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In [14] Matoušek and Ziegler compared various topological lower bounds for the chro-
matic number. They proved that Lovász’s original bound [9] can be restated as χ(G) ≥
ind(B(G)) + 2. Sarkaria’s bound [15] can be formulated as χ(G) ≥ ind(B0(G)) + 1. It is
known that these lower bounds are close to each other, namely the difference between
them is at most 1. In this paper we study these lower bounds, and the homotopy types of
box complexes. The most interesting result is that up to Z2-homotopy the box complex
B(G) can be any Z2-space. This together with topological constructions allows us to con-
struct graphs showing that the mentioned two bounds are different. Some of the results
were announced in [14].

1. Introduction

In [14] Matoušek and Ziegler compared various topological lower bounds for
the chromatic number. They reformulated Lovász’s original bound [9] and
Sarkaria’s bound [15] in terms of the index of various box complexes:

Theorem 1.1 (The Lovász bound [14]). For any graph G

χ(G) ≥ ind(B(G)) + 2.

Theorem 1.2 (The Sarkaria bound [14]). For any graph G

χ(G) ≥ ind(B0(G)) + 1.
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We will study these lower bounds in this paper, which is organized as
follows.

Section 2 contains the definition of the box complexes of graphs and we
fix some notation.

In Section 3 we prove that the box complex B0(G) is Z2-homotopy equiv-
alent to the suspension of B(G). This makes the connection between these
two bounds explicit. Since ind(X)≤ ind(susp(X))≤ ind(X)+1 the difference
between the right side of the Lovász and the Sarkaria bound is at most one.

From topological point of view it is possible that these two bounds are not
the same. We construct a Z2-space X2h such that ind(susp(X2h))=ind(X2h)
in Section 6.

However we need a graph such that its box complex B(G) has this prop-
erty. In Section 4 we show that the homotopy type of the box complex
B(G) (which is homotopy equivalent to the neighborhood complex) can be
‘arbitrary’; in Section 5 we extend this result to Z2-homotopy equivalence.
This allows us to construct a graph G such that the gap between these two
bounds is 1. This means that the Lovász bound can be better than the
Sarkaria bound, which answers a question of Matoušek and Ziegler [14].

Finally in Section 7 we show that both of these topological lower bounds
can be arbitrarily bad. Our examples are purely topological.

2. Preliminaries

In this section we recall some basic facts of graphs and simplicial complexes
and topology to fix notation. The interested reader is referred to [13] or [2]
and [6] for details.

Graphs. Any graph G considered will be assumed to be finite, simple, con-
nected, and undirected, i.e., G is given by a finite set V (G) of vertices and
a set of edges E(G) ⊆ (V (G)

2

)
. A graph coloring with n colors is a homo-

morphism c : G → Kn, where Kn is the complete graph on n vertices and
the chromatic number χ(G) of G is the smallest n such that there exists a
graph coloring of G with n colors. The common neighborhood of A⊆V (G) is
CN(A) = {v∈V (G) : {a,v}∈E(G) for all a∈A}; we define CN(∅) :=V (G).
For two disjoint sets of vertices A,B ⊆ V (G) we define G[A,B] as the
(not necessarily induced) subgraph of G with V (G[A,B]) = A ∪ B and
E(G[A,B])={{a,b}∈E(G) : a∈A,b∈B}.
Simplicial Complexes. A simplicial complex K is a finite hereditary set
system. We denote its vertex set by V (K) and its barycentric subdivision
by sd(K). The star of σ∈K is starK(σ)={τ ∈K : τ ∪σ∈K}.

For sets A,B define A	B :={(a,0): a∈A}∪{(b,1): b∈B}.
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Neighborhood Complex. The neighborhood complex is N(G) = {S ⊆
V (G) : CN(S) 
=∅}.
Box Complex. The box complex B(G) of a graph G (the one introduced
by Matoušek and Ziegler [14]) is defined by

B(G) :=
{
A 	 B : A,B ⊆ V (G), A ∩ B = ∅,

G[A,B] is complete bipartite,CN(A) 
= ∅ 
= CN(B)
}
.

The vertices of the box complex are V1 := {v	∅ : v∈V (G)} and V2 :=
{∅	v : v∈V (G)}. The subcomplexes of B(G) induced by V1 and V2 are
disjoint subcomplexes of B(G) that are both isomorphic to the neighbor-
hood complex N(G). We refer to these two copies as shores of the box com-
plex. The box complex is endowed with a Z2-action which interchanges the
shores.

A different box complex B0(G) [14] is defined by:

B0(G) =
{
A 	 B : A,B ⊆ V (G), A ∩ B = ∅,

G[A,B] is complete bipartite
}
.

The cones over the shores complex BC(G) is (only for technical reason):

BC(G)=B(G) ∪ {
(x,A 	 ∅) : A ⊆ V (G), CN(A) 
= ∅}

∪ {
(∅ 	 B, y) : B ⊆ V (G), CN(B) 
= ∅},

where we assume that x,y 
∈V (G). (B(G), B0(G), BC(G) are Z2-spaces.)

Examples. For the complete graph Kn its neighborhood complex N(Kn)
is the boundary complex of the n− 1 dimensional simplex. Its box com-
plex B0(Kn) is the boundary complex of the n-dimensional cross polytope;
while B(Kn) is the boundary complex of the n-dimensional cross polytope,
with two opposite facets removed. BC(Kn) can be obtained from B(Kn) by
attaching cones over its boundary components.

Z2-space. A Z2-space is a pair (X,ν) where X is a topological space and
ν : X→X, called the Z2-action, is a homeomorphism such that ν2 =ν ◦ν =
idX . If (X1,ν1) and (X2,ν2) are Z2-spaces, a Z2-map between them is a
continuous mapping f : X1 →X2 such that f ◦ν1 = ν2 ◦f . The sphere Sn is
understood as a Z2-space with the antipodal homeomorphism x→−x. We
will consider only finite dimensional free Z2-complexes (free means that the
Z2-action ν has no fixed point).



672 PÉTER CSORBA

Z2-index. We define the Z2-index of a Z2-space (X,ν) by

ind(X) = min
{
n ≥ 0: there is a Z2-map (X, ν) → (Sn,−)

}
(the Z2-action ν will be omitted from the notation if it is clear from the
context). The Borsuk–Ulam Theorem can be re-stated as ind(Sn)=n.

Another index-like quantity of a Z2-space, the dual index can be defined
by

coind(X) = max
{
n ≥ 0: there is a Z2-map Sn Z2−→ X

}
.

The consequence of the Borsuk–Ulam Theorem is that coind(X) ≤
ind(X). We call a free Z2-space tidy if coind(X)=ind(X).

A Z2-map f : X→Y is a Z2-equivalence if there exist a Z2-map g : Y →X
such that g ◦ f and f ◦ g are Z2-homotopic to idX and idY respectively.
A general reference for Z2-spaces is the textbook of Bredon [4].

3. The connection between BC(G), B0(G) and B(G)

In this section we will prove that B0(G) and susp(B(G)) are Z2-homotopy
equivalent. The reason is that the box complex is ‘nearly’ N(G)× [0,1].

Theorem 3.1. BC(G) is Z2-homotopy equivalent to susp(B(G)).

Theorem 3.1 considerably strengthen the statement of Matoušek and
Ziegler [14]. It will be proven in Lemmas 3.3 and 3.4.

Remark 3.2. It follows from Lovász’s original proof [9] of Kneser’s conjec-
ture [8] that the box complexes of Kneser graphs are tidy spaces. The box
complexes of Schrijver graphs are tidy as well (spheres up to homotopy [3]).
This means that one can prove Kneser’s conjecture using Sarkaria’s bound
(or any higher suspension of the box complex).

Lemma 3.3. BC(G) is Z2-homotopy equivalent to B0(G).

Proof. BC(G) was obtained from B(G) by attaching two cones C1,C2 over
the shores, while B0(G) is B(G) plus two simplices Δ1,Δ2 covering the
shores.

We consider the following two quotient CW-complexes. (BC(G)/C1)/C2

and (B0(G)/Δ1)/Δ2 (the order of the factorization does not matter since we
collapse disjoint subcomplexes). It is obvious that they are the same CW-
complexes and since Ci,Δi are contractible spaces BC(G) and B0(G) are
Z2-homotopy equivalent.
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Lemma 3.4. BC(G) is a Z2-deformation retract of susp(B(G)).

Proof. BC(G) is a subcomplex of susp(B(G)). The idea of the proof is to
start with susp(B(G)), and get rid of the extra simplexes one by one (using
deformation retraction) such that finally we get BC(G). We will work with
one cone (half) of the suspension. Since we want a Z2-retraction, on the
other cone we have to do the Z2-pair of each step.

Let x be the apex of the cone over the first shore in susp(B(G)) (y is the
other apex). We will define (by induction) sequences of simplicial complexes
such that

susp(B(G)) =: X0 ⊃ X1 ⊃ · · · ⊃ XN = BC(G)

and Xi+1 is a Z2-deformation retraction of Xi.
Let assume that we already defined Xn. We choose a simplex σ∈Xn such

that

1. x∈σ, and the rest of the vertices of σ are from the second shore,
2. no other simplex in Xn containing x has more vertices from the second

shore, and it has at least one vertex from the second shore.

The vertex set of σ will be {x,∅ 	 bj1, . . . ,∅	 bjl−1
} for some B = {bj1 , . . . ,

bjl−1
} ⊆ V (G). Let A := CN(B) = {ai1 , . . . ,aik} and σ̃ be the Z2-pair of σ

with vertex set {y,bj1 	∅, . . . , bjl−1
	∅}. We are ready to define Xn+1:

Xn+1 := Xn \ {
τ ∈ Xn : σ ∈ τ or σ̃ ∈ τ

}
.

x

B

A

Figure 1. A deformation retraction.

We have to only show that Xn+1 is the deformation retract of Xn. We
know the local structure of our complex Xn around σ. Let assume that it is
a face of a bigger simplex Δ with vertex set {x,∅	bj1 , . . . ,∅	bjl−1

, c}. c can
not be the other apex. If c were from the second shore, then we would choose
Δ instead of σ to define Xn+1. So c can be only from the first shore and
then c∈A. This means that σ is on the boundary of Xn; it is on the boundary
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of the simplex s with vertex set {x,∅ 	 bj1, . . . ,∅ 	 bjl−1
,ai1 	∅, . . . ,aik 	∅}.

Moreover every simplex which has σ as face is on the boundary of Xn. So
what we delete to get Xn+1 is on the boundary (except s). This deformation
retraction of the simplex {v1 := ai1 	 ∅, . . . ,vk := aik 	 ∅,w1 := ∅ 	 bj1 , . . . ,
wl−1 :=∅	bjl−1

,wl :=x} is indicated on Figure 1 and can be explicitly given
by:

ht

(∑
tivi +

∑
sjwj

)
=

∑ (
l · t
k

+ ti

)
vi +

∑
(sj − t) wj,

where
∑

ti+
∑

sj =1. It starts with h0 = id, and ends (for a particular point),
just when the first coefficient of wj become zero. This retraction ‘kills’ those
simplices, which has as a face the simplex {w1, . . . ,wl}, and retracts the
‘interior’ points to the remaining simplices.

4. Neighborhood complex

We consider the following natural question about the neighborhood complex.
Given a simplicial complex K, is there a graph G such that its neighborhood
complex is the given complex, N(G)=K?

For example, if K1 is the complex on Figure 2 then the answer is no! The
reason is that there is a topological obstruction. The neighborhood complex
is homotopy equivalent to the box complex which is a free Z2-simplicial
complex so it has clearly even Euler characteristic. But χ(K1)=−1 is odd.

K1

K2

Figure 2. Two simplicial complexes K1 and K2.

Another example if K2 is the complex of Figure 2. Now the answer is no
again, but there is no topological reason. With the usual antipodal map K2

becomes a free Z2-simplicial complex. On the other hand the graph G with
N(G)=K2 should have 4 vertices, and by brute force one can check that K2

is not a neighborhood complex.
Unfortunately we can not answer this question, but we will show that up

to homotopy everything is possible.
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Theorem 4.1. Given a free Z2-simplicial complex (K,ν), there is a graph
G such that its neighborhood complex is homotopy equivalent to the given
complex, N(G)�K.

In order to prove it we will use the following construction of a graph from
a Z2-simplicial complex. Actually we will show that N(Gsd(K))�K.

Construction 4.2 (K→GK). Let K be a Z2-simplicial complex. The ver-
tices of GK are the vertices of K, and each vertex is connected to its Z2-pair
and the neighbors (neighbors in the 1-skeleton of K) of the Z2-pair. Thus
if x,y ∈ V (GK) = V (K) then there is an edge between them if and only if
ν(x)=y or {x,ν(y)}∈K (or {y,ν(x)}∈K).

GK

K

Figure 3. Example for Construction 4.2.

We need the nerve theorem as well.

Definition 4.3 (Nerve). Let F be a set-system. The nerve N (F) of F
is defined as the simplicial complex whose vertices are the sets in F , and
{X1, . . . ,Xr}∈N (F) if and only if X1, . . . ,Xr ∈F and X1∩X2∩·· ·∩Xr 
=∅.
Theorem 4.4 (Nerve theorem [2]). Let K be a simplicial complex and
Ki (i ∈ I) a family of subcomplexes such that K =

⋃
i∈I Ki. Assume that

every nonempty finite intersection Ki1∩·· ·∩Kir is contractible. Then K and
the nerve N (

⋃Ki) are homotopy equivalent.

Proof of Theorem 4.1. For technical reason we need the first barycen-
tric subdivision sd(K) of K. The free simplicial Z2-action on sd(K) will be
denoted by ν as well.

We use Construction 4.2 with sd(K) to obtain Gsd(K). Because of the
barycentric subdivision the vertices of Gsd(K) denoted by subsets of V (K).
If A,B∈V (Gsd(K)) then there is an edge between them if and only if ν(A)=B
or ν(A)⊂B or ν(A)⊃B.

We denote the vertices of K by 1,2, . . . ,n. Let starsd(K)(A) be the star
of the vertex A in sd(K). The nerve of the set system

{
starsd(K)(A) : A ∈
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V (Gsd(K))
}

is clearly the neighborhood complex of Gsd(K). (This is even true
without any subdivision: N(GK) = N (S) where S is the set of the vertex
stars in K.)

We want to use the nerve theorem so we should prove that if B ∈
starsd(K)(A1)∩ ·· · ∩ starsd(K)(Ar) 
= ∅ then this intersection is contractible.
We show that this is a cone. We have two cases:

1. If Ai⊂B for all i=1,2, . . . ,r.
In this case ∪Ai is a vertex of the barycentric subdivision since it is a sub-
set of B, and it is in the intersection as well. We show that the intersection
can be contracted to this point. We construct this deformation retrac-
tion by letting each vertex to travel towards ∪Ai with uniform speed.
The only thing that we have to check is that whenever B1⊂B2⊂·· ·⊂Bq

is a simplex in the intersection, then with the special vertex X := ∪Ai

they form a simplex as well. First observe that there is an edge between
X and Bl, l∈{1, . . . ,q}. If Bl ⊂Ai for some i then Bl ⊂X as well. Oth-
erwise X ⊂Bl. For the simplex B1 ⊂B2 ⊂ ·· · ⊂Bq if X ⊂B1 or X ⊃Bq

then they form a simplex with X. Otherwise there is an index k such
that Bk⊂X⊂Bk+1. This means that B1,B2, . . . ,Bq,X form a simplex.

2. If B⊂Aij for some j =1, . . . ,k (k≥1), and Ai⊂B for the rest.
In this case B⊂∩k

j=1 Aij 
=∅ is a vertex of the barycentric subdivision and
the intersection as well (B ⊃∪Ai⊂B Ai would be good as before, but it
does not have to exists). We show that the intersection can be contracted
to this point. We construct this deformation retraction by letting each
vertex to travel towards ∩Aij with uniform speed. We have to show that
whenever B1⊂B2⊂·· ·⊂Bq is a simplex in the intersection, then with the
special vertex X :=∩Aij they form a simplex as well. First observe that
there is an edge between X and Bl, l∈{1, . . . ,q}. If Bl ⊃Aij for some ij
then Bl⊃X as well. Otherwise X⊃Bl. For the simplex B1⊂B2⊂·· ·⊂Bq

if X ⊂B1 or X ⊃Bq then it is true. Otherwise there is an index k such
that Bk⊂X⊂Bk+1 which means that B1,B2, . . . ,Bq,X form a simplex.

This completes the proof.

5. Box complex

In this section we prove our main theorem. It is the Z2-extension of
Theorem 4.1. After our work was completed, (it was already announced
in [14], arXiv:math.CO/0208072v2) R. T. Živaljević [17] proved Theorem 5.1
and 3.1 by a different poset-theoretic route.
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Theorem 5.1. Given a free Z2-simplicial complex (K,ν), there is a graph
G such that its box complex B(G) is Z2-homotopy equivalent to the given
complex.

We will show that B(Gsd(K))
Z2�K. First we need the Z2-carrier lemma.

Definition 5.2 (carrier). Let (K,ν) be a Z2-simplicial complex and (T,μ)
a Z2-space. A function C taking faces σ of K to subspaces C(σ) of T , satis-
fying C(ν(σ))=μ(C(σ)), is a Z2-carrier if C(σ)⊆C(τ) for all σ⊆τ .

Lemma 5.3 (Z2-carrier lemma). Assume that for a Z2-carrier C for any
σ∈K C(σ) is contractible. Then any two Z2-maps f,g : K→T that are both
carried by C are Z2-homotopic.

Proof. The proof follows the proof of the usual carrier lemma by induction
on the skeleton, as in [10, Theorem II.9.2].

Proof of Theorem 5.1. We will use the same notations as in the proof
of Theorem 4.1. Similarly we obtain Gsd(K) by using Construction 4.2
with sd(K). We need to show that the box complex B(Gsd(K)) and (K,ν)
are Z2-homotopy equivalent. In order to prove it we will define Z2-maps
f : sd(B(Gsd(K)))→ sd(K) and g : sd(K)→B(Gsd(K)), that are Z2-homotopy
inverses.

The definition of g: This is an embedding. We map a vertex A∈sd(K) to
A	∅∈B(Gsd(K)) and of course its Z2-pair ν(A)∈sd(K) to ∅	A∈B(Gsd(K)).
Here we had to choose! If we pick ν(A) first than we mapped ν(A) to ν(A)	∅
and A to ∅	ν(A). So we have 2 choices for any Z2-pair A,ν(A). This de-
fines a Z2-map g on the vertex level. We have to show that g is simpli-
cial. Let A1 ⊂ ·· · ⊂ Al be a simplex σ in sd(K). Since A1	∅, . . . ,Al	∅,
∅	ν(A1), . . . ,∅	ν(Al) form a simplex in B(Gsd(K)) the image of σ is a sim-
plex. (In Gsd(K) Ai is connected to ν(Ai) and since Ai ⊂ Aj or Ai ⊃ Aj it
is connected to ν(Aj) as well. So Gsd(K)[{A1, . . . ,Al};{ν(A1), . . . ,ν(Al)}] is
complete bipartite.)

The definition of f : Let A1	∅, . . . ,Al	∅, ∅	B1, . . . ,∅	Bk be the vertices
of a simplex σ in B(Gsd(K)). Gsd(K)[A;B] is complete bipartite where A :=
{A1, . . . ,Al} and B := {B1, . . . ,Bk}. This means that A⊂ starsd(K)ν(Bj) for
any j∈{1, . . . ,k} so A⊂∩k

j=1 starsd(K)ν(Bj). From the proof of Theorem 4.1
we know that ∩k

j=1 starsd(K)ν(Bj) is a cone with apex X. Since A,ν(B) ⊂
starsd(K)X we have that Y := ∩l

i=1 starsd(K)Ai
⋂∩k

j=1 starsd(K)ν(Bj) 
= ∅.
From the proof of Theorem 4.1 we know that Y is a cone. We denote its
apex by XB

A which can be chosen to be ∩l
i=1 Ai

⋂∩k
j=1 ν(Bj) if it is not the
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empty set. Now we are able to define f .

f(A	 B) :=

⎧⎨
⎩

l∩
i=1

Ai

⋂ k∩
j=1

ν(Bj) if exist,

XB
A otherwise.

By the construction it is Z2 on the vertex level. (We can choose XA
B :=

ν(XB
A).) It is simplicial. An edge with two vertices A	B and Ã	B̃ (Ã⊂A,

B̃⊂B) is mapped to two vertices S⊂R since XB
A is in the cone of XB̃

Ã. Now
a simplex is mapped to a chain (since every two vertex is comparable by
inclusion).

Next we prove that f ◦sd(g) : sd(sd(K))→sd(K) is Z2-homotopic to idK.
We will use the Z2-carrier lemma. We have to construct ‘only’ a contractible
Z2-carrier for f ◦ sd(g) and id. The image of the vertex v = {A1, . . . ,Al},
A1 ⊂ ·· · ⊂ Al is sd(g)(v) = {Ai1 , . . . ,Ais} 	 {ν(Aj1), . . . ,ν(Ajr)}. And now
f(sd(g)(v)) = A1∩·· ·∩Al = A1 in this case! The image of a simplex with
vertex set {Ai1},{Ai1 ,Ai2}, . . . ,{Ai1 , . . . ,Ail} is a face of the simplex A1 ⊂
·· ·⊂Al. So for a simplex σ∈sd(sd(K)) with its maximal vertex {A1, . . . ,Al}
we define C(σ) := {A1, . . . ,Al} ∈ sd(K). This C is a contractible Z2-carrier
what we need. f ◦sd(g) and idK are Z2-homotopic.

Now we show that g ◦ f : sd(B(Gsd(K))) → B(Gsd(K)) is Z2-homotopic
to id. Again we construct a contractible Z2-carrier for g◦f and id. A vertex
A	B is mapped to XB

A by f and to XB
A 	 ∅ or ∅ 	 ν(XB

A) by g◦f . Let
A1	B1, . . . ,An 	Bn the vertex set of a simplex σ in sd(B(Gsd(K))). (A1 ⊂
·· · ⊂ An, B1 ⊂ ·· · ⊂ Bn, An := {A1, . . . ,Al} and Bn := {B1, . . . ,Bk}.) We
consider the subgraph H of Gsd(K) spanned by A1, . . . ,Al,B1, . . . ,Bk, their
Z2-image under ν and XBi

Ai
,ν(XBi

Ai
) for any i ∈ {1, . . . ,n}. We will use H

(actually B(H)) to define the desired carrier. First of all B(H) contains the
simplex with vertex set A1	∅, . . . ,Al	∅, ∅	B1, . . . ,∅	Bk which contains σ.
Moreover we defined H in such a way that B(H) contains (g◦f)(σ) as well.
Observe that H is bipartite. The neighbors of the vertices XBn

An
and ν(XBn

An
)

provides a partition of the vertex set of H. The neighborhood complex N(H)
is the disjoint union of two simplices corresponding to this partition. So the
box complex B(H)⊂B(Gsd(K)) contains two disjoint contractible sets (since
it is homotopy equivalent to N(H)). One of these sets covers σ and (g◦f)(σ),
so we define our contractible Z2-carrier C(σ) to be this ‘half’ of B(H).

Remark 5.4. For any free Z2-simplicial complex (K,ν) there is a graph G
such that its Hom complex [1] Hom(K2,G) is Z2-homotopy equivalent to
the given complex since the box complex B(G) is Z2-homotopy equivalent
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to Hom(K2,G). (The Z2-maps f : sd(B(G))→sd(Hom(K2,G)) defined by

A 	 B →
⎧⎨
⎩

(A,CN(A)) if B = ∅,
(CN(B), B) if A = ∅,
(A,B) otherwise,

and g : sd(Hom(K2,G))→sd(B(G)) given by (A,B)→A	B are Z2-homotopy
equivalences. f ◦g=id and g◦f is carried by id.)

6. The suspension and the index

In this section we will construct a Z2-space X such that ind(X) =
ind(susp(X)). This example is based on an earlier construction by Matoušek,
Živaljević and the author [13, page 100]. Such examples appear in the ho-
motopy theory literature, see e.g. [5], but we will give a simple and explicit
example.

We proceed in the following way. Let h : S3→S2 be the Hopf map. It can
be defined by considering S3 as the unit sphere in C

2 and S2 =CP
1. Now the

Hopf map h : S3 →S2 defined by (z1,z2)→ [z1,z2]∈CP
1 [6, Example 4.45].

We note that h is a generator of π3(S2)∼=Z.
We attach two 4-cells (the boundary of the 4-cell is S3) to S2 via 2h

and −2h, where multiplies of maps are taken according to addition in
π3(S2)∼=Z. We denote this Z2-space by

X2h := S2 ∪
2h

B4 ∪
−2h

B4.

The Z2-action is the antipodality on S2⊂X2h, and it interchanges the two
4-cells.

Now we compute the Z2-index of X2h and susp(X2h). It is easy to see
that 1 ≤ ind(X2h) ≤ 3. A Z2-map S2 ⊂ X2h

Z2−→ S1 would contradict the
Borsuk–Ulam Theorem. Let Bi be the unit ball in R

i centered at the origin.
We assume that 2h : S3 → S2 maps the unit sphere, the boundary of the
unit ball, into the unit sphere. We define a map b : B4 → B3 such that
it maps the origin of R

4 into the origin of R
3 and if x ∈ B4, ‖x‖ 
= 0 then

b(x) :=2h
( x

‖x‖
)·‖x‖. Now we are ready to construct a Z2-map f : X2h

Z2−→S3.
f maps S2 ⊂X2h into the equator of S3. The remaining two 4-cells of X2h

are mapped to the upper and lower hemisphere of S3 by b and −b.

It is slightly more difficult to prove that the index is 3. We will use the
following:
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Definition 6.1 ([6] Page 427, Section 4.B). Let f : S2n−1→Sn, (n≥2),
and let Cf =Sn∪f B2n (we attach a 2n-cell to Sn via f). The Hopf invariant
of f (denoted by H(f)) can be defined such that α∪α = H(f) · β, where
α∈Hn(Cf )=Z and β∈H2n(Cf )=Z are the generators of the corresponding
cohomology groups and ∪ is the cup product.

We will use the following property of the Hopf invariant (see [6]).

• H :π2n−1(Sn)→Z is a homomorphism. For n=2 it is an isomorphism.

Theorem 6.2 ([7] Theorem 9.5.9). Let f : S2n−1 →Sn and g : Sn →Sn

be continuous maps. Then: H(g◦f)=deg(g)2 ·H(f).

Theorem 6.3 ([6] Proposition 2B.6). Every Z2-map f : Sn Z2−→Sn has
odd degree.

Lemma 6.4. ind(X2h)=3.

Proof. By contradiction assume that ind(X2h)≤2 which means that there is
a Z2-map f : X2h

Z2−→S2. We restrict this map to S2⊂X2h obtaining g : S2→
S2. We claim that g ◦2h : S3 →S2 is null-homotopic. In X2h we attached a
4-cell to S2 via 2h. This gives us a map i : B4→X2h and f ◦ i : B4→S2. The
restriction of f ◦i into S3 =∂B4 is g◦2h. So the map g◦2h extends into B4

which proves that g◦2h is null-homotopic.
On the other hand Theorem 6.3 tells us that deg(g) is odd. (We need

now only that it is non-zero.) Using Theorem 6.2 we have that H(g◦2h)=
deg(g)2 ·H(2h). Since deg(g) 
=0 and H(2h)=2 we have that H(g ◦2h) 
=0.
This means that g◦2h is not null-homotopic, contradiction.

Lemma 6.5. ind(susp(X2h))=3.

Proof. susp(X2h) can be obtained similarly as X2h: we attach two 5-
cells (the boundary of the 5-cell is S4) to S3 via susp(2h) and −susp(2h).
The Freudenthal Theorem ([6] Corollary 4.24) tells us that susp: π3(S2)→
π4(S3), which is actually Z→Z2, is surjective. So susp(2h) is null-homotopic
which means that susp(X2h) is Z2-homotopy equivalent to S3 so its index
is 3.

The generalization of this construction provides infinitely many examples
of ind(X)=ind(susp(X)).

Using a simplicial model for 2h : S3
12→S2

4 [12,11] one can obtain a sim-
plicial complex model for X2h as well.
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7. The topological lower bound can be arbitrarily bad

It is well known (see [16]) that the topological lower bound for the chromatic
number can be arbitrarily bad. But now we are able to construct graphs
using spaces with unusual homotopy properties.

Definition 7.1. For a graph G let G+ be the graph obtained from G by
adding an extra vertex w and connecting it by edges to all the vertices of G,
i.e., V (G+)=V (G)∪{w} and E(G+)=E(G)∪{(v,w) : v∈V (G)}.
Lemma 7.2. B(G+) is Z2-homotopy equivalent to susp(B(G)).

Proof. susp(B(G)) is a subcomplex of B(G+). The difference is only two
big simplices (and some of their faces) V (G)	w and w	V (G). We will get
rid of the extra simplices one by one using deformation retraction. We will
work with one shore, on the other shore we have to do the Z2-pair of each
step.

We will define (by induction) sequences of simplicial complexes such that

B(G+) =: X0 ⊃ X1 ⊃ · · · ⊃ XN = susp(B(G))

and Xi+1 is a Z2-deformation retraction of Xi.
Let assume that we already defined Xn. We choose A⊆V (G) such that

A	w ∈ Xn, and there is no A ⊂ B ⊆ V (G) such that B 	w ∈ Xn. We
define Xn+1:

Xn+1 := Xn \ {A 	 w,w 	 A,A 	 ∅, ∅ 	 A} .

By the definition of Xn+1 it is clearly a Z2-deformation retract of Xn since
A	∅ is on the boundary of Xn. (Map the barycenter of A	∅ to ∅	w.)

Now we are ready to construct a graph such that χ(H) ≥ ind(B(H))+
2 + k. Let Xk be a Z2-space (a simplicial complex) such that ind(Xk) =
ind(suspk(Xk)).

Proposition 7.3. For H := (Gsd(Xk))
+k the difference between χ(H) and

the topological lower bound (Theorem 1.1) is at least k.

Proof. Let G := Gsd(Xk). For G we have that χ(G) ≥ ind(B(G)) + 2 =
ind(Xk)+2. Clearly χ(G)+k = χ(H) and ind(B(H)) = ind(suspk(B(G))) =
ind(suspk(Xk))=ind(Xk). So χ(H)≥ ind(B(H))+2+k.
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