runs longer than the time needed to
produce a graph of size at most n, which is polynomial in n.

We turn to prove the main result of the section:

Lemma 4.5. The function ΨF , where F is the family of graphs from Defi-
nition 4.3, is non-recursive.

Proof. We show that if ΨF is recursive, then given a legal encoding of a
Turing-Machine M , we can compute an integer N with the following prop-
erty: If M halts on the empty string, then it does so after at most N steps.
We will thus get that we can decide whether M halts on the empty string,
because we can simulate M on the empty string for N steps and accept if
and only if M halts within these N steps. This will obviously be a contradic-
tion, as deciding if a Turing-Machine halts on an empty string is well-known
to be undecidable (see [19]).

Given an integer i, which (correctly) encodes some Turing-Machine M ,
the algorithm first computes the graph Fi. To this end we rely on item (3)
of Lemma 4.1. Let k denote the number of vertices of Fi. We claim that we
can set N = ΨF (k). First, observe that N is thus computable as ΨF is by
assumption recursive. If M does not halt on the empty string, then we do not
care about the value of N as no matter for how many steps we simulate M ,
it will never halt, and we will return the correct answer. Assume thus that
M halts after T steps. We only have to show that T ≤N =ΨF(k).

First, observe that for any graph F and integer j we trivially have F �→
F +Pj and F +Pj �→F . By item (2) of Lemma 4.1, we know that for any
i < i′ we have Fi ��→ Fi′ and Fi′ ��→ Fi. Therefore, for any i < i′ and for any
j,j′ we also have Fi +Pj ��→Fi′ +Pj′ and Fi′ +Pj′ ��→Fi +Pj . It thus follows
that the only F ∈F such that F �→Fi, are the graphs of the form Fi+Pj for
some integer j. However, as we only put in F the graphs Fi +Pj for which
i#j∈LBH we infer that the only F ∈F such that F �→Fi, are the graphs of
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type Fi +Pj for j ≥ T . In particular, the smallest F ∈F such that F �→Fi

has size at least T . As ΨF (k) takes the maximum over all the graphs of size
at most k, and Fi is one of these graphs, we get that N =ΨF (k)≥T . Hence,
N is indeed an upper bound on the running time of M in the case that it
halts on an empty string.

Call a graph property hereditary if it is closed under removal of vertices.
The last tool we need is the following result of the first author ([14], Ap-
pendix D). In [14], the notion of uniformly testing a property was not used,
but the statement as it appears below is equivalent to what is proved in [14].

Theorem 6 (c.f. [14]). A hereditary graph property is uniformly testable
with two-sided error if and only if it is uniformly testable with one-sided
error.

Proof of Theorem 1. We claim that in order to prove the theorem we
can set P to be the property of being F-free with F being the family given
in Definition 4.3. First, being F-free is by definition expressed in terms
of forbidden subgraphs and by Lemma 4.4 this property is in coNP . In
particular, this property is decidable, therefore by Theorem 2 it can be tested
non-uniformly with one-sided error. Now, by Lemma 4.5 the corresponding
function ΨF is not recursive. Hence, by Theorem 3 this property cannot be
tested uniformly with one-sided error. Finally, as this property is hereditary,
Theorem 6 implies that this property cannot be tested uniformly, even with
two-sided error.

5. Concluding Remarks and Open Problems

5.1. Some remarks on LPS Expanders

The result of Lubotzky, Phillips and Sarnak [18] can be stated as follows
(see [6] for background on expander graphs).

Theorem 7 ([18]). Suppose p and q are primes congruent to 1 modulo 4,
where p is a quadratic residue modulo q, and put d=p+1 and n=q(q2−1)/2.
Then, there is a d-regular expander on n vertices, denoted Gn,d, with second

eigenvalue λ≤2
√

d−1. Moreover,

• The chromatic number of Gn,d is at least
√

d/2.
• The girth of Gn,d is at least 2

3 logn/ logd.
• Gn,d can be constructed in time polynomial in |V (Gn,d)|.
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Therefore, given integers k and g we can use the known results about
the distribution of primes in arithmetic progressions, as well as the above
theorem with n and d satisfying

√
d/2>k and 2

3 logn/ logd>g, in order to
efficiently construct the graphs Fk,g as in Theorem 5.

5.2. Proof of Proposition 1.5

Clearly, if a graph property can be tested when ε is given as part of the input,
then for every fixed ε there is a tester for distinguishing between graphs
satisfying P from those that are ε-far from satisfying it. To show the other
direction, we need a theorem of [14] (extending a result of [2]) stating that for
every ε and n if a graph property is testable with query complexity q(n,ε),
then it can also be tested by a so called ”canonical tester”, which operates
by randomly selecting a set of 2q(n,ε) vertices S, and then accepting or
rejecting according to the graph spanned by S, the value of ε and the size
of the input n.

Suppose then that for any ε > 0 there is a tester Tε that given the
size of an input can distinguish between graphs satisfying P from those
that are ε-far from satisfying it, such that the query complexity of Tε is
at most Q(ε). Note, that we do not assume that the query complexity is
a function of ε only, but just that it is bounded by a function of ε as in
Definition 1.1. We turn to show that in this case there is a tester for P
that receives ε as part of the input. The tester works as follows: Given n
and ε the algorithm constructs the following families of n-vertex graphs:
A, which consists of all the n-vertex graphs satisfying P, and B, which con-
sists of all the n-vertex graph, which are ε-far from satisfying P. Starting
from q = 1 the algorithm now goes over all the possible canonical-testers
with query complexity q, and for each such tester, checks if it will accept
the graphs of A with probability 2/3, and reject the graphs of B with prob-
ability 2/3. Recall that a canonical tester works by sampling a set of ver-
tices and then accepting/rejecting according to the graph spanned by the
sample. Therefore, when we say that the algorithm goes over all testers

with query complexity q we mean that it tries all the possible 22(
q
2) ways

of partitioning the set of q-vertex graphs into those that will make the
canonical tester accept and those that will make it reject. Also, when we
say that the algorithm checks, whether a given canonical tester accepts a
graph from A with probability 2/3, we mean that the algorithm checks if
2/3 of the subsets of q vertices of the graph span a graph, which makes
the canonical tester accept. Now, the main point is that as we assume
that P can be tested using a number of queries that is bounded by a
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function Q(ε), the algorithm will eventually find that for some q ≤ Q(ε)
there is a canonical tester T ′ for ε-testing P on n-vertex graphs. Once
q and T ′ are found the algorithm executes T ′ on the input graph. By
definition, this algorithm is a tester for P, whose query-complexity is at
most Q(ε).

The tester used in the above proof has two interesting features, which
we have alluded to at the end of Subsection 1.3. First, although the query
complexity of the tester, which we construct in the above proof, is bounded
by a function of ε only, it’s running time is exponential in n, due to the
need to go over all graphs of size n. Second, note that although the query
complexity of the tester is bounded by a function of ε only, it is in fact a
function of ε and n. The reason is that what the algorithm does, is look
for the smallest query complexity q, which is sufficient for testing P on n-
vertex graphs. As P is assumed to be testable with a constant number of
queries, we are guaranteed that for every n this quantity is bounded by some
function of ε, which is independent of n. However, it may be the case that
for fixed ε the optimal query complexity is different for different values of n.
Therefore, for fixed ε the query complexity may be different for different
values of n.

5.3. Possible extensions

The main result of the paper, Theorem 1, establishes that if we confine
ourselves to slightly weakened testers then there are non-trivial tasks (com-
puting the query complexity), which cannot be done if ε is an unknown that
is given as part of the input. Moreover, this phenomenon holds for proper-
ties that are natural in terms of their combinatorial structure (as they are
monotone) and also in terms of their computational difficulty (as they are
in coNP ). This means that we can formally prove that in some cases know-
ing the error parameter ε in advance can help the tester in a non-trivial
way. An interesting problem is whether one can find a separating property
satisfying the assertions of Theorem 1, which belongs to P or perhaps even
to a lower complexity class.
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