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We resolve the following conjecture raised by Levin together with Linial, London, and
Rabinovich [Combinatorica, 1995]. For a graph G, let dim(G) be the smallest d such that
G occurs as a (not necessarily induced) subgraph of Z

d
∞, the infinite graph with vertex

set Z
d and an edge (u,v) whenever ‖u− v‖∞ = 1. The growth rate of G, denoted ρG, is

the minimum ρ such that every ball of radius r>1 in G contains at most rρ vertices. By
simple volume arguments, dim(G) = Ω(ρG). Levin conjectured that this lower bound is
tight, i.e., that dim(G)=O(ρG) for every graph G.

Previously, it was unknown whether dim(G) could be bounded above by any func-
tion of ρG. We show that a weaker form of Levin’s conjecture holds by proving that
dim(G) = O(ρG logρG) for any graph G. We disprove, however, the specific bound of
the conjecture and show that our upper bound is tight by exhibiting graphs for which
dim(G)=Ω(ρG logρG). For several special families of graphs (e.g., planar graphs), we sal-
vage the strong form, showing that dim(G)=O(ρG). Our results extend to a variant of
the conjecture for finite-dimensional Euclidean spaces posed by Linial and independently
by Benjamini and Schramm.

1. Introduction

The geometry of graphs, a fascinating area of combinatorics concerned with
the geometric representation of graphs, has found many algorithmic ap-
plications in recent years. A very fruitful and actively studied line of re-
search involves embedding the metric of a weighted graph into some finite-
dimensional real-normed space (see, for instance, the surveys [13] and [19,
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ch. 15]). In their seminal paper [16], Linial, London, and Rabinovich were
the first to fully realize the algorithmic importance of low-distortion met-
ric embeddings. However, their initial motivation was to understand the
relationship between the dimensionality of a graph and its combinatorial
properties.

The notion of dimensionality for a graph is usually based on a particu-
lar way of embedding the graph into some space that possesses an intrinsic
dimension (e.g., a finite-dimensional Euclidean space). One then defines the
dimension of a graph to be the least dimension into which it can be embed-
ded. Several such notions have been extensively studied; see [18]. In [16],
the authors wished to express the concept that graphs of “everywhere large
diameter” should have low dimensionality. With the help of Leonid Levin,
this concept was formalized as follows.

Let Z
d∞ be the infinite graph with vertex set Z

d and an edge (u,v) for
two vertices u and v whenever ‖u−v‖∞ =1. For a graph G=(V,E), define
dim(G) to be the smallest d such that G occurs as a (not necessarily induced)
subgraph of Z

d∞.
For a pair of vertices u,v ∈ V , we define dG(u,v) to be the distance

between u and v in the shortest path metric on G. We denote by

B(v, r) = {u ∈ V : dG(u, v) ≤ r}

the closed ball of radius r in G centered at v, and define the growth rate of
G to be

ρG = inf{ρ : |B(v, r)| ≤ rρ for all v ∈ V and r > 1}.

Equivalently, ρG = sup
{ log |B(v,r)|

logr : v ∈ V,r > 1
}
. Notice that ρZd∞ = Θ(d),

so by a simple counting argument, we must have dim(G) = Ω(ρG). Levin,
together with Linial, London, and Rabinovich [16], conjectured that O(ρG)
dimensions suffice.

Conjecture 1. For any graph G with growth rate ρG, G occurs as a (not

necessarily induced) subgraph of Z
O(ρG)
∞ . In other words, dim(G)=Θ(ρG).

In [16], it was shown that Conjecture 1 holds for the k-dimensional hy-
percube and the complete binary tree, but nothing beyond these two special
cases was known. Indeed, it was not known whether dim(G) could be upper
bounded by any function of ρG, even in the seemingly simpler case when the
graph is a tree. Linial [15] asked about a Euclidean analogue to this notion
of dimensionality.
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Question 2. For a graph G = (V,E), what is the minimum dimension d,
denoted dim2(G), such that there exists a mapping γ : V → R

d with the
following properties?

1. ‖γ(u)−γ(v)‖2≥1 for all u �=v∈V , and
2. ‖γ(u)−γ(v)‖2≤2 for all (u,v)∈E.

Itai Benjamini and Oded Schramm [personal communication, 2003] indepen-
dently asked a similar question: Is it the case that, for every infinite graph G
with ρ(G)<∞, we have dim2(G)<∞? In what follows, we resolve all these
questions and give tight quantitative bounds. Linial remarked that the con-
dition ‖γ(u)−γ(v)‖2 ≤ 2 is somewhat arbitrary; indeed, we will see that it
can be replaced by ‖γ(u)− γ(v)‖2 ≤ C for any fixed C > 1 while affecting
the value of dim2(G) by only a constant factor (that depends on C), see
Section 6.

1.1. Results and techniques

In Section 2, we provide a self-contained proof of Levin’s conjecture for
trees. We first perform a recursive decomposition of the tree. Each “level”
of the decomposition is responsible for pairs of vertices whose distance (in
the tree) falls into a certain range of the form [r,r2]. For any single level,
we use the probabilistic method to construct an embedding that handles all
the respective pairs of vertices. We can embed each level separately and con-
catenate the O(log log |V |) resulting mappings, but the dimension of the host
lattice becomes too large. The key technique, which completes the proof, is
a method of handling all the levels using the same coordinates. The solu-
tion involves “conservation” of randomness between levels – our hierarchical
decomposition of the tree induces a partition of a corresponding probabil-
ity space, and the probabilistic construction at later levels is restricted to
randomizing over only the remaining “untapped” randomness (an idea that
reappears throughout the paper). This result extends to graphs whose in-
duced simple cycles are of bounded length by known low-distortion embed-
dings of such graphs into trees, due to [5,6].

In Section 3, we give a lower bound on the dimension necessary to embed
low-degree expander graphs which shows that the strong form of Levin’s
conjecture does not hold in general. In particular, we show that for a logn-
degree expander G, dim(G)=Ω(ρG logρG).

In Section 4, using different techniques, but many ideas from our proof
for trees, we give a general upper bound on dim(G) in terms of certain
graph decompositions. In this setting, choosing a good embedding for a



554 ROBERT KRAUTHGAMER, JAMES R. LEE

level with high probability is more difficult; the approach we use is inspired
by a technique of [21] (which was used there to embed planar graphs into
Euclidean space with low distortion). Again, we must discover a delicate
way of handling all the levels simultaneously. In Section 4.4, we employ the
decomposition of [14] (see also [10]), combined with the results of Section 4,
to prove the conjecture for any family of graphs which excludes a fixed minor
(this includes planar graphs, for instance).

In Section 5, we modify a probabilistic decomposition of [17,3] for use
with growth-restricted graphs. Our modifications are two-fold. First, the pa-
rameters of our decomposition depend on ρ (and not on n = |V | as in [17,
3]). This is essential to our application. Secondly, our decomposition is local
in the sense that events which are far apart (in G) are mutually indepen-
dent. As a result, we are able to apply the Lovász Local Lemma, yielding
decompositions which, when combined with the results of Section 4, give
dim(G)=O(ρ3

G) for any graph G.
To obtain a tight upper bound of dim(G) = O(ρG logρG), we observe in

Section 5.3 that the many steps of our embedding can be essentially per-
formed “at once,” removing the need to amplify the individual probabilities
at each step. Here, it is essential that every step of the embedding process
is “local” with respect to its “scale.”

Finally, in Section 6, it is shown that all our results for dim(G) hold also
for Linial’s variant dim2(G) [15], yielding a conclusive answer to Question 2,
and positively resolving the question of Benjamini and Schramm. This fol-
lows from a standard application of Chernoff-type tail bounds to the random
processes employed in previous sections.

1.2. Related work

Notions of dimensionality for graphs were perhaps first considered by Erdős,
Harary, and Tutte [8]. The geometric representations of graphs have been ex-
tensively studied in other settings; see, for instance, the survey of Lovász and
Vesztergombi [18]. As mentioned before, the related study of low-distortion
metric embeddings has received increasing attention in recent years (see the
surveys [13,19]).

Conjecture 1 is actually a dual of the bandwidth problem for graphs.
The bandwidth problem asks for the minimum stretch of any edge in an
embedding of the graph into Z = Z

1∞. Conjecture 1 asks for the minimum
dimension needed to achieve a stretch of one (no stretch). Interestingly,
the density bound D = max

{ |B(v,r)|
2r

}
(a one-dimensional analogue of the

growth rate), which is a straightforward lower bound on the bandwidth,
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is conjectured to be within a log |V | factor of the bandwidth (this gap is
met, for instance, by expanders). From [9], we know that the bandwidth
and density differ by only a polylog(|V |) factor. However, the techniques
employed for the bandwidth problem do not seem to help in resolving the
dual question.

Imposing a growth restriction like |B(v,r)| ≤ rρ on a graph has many
analogs in the analysis of metric spaces, and in Riemannian geometry. For
metric spaces, there are the notions of a doubling metric and Ahlfors Q-
regularity (see [12]). A metric space (X,d) is called doubling if there exists
a constant L > 0 such that every ball in X can be covered by L balls of
half the radius. Assouad [2] showed that, for any fixed 0<ε<1, the metric
space (X,dε) (with distances raised to the power ε) embeds into R

k with
distortion D, where k and D depend only on L. This theorem is similar
in spirit to a number of the results presented here. Although Assouad’s
methods are significantly different and do not apply to Levin’s problem, the
relationship is not entirely superficial; the techniques of Section 5 were used
in [11] to obtain a new (quantitatively almost optimal) proof of Assouad’s
theorem.

1.3. Preliminaries

For a point x=(x1, . . . ,xd)∈R
d, we write ‖x‖2 =(

∑d
i=1 |xi|2) 1

2 and ‖x‖∞ =
maxd

i=1 |xi|. For a graph G, we write V (G) and E(G) for the vertex and edge
set of G, respectively.

Definition 1.1. For a graph G=(V,E), a map ϕ :V →Z
d is a contraction

(or contractive) if (u,v)∈E implies ‖ϕ(u)−ϕ(v)‖∞≤1. Furthermore, if {ϕi}
is a finite set of mappings, we define the direct sum, ϕ =

⊕
i ϕi to be the

mapping ϕ(u)=(ϕ1(u),ϕ2(u), . . .) (i.e., where coordinates are concatenated).

Notice that if a map ϕ : V →Z
d is both contractive and injective, then

G occurs as a subgraph of Z
d∞, and in particular, dim(G)≤d. We can think

of any such embedding ϕ as consisting of d separate one-dimensional maps
ϕ1, . . . ,ϕd such that ϕ=

⊕n
i=1 ϕi. The following simple lemma will serve as

our guide.

Lemma 1.2. Let G = (V,E) and ϕ =
⊕d

i=1 ϕi where ϕi : V → Z, then the
following are true.

1. ϕ is a contraction ⇐⇒ every ϕi is a contraction.
2. ϕ is injective ⇐⇒ for every pair u,v ∈ V , there exists some ϕi such

that ϕi(u) �=ϕi(v).

Unless otherwise stated, ‖·‖=‖·‖∞ and all logarithms are to the base 2.
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2. Trees

In this section we show that every tree T with growth rate ρ occurs as a
subgraph of Z

d∞ with d=O(ρ) by exhibiting a map ϕ :T →Z
d that is both

contractive and injective.

2.1. Embedding trees by random walks

In light of Lemma 1.2, it is natural to define a distribution over random
contractions and then argue that some such map must be injective.

Let T =(V,E) be a tree whose growth rate is at most ρ. Fix an arbitrary
root r of T , and let h be the height of T (so that V ⊆B(r,h)). Define dT to
be the shortest path metric on T and let c>0 be a sufficiently large constant
to be determined later. Let T1,T2, . . . ,Tcρ be cρ weighted copies of T , where
the weight of every edge in Ti is chosen independently and uniformly at
random from the set {−1,+1}. For each v∈V , let vi be the sum of the edge
weights on the unique path from r to v in Ti. Finally, define the image of v
in Z

cρ by ϕ(v)=(v1,v2, . . . ,vcρ).
Clearly ϕ is a contraction. Now consider any two vertices u,v ∈ V for

which dT (u,v)≥√
h. The probability that the images of u and v agree in

any single coordinate, i.e. that ui =vi, is the probability that a random walk
with +1/−1 steps and length

√
h ends at its starting point, namely O(h)−1/4.

Hence the probability that ϕ(u)=ϕ(v) is at most O(h)−cρ/4. Observe that
since T is contained in a ball of radius h centered at r, it contains at most
hρ vertices. Taking a union bound over at most h2ρ pairs {u,v}∈V 2,

Pr
[∃u, v ∈ V, dT (u, v) ≥

√
h and ϕ(u) = ϕ(v)

] ≤ h2ρ O(h)−cρ/4.

It follows that there exists universal constants h0 > 0, c > 9 such that
for every tree T of height h≥ h0, there exists a map ϕ : V →Z

cρ for which
dT (u,v) ≥ √

h =⇒ ϕ(u) �= ϕ(v). In what follows, we carefully utilize this
simple but powerful observation to show that dim(T )=O(ρ) for any tree T ,
thus proving Conjecture 1 for the special case of trees.

2.2. Relative embeddings and rooted subtrees

Consider a tree T = (V,E) with ρ = ρT and fix a root rT of T . Define a
rooted subtree of T to be a connected vertex-induced subgraph X with a
distinguished root rX . Let W ={−1,0,+1} be the set of edge weights. For a
rooted subtree X =(VX ,EX), we define a d-dimensional relative embedding
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of X to be a map μX :EX →W d. Finally, we will denote by μ∗
X :VX →Z

d the
(absolute) embedding induced by the relative embedding μX (with respect to
the root rX), which is the map obtained as follows: For a vertex v∈VX , define
its image μ∗

X(v)∈Z
d as the sum of the edge weights μX(e) along the unique

path from rX to v in X. By our choice of W , induced embeddings are always
contractions. Furthermore, given any contractive embedding ϕ : VT → Z

d,
there exists a unique d-dimensional relative embedding μ such that ϕ = μ∗
(with respect to rX). Let us define 0=(0,0, . . . ,0) to be the all-zero vector.
Notice that the construction of Section 2.1, when applied to a subtree X,
yields a relative embedding of X with the following desirable property.

Lemma 2.1 (Relative embeddings). There exist constants h0 and c such
that for every rooted subtree X = (VX ,EX) of T with height at most h
where h≥h0, there is a relative embedding μX : EX →W cρ such that, for
all u,v∈VX , μ∗

X(u) �=μ∗
X(v) whenever dT (u,v)≥√

h.

In essence, μ∗
X “separates” points in X which are far apart relative to

the height of T . Notice that the above lemma only works for h sufficiently
large. When h is bounded, i.e., h=O(1), a brute force embedding suffices.

Lemma 2.2 (Small subtrees). For any rooted subtree X = (VX ,EX)
of T with height at most h1, there exists a relative embedding μ : EX →
W ρ log(h1+2) such that μ∗ is injective.

Proof. Let VX = {v1,v2, . . . ,vm} and define ϕ(vi) = B(i) where B(i) is the
binary representation of i−1 written as a �logm�-dimensional vector. Now
ϕ is clearly injective and also a contraction since ‖B(i)−B(j)‖∞ ≤ 1 for
all i,j. Finally, notice that since X is of height h=O(1), we have m≤hρ and
hence �logm�≤ ρ log(h1 +2). Let μ be the unique relative embedding such
that ϕ = μ∗. It follows that μ : EX → W ρ log(h1+2) is a relative embedding
with μ∗ injective.

Suppose {X1,X2, . . . ,Xk} is a collection of vertex-disjoint rooted subtrees
of T , and let each Xi =(Vi,Ei) have root ri. Furthermore, suppose that for
each Xi, we have a relative embedding μi :Ei →W d. Then we can define a
relative embedding μ on all of V by

μ(e) =

{
μi(e) if e ∈ Ei for some i

0 otherwise.

Note that μ has the desirable property ‖μ∗(u)−μ∗(v)‖ = ‖μ∗
i (u)−μ∗

i (v)‖
whenever u,v∈Vi. We will say that μ is obtained by glueing the relative
embeddings {μi} together.
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In the sequel, we will construct, for a given ĥ>0 (which need not be the
height of the tree T ), an embedding ϕ :V →Z

O(ρ) that satisfies ϕ(u) �=ϕ(v)
whenever ĥ1/2≤d(u,v)≤ ĥ. (This is essentially the “single scale” version of
the conjecture.) To do this, we will partition T into subtrees of height O(ĥ),
find for each subtree a relative embedding that satisfies the desired property,
and then glue all these relative embeddings into an embedding for T . There
is the slight problem that for pairs u,v with ĥ1/2≤d(u,v)≤ ĥ that end up in
different subtrees, we have no guarantee that their images (under μ∗) will
be distinct. To handle this, we will actually use two sets of disjoint subtrees
which are “staggered” so that every pair u,v with d(u,v)≤h ends up in the
same subtree in at least one of the sets. A far more challenging problem is
that this embedding is guaranteed to handle only one value of h.

2.3. The leveled decomposition

Let diam(T ) be the diameter of T . Set k = �log logdiam(T )� and Δ = 22k
,

hence diam(T )≤Δ≤diam(T )2. We define k levels L0,L1, . . . ,Lk−1 as follows.
Level i consists of two partitions of T into rooted subtrees; denote these two
partitions Ai and Bi and let Li =Ai∪Bi. The subtrees in Li will cover T (in
a sense that will be defined soon) and will each have height at most 3h(i),
where h(i) = Δ1/2i

. (For convenience, we define h(k) = 1.) To form Ai, let
OA

i be the set of edges in T whose depth (i.e., distance from the root rT ) is
a multiple of 3h(i). Removing OA

i from T results in a collection of disjoint
subtrees; let Ai consist of these subtrees, each rooted at its (unique) closest
vertex to rT . Bi is formed similarly, except that OB

i is defined as the set of
edges in T whose depth modulo 3h(i) is equal to h(i) (rather than 0). The
edges in OA

i and OB
i are called the open edges of level Li. The next lemma

is easy to verify. In particular, property (3) follows from the “staggering” of
the two sets of subtrees Ai and Bi. Property (4) follows from the specifics
of the decomposition; it provides a nesting that will turn out to be useful in
Section 2.5.

Lemma 2.3 (The leveled decomposition). For every tree T = (V,E),
the above construction satisfies the following properties.

1. Each Ai and each Bi is a partition of V .
2. The height of any subtree X∈Li is at most 3h(i).
3. For any pair u,v∈V with d(u,v)≤h(i), there is some X ∈Li containing

both u and v.
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4. For every i, OA
i+1 ⊆OA

i ; hence, each subtree in Ai is entirely contained
in some subtree in Ai+1. The same holds for the subtrees in Bi. In this
sense, each level is a refinement of the previous level.

Definition 2.4 (A separating map). We say that ϕ : V →Z
d separates

Ai (and similarly Bi) if, for every X∈Ai and for every pair u,v∈V (X) with
h(i+1)≤d(u,v)≤h(i), we have ϕ(u) �=ϕ(v).

Notice that if ϕ separates Ai and Bi for all i∈{0,1, . . . ,k−1}, then ϕ is
injective (by the properties in Lemma 2.3).

2.4. A first attempt

Consider the partition Ai of T . Applying the embedding of Lemmas 2.1
and 2.2 to each X∈Ai and glueing the relative embeddings together yields an
induced embedding ϕA

i which separates Ai. Let ϕB
i be a similar embedding

obtained from the partition Bi, and let ϕi : V → Z
O(ρ) be defined as ϕi =

ϕA
i ⊕ϕB

i . Then ϕi separates Ai and Bi. Finally, the map ϕ=ϕ0⊕·· ·⊕ϕk−1

separates every Ai and every Bi, and is hence injective (by Lemma 1.2).
Since ϕ is also a contraction, it yields dim(T )=O(ρk)=O(ρ log logdiam(T )).
Unfortunately, this bound depends on the diameter of T and is therefore
insufficient for our purposes.

2.5. Conserving randomness or “Not using all your ammo at
once.”

In the preceding section, we used too many dimensions because we needed a
distinct set of coordinates for every level. In essence, determining the embed-
ding for level Li leaves no randomness for “higher” levels Li−1,Li−2, . . . ,L0

(since all the edge weights in the relative embedding for Li are determined).
Now consider the open edges of level Li, namely, OA

i and OB
i , which run

between disjoint subtrees. In Section 2.2, when the relative embeddings for
subtrees are glued together, the open edges are assigned a weight of 0. But
they might as well have been assigned any other weight in W d. Clearly the
resulting embedding would still be a contraction. Thus even after fixing a
relative embedding for Li, there is still some freedom left to us in deciding
how to choose weights for the edges in OA

i and OB
i . It turns out that the

randomness stored in the unassigned open edges is sufficient.
We will now show that, after finding a relative embedding for the subtrees

in Li+2, there is still enough randomness left to embed the subtrees in Li
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simply by assigning random weights to the open edges of Li+2. Notice that
this process goes up two levels at a time, from Li+2 to Li, so we will need
to do it twice, once for “even” levels and once for “odd” levels. This will
increase the number of coordinates used by only a factor of 2.

Theorem 2.5 (Embedding trees). Any tree T with growth rate ρ occurs

as a (not necessarily induced) subgraph of Z
O(ρ)
∞ , thus dim(T )=O(ρ).

Proof. We will construct four contractions, ϕA
even,ϕA

odd,ϕB
even,ϕB

odd : V →
Z

O(ρ). Let L0,L1, . . . ,Lk−1 be the levels of the decomposition for T ,
and assume for simplicity that k is odd. Then ϕA

even will separate
Ak−1,Ak−3, . . . ,A0, ϕA

odd will separate Ak−2,Ak−4, . . . ,A1, and ϕB
even and ϕB

odd
will satisfy similar properties for the Bi. It will follow from the discussion
in Section 2.4, that ϕ=ϕA

even⊕ϕA
odd⊕ϕB

even⊕ϕB
odd is a contractive injection,

providing the desired embedding of T into Z
O(ρ)
∞ .

We will construct the map ϕA
even inductively. The other maps are con-

structed similarly. Let h0 and c be the constant from Lemma 2.1 and let k0

be the largest even integer such that h(k0)≥h0. Since the trees in Ak0 have
height at most 3h(k0), and since we may assume without loss of generality
that c≥ log(3h0 +2), Lemma 2.2 yields a relative embedding μk0 :E→W cρ

for which μ∗
k0

separates Ak−1,Ak−3, . . . ,Ak0 .

The inductive step. Now assume that we have a relative embedding μi+2 :
E → W cρ for which μ∗

i+2 separates Ak−1,Ak−3, . . . ,Ai+2. We will show the
existence of a relative embedding μi :E→W cρ which satisfies

1. For all T ∈Ai+2 and all u,v∈V (T ), ‖μ∗
i+2(u)−μ∗

i+2(v)‖=‖μ∗
i (u)−μ∗

i (v)‖;
2. μ∗

i separates Ai.

Since the subtrees of Aj for j ≥ i+2 are all completely nested within the
subtrees of Ai+2 (recall property (4) of Lemma 2.3), the first condition guar-
antees that μ∗

i separates Ak−1,Ak−3, . . . ,Ai+2, since μ∗
i+2 does.

To obtain μi from μi+2, we will only change the edge weights in OA
i+2, i.e.

those running between disjoint subtrees of Ai+2. Condition (1) then follows
immediately. The construction of the relative embedding μi is actually prob-
abilistic; we shall randomly change edge weights in OA

i+2, and show that (2) is
satisfied with positive probability. For every e∈OA

i+2, choose μi(e) uniformly
at random from {−1,+1}cρ. For all other edges e, define μi(e)=μi+2(e).

Let us now show that with positive probability, μ∗
i separates Ai. Fix some

X ∈ Ai and consider two points u,v ∈ V (X) such that d(u,v) ≥ h(i+1) =
h(i)1/2. Let Puv be the unique path from u to v in X. Since Puv has length at
least h(i)1/2 and each subtree of Ai+2 has height at most 3h(i+2)=3h(i)1/4 ,
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Puv must pass through at least 1
3h(i)1/4 such subtrees. In particular, the

path includes at least 1
3h(i)1/4−2 edges from OA

i+2.
Now consider the part of Puv which is composed of edges whose weights

are already fixed (i.e., edges not in OA
i+2). The sum of their weights is fixed,

and the probability that a random walk of length at least 1
3h(i)1/4 − 2

(along open edges) is equal to the negation of any fixed amount is at
most O(h(i))−1/8. This also upper bounds the probability that the images
of u and v (under μ∗

i ) agree in any single coordinate. So the probability of
this occurring in cρ independent coordinates is

Pr[μ∗
i (u) = μ∗

i (v)] = O(h(i))−cρ/8.

Finally, notice that X has height at most 3h(i), and thus contains at most
(3h(i))2ρ pairs of vertices. Since h(i)≥h0 and we may assume that h0 and c
are sufficiently large constants (which are independent of i), the union bound
O(h(i))−cρ/8O(h(i))2ρ <1/2 shows the existence of a map μi with the desired
property in X. Continuing in this way for each disjoint subtree X∈Ai, we
see that with positive probability, μi satisfies condition (2).

By induction, μ∗
0 separates each of Ak−1, . . . ,A0. Setting ϕA

even =μ∗
0 com-

pletes the proof.

2.6. Alteration

We offer two simple lemmas on fixing maps which are sufficiently close to
good embeddings.

Lemma 2.6 (Almost injective embeddings). For a graph G = (V,E),
if there is a contractive map ϕ : V → Z

d which is k-to-1, then there is a
mapping ϕ′ :V →Z

d+�logk� which is contractive and injective.

Proof. To see this, suppose z∈ Im(ϕ) and let ϕ−1(z)1, . . . ,ϕ−1(z)k be the k
possible preimages of z. Now define ϕ′(ϕ−1(z)i)=(ϕ(z),B(i)) where B(i) is
the �logk�-digit binary representation of i−1.

Lemma 2.7 (Almost contractive embeddings). For a graph G =
(V,E), if there is an injective mapping ϕ : V → Z

d which satisfies (u,v) ∈
E =⇒‖ϕ(u)−ϕ(v)‖∞≤k, then there is a mapping ϕ′ :V →Z

d(2+logk) which
is contractive and injective.

Proof. To get ϕ′, split Z
d up into cubes of side length k. Now contract every

such cube to its center, and then scale all the coordinates by a factor of 1/k.
It is easy to see that the resulting map is a contraction, but since each cube
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contained at most kd points, the resulting map is only kd-to-1. Applying
Lemma 2.6, we can get a mapping which is injective and has d+ �log(kd)�
dimensions.

2.7. Graphs without long induced simple cycles

For a graph G, let λ(G) be the length of the longest induced simple cy-
cle in G. We will use Lemmas 2.6 and 2.7 and the following theorem of
Brandstädt, Chepoi, and Dragan [5,6] to prove a result on graphs which
have no long induced simple cycles.

Theorem 2.8 ([6]). For any graph G=(V,E), there exists a tree T =(V,F )
such that

|dG(u, v) − dT (u, v)| = O(λ(G)).(1)

Theorem 2.9. For any graph G, let ρ = ρG,λ = λ(G), then G occurs as a

subgraph of Z
O(ρ log2[λ+2])
∞ .

Proof. Let ρ=ρG, λ=λ(G), and let T be the corresponding tree of Theo-
rem 2.8. First, setting dG(u,v)=1 in (1), we see that edges are stretched in
T by at most O(λ). Secondly, setting dT (u,v)=1 in (1), we see that edges
in T correspond to paths in G of length at most O(λ). It follows that

ρT = sup
x,r

log |BT (x, r)|
log r

≤ sup
x,r

log |BG(x, λr)|
log r

≤ sup
x,r

log(λr)ρ

log r
≤ ρ(1 + log λ).

So we can embed T into O(ρ log(λ+ 2)) dimensions by Theorem 2.5. The
same mapping is also an injective embedding for G that expands edges by
at most O(λ). Applying Lemma 2.7, we arrive at a contractive, injective
embedding of G into O(ρ log2[λ+2]) dimensions.

Corollary 2.10. Conjecture 1 is true for any class of graphs in which λ(G)
is bounded, yielding dim(G) = O(ρ). This class includes trees and chordal
graphs.

3. Expanders

Before we jump into the proof of our main theorem, let us take a moment
to prove a lower bound for expander graphs.
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Definition 3.1 (Expander graphs). An n-vertex graph G = (V,E) will
be called a Θ(k)-degree expander for k = k(n) ≥ 2 if it has the following
properties:

(a) The degree of every vertex is Θ(k).
(b) The diameter of G is O(logk n).
(c) Every two disjoint subsets of n/ logn vertices are connected by a path

of length O(logk logn).

Observe that properties (b) and (c) follow from vertex expansion. Indeed,
let Γ (S) stand for the set of vertices with at least one neighbor in S, and
suppose that for every S⊂V , we have |Γ (S)|≥min{Ω(k|S|), 2

3 |V |}. Hence,
there exists t≤O(logk n), such that every u∈V satisfies |Γ t(u)|≥ 2

3 |V |, and
it follows that the diameter of G is at most 2t = O(logk n). Property (c)
follows similarly.

Consequently, for every 3 ≤ k(n) ≤ logn and every sufficiently large n,
there exists a graph G satisfying properties (a)–(c). An even simpler way to
obtain such a graph G is to take a (standard) 3-regular n-vertex expander H,
and create G on the same vertex set by a connecting two vertices u,v when-
ever dH(u,v) ≤ log3 k. It is easy to satisfy property (a) by iteratively con-
necting by an edge the two vertices of lowest degree. A simple argument as
above shows that the diameter of G is O(logn) and that every two sets of
size n/ logn are connected by a path of length O(log logn). Properties (b)
and (c) now follow from the fact that for very two vertices u,v we have
dG(u,v)≤O(dH (u,v)/ log k).

3.1. A dimension lower bound

Theorem 3.2. Let G = (V,E) be a Θ(log |V |)-degree expander, then
dim(G) = Ω(ρG logρG). In particular, Conjecture 1 is not true (for general
graphs).

Proof. Let G=(V,E) be a Θ(k)-degree expander graph on n vertices (see
Definition 3.1), with 1 ≤ k ≤ logn. It follows from Properties (a) and (b)
that ρG =Θ

( logn
log logk n

)
. We shall show that if G occurs as a subgraph of Z

d∞
then d≥Ω

( logn
1+log logk logn

)
. Note that for k=logn, this implies that dim(G)=

Ω(logn)=Ω(ρG logρG) and this lower bound is tight, up to constant factors,
since the trivial upper bound d=O(logn) holds for any n-vertex graph (by
a bijection into {0,1}�logn�).

Assume for contradiction that G occurs as a subgraph of Z
d∞ with d =

o
( logn

1+log logk logn

)
. Let ϕ be the corresponding embedding of G into Z

d∞, and
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let ϕi be the projection of ϕ on the coordinate i = 1, . . . ,d. Let the set Si

consist of the n/ logn vertices v ∈ V with smallest ϕi(v), and let the set
Li consist of the n/ logn vertices v ∈ V with largest ϕi(v), breaking ties
arbitrarily.

We claim that ϕi(V \ (Si ∪ Li)) is contained in an interval of
size O(logk logn). Indeed, by property (c) above G contains a path of length
O(logk logn) that connects some vertex s∈Si with some vertex l∈Li, and
since ϕ is contractive, ϕi(l)−ϕi(s) ≤ O(logk logn). By the definition of Si

and Li, for every v∈V \(Si∪Li) we have ϕi(s)≤ϕi(v)≤ϕi(l), which proves
the claim.

Finally, the set of vertices V ′ = V \ (∪d
i=1(Si ∪ Li)) contains at least

n − dn/ logn > n/2 vertices. By the above claim, ϕ(V ′) is contained in
a subset of the lattice Z

d formed by the Cartesian product of d inter-
vals of size O(logk logn). However, this subset of Z

d contains at most
(O(logk logn))d ≤ n/2 points, which contradicts the assumption that ϕ is
injective.

3.2. A distortion lower bound

It is well-known that the bandwidth of an expander is Ω(n). The bandwidth
may be seen as the maximum stretch of any edge in an injective embedding
of the graph into Z

1∞, thus embeddings into Z
d∞ provide a generalization

of the bandwidth. We show now that even in much higher dimensions, the
edges of the expander must be stretched by a large factor.

Corollary 3.3. For 1≤k≤ logn, any embedding of an n-vertex Θ(k)-degree

expander G into Z
O(ρG)
∞ stretches at least one edge to length (logn)Ω(1).

Proof. Proceed similar to the proof of Theorem 3.2, with d = O(ρG) =
O

( logn
log logn

)
. Now if every edge is stretched by at most α, then two sets of

n/ logn vertices have their lattice images within distance O(α logk logn) of
each other. It follows that O(α logk logn)O(ρG)≤n/2, and for α=(logn)o(1)

we derive a contradiction.

4. Divide & conquer: Upper bounds from graph decomposition

In this section, we will use the ideas of Section 2 to prove a result on gen-
eral graphs in terms of their decompositions (Theorem 4.2). As an example
application of this general result, we will show that Conjecture 1 holds for
graphs excluding a fixed minor (Section 4.4).
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Outline. At a conceptual level, our embedding method for a general
graph G bears some similarity to the case of trees, although several techni-
cal aspects differ significantly. We cannot, for example, form a coordinate
by assigning edge weights independently at random (the weights along every
cycle would have to sum to 0). Here is an outline of the proof, with simpli-
fied notation and constants. Our first step is to focus on a single “scale” r,
and show a contraction ϕr such that ϕr(u) �=ϕr(v) for every two vertices u,v
with r1/2≤d(u,v)≤r. The construction of ϕr follows a divide and conquer
approach – we decompose the graph into (overlapping) “clusters”, embed
each cluster separately, and then “glue” these embeddings together. The de-
composition guarantees that for every pair u,v as above there exists at least
one cluster C that contains them both, hence it suffices that the embedding
ϕC of this cluster satisfies ϕC(u) �=ϕC(v). The decomposition further guar-
antees that each cluster C has diameter at most rO(1), and then the growth
rate bound implies |C|≤rO(ρG).

One key difference between trees and general graphs is in the “divide”
stage. For trees, we were able to design such a decomposition directly (Sec-
tion 2.3), using only two “layers”, i.e. two partitions of V . When embedding
general graphs, we consider decompositions with more layers, but we must
ensure that the number of layers is bounded by, say, O(1) or O(ρG), since
it affects the dimension of the resulting embedding. Furthermore, for trees
our decompositions were nested (in the sense that finer partitions were re-
finements of coarser ones); for general decompositions we will have to force
this nesting property to hold.

Another key difference is in the “conquer” (or combining) stage. In trees,
it is quite easy to glue embeddings of disjoint subtrees, using the concept of
relative embeddings (Section 2.2). In general graphs, we ensure that embed-
dings of disjoint clusters can be glued together by restricting ourselves to
cluster embeddings in which the “boundary” of the cluster is mapped to the
all-zeros vector. One side effect of this restriction is that for u,v ∈C lying
on or “close” to the boundary of C, we cannot require that ϕC(u) �=ϕC(v).
In addition, to embed a single cluster C, we have to resort to a more sophis-
ticated method, inspired by Rao [21]; roughly speaking, we employ another
decomposition that breaks C into subclusters and map each subcluster in-
dependently at random. This inner decomposition of C into subclusters has
the same requirements as the outer decomposition, but it is applied with a
different parameter, namely – each subcluster’s diameter is less than r1/2.
To show that this embedding of C succeeds with high probability we use a
union bound over the at most |C|2 ≤ rO(ρG) pairs u,v∈C. Notice that the
inner decomposition guarantees, for pairs u,v∈C as above, that ϕC(u) and
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ϕC(v) are independent, while the outer decomposition limits the size of the
subproblem C, enabling the use of a union bound. On top of this, we have
to adapt the technique of conserving randomness (Section 2.5) to this new
embedding method.

Preliminaries. In what follows, let G = (V,E) be a simple graph with
growth rate ρ=ρG. A cluster of G is a simply subset S⊆V , though we will
usually use this terminology in the context of a partition which contains S.

Define the boundary of a cluster S as ∂S = {u ∈ S : ∃(u,v) ∈ E,v /∈ S}.
The boundary of a collection C of clusters is defined as ∂C=∪S∈C∂S. For a
cluster S⊆V and a partition P of V , the induced partition (on the cluster S)
is defined as Q= {C ∩S :C ∈P}\{∅}. As before, let 0= (0,0, . . . ,0) be the
all-zero vector.

For u,v ∈ V let d(u,v) be the distance between u and v in the shortest
path metric of G. We stress that even when a particular cluster S is con-
sidered, d(u,v) denotes the distance in G and not in S. In particular, define
the diameter (sometimes called weak diameter) of S ⊆ V to be diam(S) =
supu,v∈S d(u,v). As usual, for S⊆V we define d(u,S)=infv∈S d(u,v).

The padded decomposition. We first discuss our method of choosing
clusters. For the rest of this section, fix an arbitrary constant α>1. We will
not explicitly state the dependence of other constants on α, but it will be
clear that α=O(1) suffices for our purposes.

Definition 4.1 (The padded decomposition). A set {P1,P2, . . . ,Pm} of
m partitions of V is called an r-padded decomposition of G with m layers if
the following properties are satisfied.

1. If C∈∪m
i=1Pi, then diam(C)≤rα.

2. For every u∈V there exists some C∈∪m
i=1Pi such that B(u,3r)⊆C.

We can now state our main result about embeddings obtained from graph
decompositions. Its proof appears in Section 4.3.

Theorem 4.2 (Embedding via decomposition). Let G be a graph with
ρ=ρG. If for every 4≤r≤diam(G) there exists an r-padded decomposition
of G with m layers, then dim(G)=O(m2ρ).

4.1. Relative embeddings

Suppose we are given a cluster S⊆V . Define a d-dimensional relative embed-
ding of S to be a contraction ϕ :S→Z

d such that ϕ(∂S)=0, i.e. the bound-
ary is mapped to 0. Suppose further that we would like to find a relative em-
bedding of S with the following property (parameterized by r>0): For every
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u,v∈S with d(u,v)>r and such that B(u,3r1/2)⊆S, we have ϕ(u) �=ϕ(v).
In other words, since we are imposing the rather stringent condition that
ϕ(∂S)=0, we only make requirements on vertices that are far enough from
the boundary.

We will produce such an embedding using a technique inspired by the
methods of Rao [21]. Each coordinate is formed by partitioning S into clus-
ters of diameter at most r, so u,v as above must end up in different clusters.
We then define the image of a vertex to be the distance from that vertex to
the boundary of its cluster. To achieve injectiveness with high probability,
we “perturb” the images by randomly contracting each cluster’s boundary
inward.

For ease of notation, we define an r-inner decomposition to be an r1/α-
padded decomposition; in this case, clusters have diam(C)≤ r and vertices
have “padding” of the form B(u,3r1/α). We now show how to use an r-inner
decomposition to produce a good relative embedding.

Lemma 4.3 (Relative embeddings). Suppose that G has an r-inner de-
composition with m layers, and let S⊆V be a cluster with |S|≤rO(ρ). Then
there exists a relative embedding ϕ :S→Z

O(mρ) such that for every u,v∈S
with d(u,v)>r and B(u,3r1/α)⊆S, we have ϕ(u) �=ϕ(v).

Proof. The m partitions produced by the r-inner decomposition induce m
partitions Q1, . . . ,Qm of S (recall the definition of an induced partition). For
each Qj we will construct a map ϕj :S →Z

cαρ, where c>0 is a constant to
be determined later.

Fix some partition Qj and form a single coordinate ϕ0
j :S→Z as follows:

For every C∈Qj, choose some rC ∈ {0,1, . . . ,r1/α} uniformly at random
and let ∂∗

C = {v ∈ C : d(v,∂C) ≤ rC} (this is the boundary of C randomly
contracted inward). Now for each u∈S let Cu∈Qj be the cluster containing
u and define ϕ0

j (u)=d(u,∂∗
Cu

). Recall that d(·, ·) denotes distance in G, and
thus ϕ0

j(u)=max{0,d(u,∂Cu)−rCu}.
Clearly ϕ0

j(u) is a contraction, since (u,v)∈E implies that either u and
v are in the same cluster C∈Qj and then |d(u,∂∗

C)−d(v,∂∗
C )|≤1, or each of

them belongs to the boundary of its cluster and then ϕ0
j (u)=ϕ0

j (v)=0. It is
also clear that u∈∂S implies u∈∂C for some C ∈Qj and hence ϕ0

j (u)=0.
Thus ϕ0

j (∂S)=0.
Now independently form cαρ such coordinates (each time picking fresh

values for the rC) and let ϕj be the direct sum of the resulting maps, where
c > 0 is a sufficiently large constant to be determined later. Finally, set
ϕ=ϕ1⊕·· ·⊕ϕm. From the properties of ϕj , we conclude that ϕ :S→Z

cmρ

is a contraction which maps ∂S to 0, i.e., a relative embedding.
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Consider a pair u,v with d(u,v) > r and such that B(u,3r1/α) ⊆ S. It
follows from property (2) of Definition 4.1 that there exists a partition Qj

of S and a subset C ∈ Qj for which B(u,3r1/α)⊆C. Since d(u,v) > r, the
two vertices u and v must lie in different subsets of Qj. It follows that, in
any single coordinate ϕ0

j of the map ϕj , the value of ϕ0
j (u) is distributed

uniformly over an interval of size r1/α independently of the value ϕ0
j (v),

hence Pr[ϕ0
j (u) = ϕ0

j (v)]≤ r−1/α. Thus the probability that u and v collide
in all cαρ coordinates of ϕj is Pr[ϕj(u) = ϕj(v)] ≤ r−cρ. Since |S|≤rO(ρ),
there are at most rO(2ρ) such pairs u,v, and hence the probability that there
exists a pair that collides is at most rO(2ρ)r−cρ < 1/2, if the constant c is
chosen to be sufficiently large. The existence of a map ϕ satisfying the lemma
follows.

4.2. A first attempt

Here is a simple approach which will fail in the end, but will give some
intuition as to how the padded decomposition will be used. We will use
the padded decomposition (Definition 4.1) to decompose G into layers of
disjoint clusters. Using Section 4.1 we can then find a relative embedding
for each cluster; glueing all these embedding together, we shall arrive at a
good embedding for G. Note that the padded decomposition is being first
to decompose the graph G into clusters which will be separately embedded,
and then inside each cluster to compute a good relative embedding for that
cluster.

Let k = �log logdiam(G)�, and set ri = 22i
for i ∈ {1, . . . ,k}, and r0 =0.

We apply an r-padded decomposition with r = r1, . . . ,rk. For each value
of r, this decomposition will break the graph into clusters of diameter at
most rα such that every two vertices within a distance r are contained
in some such cluster S and are “far” from the boundary of S (as other-
wise we cannot ensure that they are “separated” by the relative embedding
for S).

An embedding for one level. Assume that i > 1. Let {P1,P2, . . . ,Pm}
be the partitions produced by the ri-padded decomposition. We will show
how to construct a contraction ϕi :V →Z

O(m2ρ) that satisfies: For every pair
u,v∈V with ri−1 <d(u,v)≤ri, we have ϕi(u) �=ϕi(v).

Fix a partition Pj of V . For every cluster S ∈ Pj , compute a relative
embedding ψS : S → Z

O(mρ) by applying Lemma 4.3 with the parameter r

set to ri−1 =r
1/2
i ≥2. Note that the lemma is applicable since diam(S)≤rα

i
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implies |S|≤rαρ
i =r

O(ρ)
i−1 . Now for every u∈V , set ϕij(u)=ψS(u) where S∈Pj

is the cluster containing u. Notice that this map is well-defined since Pj is a
partition of V . Also, notice that it is a contraction, for suppose (u,v)∈E. If u
and v are in the same cluster S, then ‖ϕij(u)−ϕij(v)‖=‖ψS(u)−ψS(v)‖≤1
since ψS is a relative embedding, and hence a contraction. If u and v are in
different clusters, then ϕij(u)=ϕij(v)=0 since both of u and v are on the
boundary of their cluster. Finally, set ϕi =ϕi1⊕·· ·⊕ϕim.

Now consider some u,v ∈ V with ri−1 < d(u,v) ≤ ri. By property (2)
of Definition 4.1, there exists some partition Pj and a cluster S ∈ Pj

such that B(u,3ri) ⊆ S. Thus u,v∈S, and certainly B(u,3r1/α
i−1) ⊆ S,

so by Lemma 4.3, ψS(u) �= ψS(v). It follows that ϕij(u) �=ϕij(v), and
hence ϕi(u) �=ϕi(v).

The base case. For r = r1 = O(1), we will construct ϕ1 in a special
way so that for all u,v ∈ V with 0 < d(u,v) ≤ r1 we have ϕ1(u) �=ϕ1(v).
We break G into clusters using an r1-padded decomposition as above, but
then revert to a much simpler relative embedding technique: Given a clus-
ter S = {v1,v2, . . . ,vs} with diam(S)≤rα

1 , define the relative embedding
ψS(vi)= B(i) if vi /∈∂S and ψS(vi)=0 otherwise, where B(i) is the binary
representation of i as an O(ρ)-dimensional vector. Notice that the number
of coordinates meets our needs, since s= |S|≤rαρ

1 ≤2O(ρ). This map is a con-
traction and satisfies ψS(u) �=ψS(v) whenever u,v /∈∂S. Using this technique
in the above argument (instead of Lemma 4.3) yields the desired map ϕ1.
In fact, this map uses only O(mρ) coordinates, so we append 0’s to every
image and extend it to O(m2ρ) coordinates.

Putting it all together. If we let ϕ=ϕ1⊕ϕ2⊕·· ·⊕ϕk, we see that ϕ is a
contractive, injective embedding since for any distinct u,v∈V , the distance
d(u,v) falls into some range rj−1 <d(u,v)≤ri and thus ϕj(u) �=ϕj(v).

Assuming that for every r≥4 we can construct r-padded decompositions
with m layers, then each ϕij (which we obtained by applying Lemma 4.3)
uses O(mρ) coordinates, and thus each ϕi uses O(m2ρ) coordinates. It fol-
lows that the final embedding ϕ uses O(m2ρ log logdiam(G)) coordinates in
all. It turns out that this bound is of the right form, except for the depen-
dence on diam(G), so our next goal will be to eliminate this term. In the case
of trees, we achieved this goal by exploiting some “untapped randomness”,
namely, after fixing a relative embedding for a level, we were still free to
assign arbitrary weights to the open edges of that level. In the next section,
we exploit a similar observation, namely that the boundary of a cluster need
not be mapped to 0, because the edges running between clusters are still
“open.”
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4.3. Forced nesting, contracted clusters, and untapped
randomness

We improve over the preceding failed attempt by reusing the coordinates
when proceeding inductively from finer partitions to coarser ones. Infor-
mally, the main idea is to consider every cluster of the finer partition as a
single entity whose embedding is “rigid”, achieved by contracting each such
cluster into a single vertex. For this approach to work, we need the padded
decompositions to be nested, achieved by a “forced nesting” technique. We
introduce these two notions and then prove Theorem 4.2.

Contracted clusters. Suppose we have a relative embedding ψC for each
cluster C in a partition P . Previously, we “glued” these embeddings by
setting Ψ(u)= ψC(u) where C ∈P is the cluster containing u. This yielded
a contraction Ψ defined on all of V with the property that whenever u,v
belong to the same cluster C∈P , we have ‖Ψ(u)−Ψ(v)‖=‖ψC (u)−ψC(v)‖.
The following gives a simple way of maintaining this property, while allowing
some freedom in choosing Ψ .

Definition 4.4 (Contracted graph). Let P be a partition of V . The
contracted graph (with respect to P ) is the graph Ĝ=(V̂ , Ê) obtained from G
by contracting, in the graph-theoretic sense, each cluster C ∈P to a single
vertex.

Each cluster C∈P corresponds to a vertex in Ĝ, and vice versa. Hence,
we may identify V̂ = P and then Ê = {(C1,C2) : ∃(u1,u2) ∈ E,u1 ∈ C1 ∈
P,u2∈C2∈P}. We let dĜ(·, ·) be the shortest path metric in the contracted
graph Ĝ, and BĜ(·, ·) be a closed ball in Ĝ. We shall keep using d(·, ·) and
B(·, ·) when referring to the corresponding notions in the given graph G.
A cluster Ŝ in Ĝ and its boundary ∂Ŝ are defined similarly to those in G.

Lemma 4.5. Let Ĝ = (V̂ , Ê) be the contracted graph with respect to a
partition P of V . Suppose that for each cluster C ∈ P we have a relative
embedding ψC :C→Z

d, and suppose that we have a contraction ψ̂ : V̂ →Z
d.

For every u∈V , define the map Ψ :V →Z
d as follows: Ψ(u)= ψ̂(Cu)+ψCu(u),

where Cu ∈ P is the cluster containing u. Then Ψ is a contraction and for
all u,v in the same cluster C∈P , we have ‖Ψ(u)−Ψ(v)‖=‖ψC (u)−ψC(v)‖.
Proof. By definition, for all u,v ∈C and C ∈P , we have ‖ψ(u)−ψ(v)‖ =
‖ψC(u)−ψC(v)‖. In particular, ψ contracts every edge whose endpoints are
in the same cluster C. For (u,v)∈E where u,v are in different clusters of P ,
we have ‖ψ(u)−ψ(v)‖ = ‖ψ̂(Cu)− ψ̂(Cv)‖ ≤ 1 because ψP is a contraction
and (u,v)∈E implies (Cu,Cv)∈ Ê.
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Forced nesting. Given two partitions P and Q of V , we say that P is a
refinement of Q if for all C ∈ P and there exists S ∈ Q such that C⊆S.
It turns out that we can force such a nesting and remove only a negligible
amount of padding.

Lemma 4.6. Let P={P1, . . . ,Pm} be an r-padded decomposition of G, and
P̃ = {P̃1, . . . , P̃m} be an r̃-padded decomposition of G, where r≥ r̃α. Then
we can modify P so that, for every j ∈ {1, . . . ,m}, the partition Pj is a

refinement of P̃j, with only a constant factor loss in the padding guarantee
of Definition 4.1, namely condition (2) is replaced with:

(2’) For every u∈V there exists some C∈∪m
i=1Pi such that B(u,2r)⊆C.

Proof. Whenever a cluster C∈Pj contains only a portion of a cluster C ′∈ P̃j

(i.e. ∅ �= C ∩C ′ �= C ′), modify Pj by breaking C into the cluster C \C ′ and
a singleton cluster {u} for every u ∈ C ∩C ′. This process is continued (in
an arbitrary order) until there is no such cluster C. When this happens, for
every j∈{1, . . . ,m}, the partition P̃j is a refinement of Pj , as desired.

Notice that condition (1) of Definition 4.1 remains satisfied since each
modification only decreases the diameter of clusters in Pj . Condition (2)
is still satisfied if we replace B(u,3r) by B(u,3r − r̃α) ⊇ B(u,2r), which
completes the proof.

We are now ready to prove Theorem 4.2. Here is a brief outline: We shall
construct relative embeddings from the bottom up, i.e., proceeding induc-
tively from finer partitions to coarser partitions. Once we find an embedding
that is “good” for level j, we modify it so that it becomes good also for
level j− t, for some constant t. This modification will involve constructing
a random embedding of the contracted graph (essentially via Lemma 4.3)
and combining it with the existing embedding (using Lemma 4.5). Repeat-
ing this t=O(1) times, starting at levels 1,2, . . . , t, respectively, will yield an
embedding that uses only O(tm2ρ)=O(m2ρ) coordinates.

Proof of Theorem 4.2 (Embedding via decomposition). Suppose
that for every 4 ≤ r ≤ diam(G), and every cluster S⊆V , there exists an
r-padded decomposition of S with m layers. Let α > 1 be the constant
from Definition 4.1. As before, define k = �log logdiam(G)�, ri = 22i

for
i ∈ {1, . . . ,k}, and r0 = 0. For every i ∈ {1, . . . ,k} let Pi = {P i

1, . . . ,P
i
m} be

the ri-padded decomposition of G. Let t = t(α) be a positive integer to be
chosen later (e.g., t≥α3 suffices assuming α≥2).

We first make sure that this series of decompositions P1, . . . ,Pk is nested.
Iteratively, for i= t+1, t+2, . . . ,k, apply Lemma 4.6 to the padded decompo-
sitions Pi and Pi−t. Thereafter, for every j∈{1, . . . ,m}, the partition P i−t

j is
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a refinement of P i
j with only a constant factor loss in the padding guarantee

(which will be sufficient for what follows).

Definition 4.7 (A separating map). We say that ϕ : V →Z
d separates

a partition P i
j if, for all u,v ∈V such that ri−1 < d(u,v)≤ ri and such that

there is a cluster S∈P i
j with B(u,2ri)⊆S, we have ϕ(u) �=ϕ(v).

To prove the theorem it suffices to construct, for each j∈{1, . . . ,m} and
each i0∈{1, . . . , t}, a contractive map ϕi0,j :V →Z

O(mρ) that separates every
partition P i

j for which i≡ i0 (mod t). Indeed, the direct sum ϕ=
⊕

i0,j ϕi0,j

is a contractive embedding of G into the O(tm2ρ)-dimensional lattice, which
separates every P j

i and is thus injective. Since t is a constant, it would follow
that dim(G)=O(m2ρ).

Fixing j ∈ {1, . . . ,m} and i0 ∈ {1, . . . , t}, it remains to construct only
the map ϕi0,j satisfying the stated properties. We shall actually prove, by
induction on i, a more general assertion: If c = c(t,α) is a sufficiently large
constant, then for every i ∈ {1, . . . ,k} with i ≡ i0 (mod t), there exists a
contractive map ψi :V →Z

cmρ such that

i. ψi separates each of P i0
j ,P i0+t

j , . . . ,P i
j , and

ii. the restriction of ψi to any cluster C∈P i
j is a relative embedding of C.

The base case. For i= i0 we have ri0 ≤rt =O(1), and thus we can use the
base case from Section 4.2 to generate a map ψi0 that separates P i0

j . This
map need only use O(ρ) coordinates, since we have only a single partition
P i0

j at hand rather than m partitions, but we can extend the map to use
cmρ coordinates by appending 0’s to every image.

The inductive step. Suppose we have a contractive map ψi which satisfies
properties (i) and (ii), and let us construct ψi+t using Lemma 4.5. Define
Ĝ = (V̂ , Ê) as the contracted graph of G with respect to the partition P i

j .
For every cluster C∈P i

j , let ψC : C → Z
cmρ be the restriction of ψi to C;

by the induction hypothesis, ψC is a relative embedding of C. It remains to
define an embedding ψ̂ : V̂ →Z

cmρ, and then we can let ψi+t :V →Z
cmρ be

the map yielded by Lemma 4.5.
Since V̂ =P i

j is a refinement of P i+t
j , the latter naturally yields a partition

P̂ i+t
j of V̂ , as follows. With every cluster S ∈ P i+t

j we associate a cluster
Ŝ ={C ∈ V̂ :C ⊆S} in Ĝ. It is then easy to verify that P̂ i+t

j ={Ŝ :S ∈P i+t
j }

is a partition of V̂ .
Below, we shall define the mapping ψ̂ on a single cluster Ŝ∈ P̂ i+t

j in Ĝ. By
construction, ψ̂ will be a relative embedding of that cluster Ŝ (with respect
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to Ĝ) i.e. ψ̂(∂Ŝ)=0, and thus the resulting embedding will necessarily be a
contractive embedding of the entire V̂ . In fact, we shall define ψ̂ on each Ŝ
randomly.

Fix a cluster S ∈ P i+t
j and the corresponding Ŝ ∈ P̂ i+t

j . Now construct

an “inner decomposition” for Ŝ, as follows: Take an m-layer r
1/α
i+t -inner de-

composition of G (note that r
1/α2

i+t ≥ 4), and force P i
j to be a refinement of

each layer of this inner decomposition using Lemma 4.6. The forced nesting
procedure is applicable because r

1/α2

i+t ≥rα
i . This procedure modifies only the

inner decomposition (and not P i
j ), changing its padding guarantee to 2r1/α2

i+t .
Each layer of the inner decomposition is a partition of V , and hence induces
a partition of S. Denote these m partitions of S by Q1, . . . ,Qm. Since P i

j is
a refinement of the inner decomposition, each partition Ql of S naturally
yields a partition of Ŝ which we shall denote by Q̂l. (This is similar to the
way P̂ i+t

j was defined.)
We generate the map ψ̂ : Ŝ → Z

cαmρ in a random fashion, using an
argument similar to Lemma 4.31. Fix a partition Ql and form a single co-
ordinate f : Ŝ → Z randomly as follows: For every C ∈ Q̂l choose a value
rC ∈ {0,1, . . . ,ri} uniformly at random and let f(w) = max{0,dĜ(w,∂Q̂l)}.
Now independently form cαρ such coordinates (each time picking fresh val-
ues for the rC), and let ψ̂l : Ŝ→Z

cαρ be the direct sum of the resulting maps.
We apply the above to every partition Ql and set ψ̂= ψ̂1

⊕ · · ·⊕ ψ̂m.
Notice that once ψ̂ is defined on Ŝ, the map ψi+t yielded by Lemma 4.5

is defined on S. Since the former map is constructed in a random fashion,
the latter mapping is randomized as well. The next two lemmas analyze this
randomized embedding of S.

Claim 4.8. Fix S ∈ P i+t
j . Then ψi+t : S → Z

cαmρ is a relative embedding
of S.

Proof. Let us first show that ψ̂ : Ŝ→Z
cαρ is a relative embedding of Ŝ (with

respect to Ĝ). Indeed, it is easy to see that every coordinate f generated
as above using some partition Q̂l is a contraction, and that for every vertex
w∈ ∂Ŝ, we have w ∈ ∂Q̂l and hence f(w)=0. It follows that ψ̂, which is a
direct sum of such maps f , is a relative embedding of Ŝ.

Now consider ψi+t; we know it is a contraction from Lemma 4.5, so we
only need to show that ψi+t(∂S) = 0. Fix u ∈ ∂S and let Cu ∈ P i

j be the

1 Applying this lemma directly to Ŝ would generate ψ̂ such that ψ̂(C) �= ψ̂(C′) for certain
C,C′∈ V̂ , but it does not guarantee that as a result ψi+t(u) �=ψi+t(v) for suitable u∈C,
v∈C′.
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cluster containing u. Then u∈∂Cu (recall that Cu⊆S) and thus ψCu(u)=0.
It also follows that Cu∈∂Ŝ, and hence ψ̂(Cu)=0. By definition, ψi+t(u)=
ψ̂(Cu)+ψCu(u)=0, which proves the claim.

Claim 4.9. Fix S∈P i+t
j . Then with probability at least 1/2, for all u,v∈S

with ri+t−1 < d(u,v) ≤ ri+t and with B(u,2ri+t) ⊆ S, we have ψi+t(u) �=
ψi+t(v).

Proof. Fix u,v ∈ S with ri+t−1 < d(u,v) ≤ ri+t and B(u,2ri+t) ⊆ S. Let
Cu ∈ P i

j be the cluster containing u, and let Cv ∈ P i
j be similarly for v.

Clearly, u,v ∈ S ∈ P i+t
j ; recalling that P i

j is a refinement of P i+t
j we get

that Cu,Cv ∈ Ŝ.
The ball B = B(u,2r1/α2

i+t ) is contained in some cluster of the inner de-
composition, even after the forced nesting with P i

j . By the above, B⊆S and
thus B is entirely contained also in some cluster of some partition Ql of S.
Since clusters in P i

j have diameter at most rα (in G), we have:

(a) ri+t−1/r
α
i <dĜ(Cu,Cv)≤ri+t,

(b) BĜ(Cu,2r1/α2

i+t /rα
i ) is entirely contained in some cluster of Q̂l.

Now consider ψ̂l(Cu) and ψ̂l(Cv). Clusters in Q̂l have diameter (in Ĝ) at most
r
1/α
i+t ≤ ri+t−1/r

α
i , so (a) implies that Cu and Cv reside in different clusters

of Q̂l. This, in conjunction with (b) (and because 2r1/α2

i+t /rα
i ≥ ri), implies

that each coordinate of ψ̂l(Cu) is distributed uniformly over an interval of
size ri, independently of the corresponding coordinate in ψ̂(Cv). Recalling
that ψ̂ = ψ̂1

⊕ · · ·⊕ ψ̂m, ψi+t(u) = ψi(u) + ψ̂(Cu), and ψi+t(v) = ψi(v) +
ψ̂(Cv), we get that each of at least cαρ coordinates of ψi+t(u) is distributed
uniformly over an interval of size ri, independently of the corresponding
coordinate in ψi+t(v). Therefore,

Pr
[
ψi+t(u) = ψi+t(v)

] ≤ r−cαρ
i .

The number of pairs u,v ∈ S is at most |S|2 ≤ (rα
i+t)

2ρ = r2t+1αρ
i , the claim

follows via a union bound if only we choose the constant c≥2t+2.

As mentioned before, we use the preceding claim to construct for every
S∈P i+t

j a map ψ̂ : Ŝ→Z
O(mρ). This collection of maps gives an embedding

ψ̂ : V̂ → Z
O(mρ), and using Lemma 4.5 we produce from it an embedding

ψi+t : V →Z
O(mρ) that satisfies the induction hypothesis for i+ t, and this

completes the proof of Theorem 4.2.
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4.4. Graphs excluding a fixed minor

Let G be a graph that excludes a Ks,s minor for some fixed s. By adapting
a decomposition technique of Klein, Plotkin, and Rao [14] we construct, for
any value r ≥ 1, an r-padded decomposition of G with only O(2s) layers.
Applying Theorem 4.2, we then arrive at the main result of this section.

Theorem 4.10 (Excluded minor families). Conjecture 1 is true for
any family of graphs that excludes a fixed minor. For such graphs,
dim(G)=O(ρG).

Proof. By Theorem 4.2 it suffices to show how to produce an r-padded
decomposition with m=2s layers for any graph that excludes a Ks,s minor,
as this implies that dim(G)≤O(4sρG).

To this end, consider such a graph G = (V,E) and fix a value r. First,
construct a Breadth-First-Search (BFS) tree from an arbitrary vertex v∈V ,
and compute for every vertex its BFS level (i.e., its distance from v). Then
cut the tree every 12r BFS levels by removing any edge connecting a vertex
of BFS-level j to a vertex of BFS-level j+1 for any j≡0 (mod 12r). Let C0

denote the resulting set of connected components of G. Next, take another
copy of G and cut it similarly but starting from BFS level 6r, i.e., remove
any edge connecting a vertex of BFS-level j to a vertex of BFS-level j +1
for any j ≡ 6r (mod 12r). Let C1 denote the resulting set of connected
components of G. Now for each Ci, apply the same procedure on all the
connected components in Ci, namely, choose an arbitrary vertex, construct
a BFS tree, and form two sets of connected components Ci0 and Ci1 by
making the cuts as above (staggered, each at intervals of size 12r). Repeat
this process s times and let Cq for q ∈ {0,1}s denote the 2s final sets of
connected components. From [14] we know that every connected component
in every final Cq has diameter at most O(r). In addition, for every vertex
u the entire ball B(u,3r) is uncut in at least one final set Cq, because each
step performs two different sets of “staggered” cuts, at least one of which
must avoid the entire ball B(u,3r).

5. A general dimension upper bound

In this section we give a tight upper bound on the dimension of general
graphs: dim(G) = O(ρG logρG) for any graph G. (In Section 3, we showed
that this upper bound is met by expanders.) First, we devise a decomposition
for growth-restricted metrics (Section 5.1) and use Theorem 4.2 to obtain a
weaker upper bound of O(ρ3

G) (Section 5.2). Then, by combining the previous
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arguments more carefully and utilizing some Chernoff-type tail bounds, we
obtain the aforementioned tight upper bound (Section 5.3). We shall use
some terminology from Section 5.2.

5.1. Partitioning of growth-restricted graphs

Linial and Saks [17] and Bartal [3] show that for any graph G = (V,E)
and 1 ≤ r ≤ diam(G), there exists a probabilistic partitioning of G into
disjoint clusters of diameter at most O(r ln |V |), such that for any pair of
vertices u,v∈V , the probability that u and v end up in different clusters is at
most d(u,v)/r. Let ρ=ρG. In this section, we give a similar decomposition,
but we replace the diameter bound of O(r ln |V |) with a bound that is inde-
pendent of |V |, namely O(ρr lnr), for any r≥ρ. Our partitioning method is
similar to those of [17] and [3], but different in a subtle and crucial way: It
is local. Events which are sufficiently far apart are mutually independent.

First, take the continuous exponential distribution with mean r>0, trun-
cate it at some value M >0 and rescale the remaining density function. The
resulting distribution, which we denote Texp(r,M), has density function
p(z)= eM/r

r(eM/r−1)
e−z/r for z∈(0,M).

The partitioning procedure. Let V = {v1,v2, . . . ,vn} and let r≥ρ. For
each vt∈V , choose independently a radius rt according to the distribution
Texp(r,8ρr ln r). Now define St =B(vt,rt)\∪t−1

i=1B(vi,ri) as the set of vertices
v for which B(vt,rt) is the first ball containing v. Finally, define the set of
clusters to be C={S1, . . . ,Sn}.

It is easy to see that C is a partition of V , and that the (weak) diameter of
every cluster C∈C is bounded by diam(C)≤16ρr lnr. Further analysis will
require the following simple facts. In particular, (3) shows that if M ≥2r,
the truncated exponential distribution is “almost” memoryless.

Fact 5.1. Consider a random variable R∼Texp(r,M) for M ≥2r>0. Then:

1. For all β≥0, Pr[R≥β]≤2e−β/r.
2. For all β≥0, Pr[R≤β]≤2(1−e−β/r)≤2β/r.
3. For all β≥0 and R0≤M/2, Pr[R≤R0 +β |R≥R0]≤2β/r.

For a vertex u ∈ V and x ≥ 0, let Ex
u be the event that B(u,x) is split

between multiple clusters, i.e., that no cluster C∈C fully contains B(u,x).

Lemma 5.2. Let u∈V and r≥16ρ, and x≥0. Then Pr[Ex
u ]≤10x/r.
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Proof. Assume x≤ r (the theorem says nothing for larger x) and let B =
B(u,x), Bt = B(vt,rt). Let us say that the ball B is cut by the ball Bt if
∅ �= St ∩B �= B while for all i<t, Si ∩B = ∅. Ex

u is precisely the event that
there is a ball Bt that cuts B. Let us separate these balls Bt into two classes,
depending on the distance from vt to u. Define Efar to be the event that there
exists Bt that cuts B and d(vt,u)≥4ρr lnr. Define Enear to be the event that
there exists Bt that cuts B and d(vt,u)<4ρr lnr.

Fix vt with d(vt,u)≥4ρr lnr and notice that by Fact 5.1,

Pr[Bt cuts B] ≤ Pr[rt ≥ 4ρr ln r − x] ≤ 2r−4ρex/r ≤ 6r−4ρ.

But the number of such vt for which Bt can possibly cut B is at most
the number of vertices in a ball of radius 8ρr lnr + x ≤ r3 which is at
most r3ρ. Taking a union bound over all such possible vt, we see that
Pr[Efar]≤ 6r−4ρr3ρ ≤ 6/rρ ≤ 6/r. Thus we are left only to bound the proba-
bility of Enear.

Let the random variable T be the minimum t such that BT ∩ B �= ∅
(note that possibly vT ∈B). The ball BT can either cut B (in which case
Ex

u occurs) or contain B (and then B ⊆ ST is not cut by any ball Bt). By
the principle of deferred decision it suffices to upper bound the conditional
probability Pr[Enear|T = t] for an arbitrary t. To this end, we may assume
that d(vt,u) ≤ 4ρr lnr (as otherwise this conditional probability is 0) and
then Enear happens if and only if Bt cuts B, which in turn happens only if
rt≤d(vt,u)+x. Hence,

Pr[Enear |T = t] ≤ Pr
[
rt ≤ d(vt, u) + x | rt ≥ d(vt, u) − x

] ≤ 4x
r

,

where we have used Fact 5.1 in conjunction with d(vt,u) ≤ 4ρr lnr. Thus,
Pr[Enear] =

∑
t Pr[T = t] · Pr[Enear|T = t] ≤ 4x/r and Pr[Ex

u ] ≤ Pr[Enear] +
Pr[Efar]≤10x/r.

5.2. Layered decomposition of growth-restricted graphs

Now we describe how to obtain an r-padded decomposition with O(ρG) lay-
ers for general graphs G. Plugging these values into Theorem 4.2 yields an
embedding into O(ρ3

G) dimensions. We will only be able to show the exis-
tence of such decompositions under the assumption that r≥ρ. In the case
where r≤16ρ, clusters of diameter rO(1) have at most ρO(ρ) points, so we
will be able to embed these by brute force using only O(ρ logρ) dimensions
(similar to the base case of Section 4.2). The final result appears in Theo-
rem 5.5.
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Theorem 5.3 (Decomposition theorem). For every graph G = (V,E)
and every r≥16ρG, there exists an r-padded decomposition with m=O(ρG)
layers.

Proof. Let ρ = ρG and assume r ≥ 16ρ. To produce a single layer of the
decomposition (a partition of V into clusters), we will use the procedure of
Section 5.1, with the parameter r (in that procedure and in Lemma 5.2) set
to r2. Notice that the clusters produced have diameter at most 32ρr2 lnr≤r4.
For a vertex v∈V , let Ev be the event that the ball of radius 3r about v is
cut (i.e., split amongst two or more clusters). From Lemma 5.2, we know
that Pr[Ev]≤3/r.

Now produce m layers independently (with fresh random coins each time)
and let Em

v be the event that the ball of radius 3r about v is cut in every
layer. Clearly Pr[Em

v ]≤(3/r)m. We would like to say that Pr
[∧

v∈V Em
v

]
>0.

If we could show this with m=O(ρ), the theorem would follow. And indeed,
this is our goal. We will employ the following symmetric form of the Lovász
Local Lemma, see e.g. [1].

Lemma 5.4 (Lovász Local Lemma). Let A1, . . . ,An be events in an arbi-
trary probability space. Suppose that for each Ai there is a set that contains
all but at most d of the other events Aj , such that Ai is mutually inde-
pendent of this set of events. If for all i∈{1, . . . ,n} we have Pr[Ai]≤p, and
ep(d+1)≤1, then Pr[∧n

i=1Ai]>0.

Let r1 =2r3 lnr+6r. An event Em
u is mutually independent of all events Em

v

for which d(u,v)>r1 because every ball in the partitioning of Section 5.1 has
radius at most r3 lnr and thus cannot intersect both B(u,3r) and B(v,3r).
It follows that Em

u is mutually independent of the set of all events Em
v except

those for which v∈B(u,r1), and there are at most d = rρ
1 such vertices v.

Thus if Pr[Em
u ]≤1/e(d+1), we can apply the local lemma and the theorem

is proved. But this is easily accomplished by choosing say m=�8ρ�. By ap-
plying Lemma 5.4 we conclude that there exists an r-padded decomposition
for V (with α=4).

Theorem 5.5. For every graph G with growth rate ρG, dim(G)=O(ρ3
G).

Proof (sketch). We provide only a sketch of the proof, since a better
upper bound is given in the next section. We use the proof of Theorem 4.2,
except that instead of the induction’s base case being r = O(1), we start
with a level corresponding to r=ρO(1). In this case, clusters have diameter
rO(1) = ρO(1), so we can easily give a relative embedding for each cluster
using only O(ρ logρ) coordinates, similar to the base case of 4.2. The rest
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of the proof then proceeds unchanged, including the inductive step in which
we use the decomposition provided by Theorem 5.3.

Remark: Algorithmiziation of the Local Lemma. Although most of
the techniques in this paper can easily be interpreted algorithmically, this
is not immediately obvious for our use of the local lemma. Fortunately, it is
not difficult to see that standard techniques suffice (see, e.g., [1, Chapter 5]).

5.3. A tight upper bound

As mentioned previously, Theorem 5.3, combined with Theorem 4.2, shows
that dim(G)=O(ρ3

G) for every graph G. By carefully combining the previous
arguments and utilizing some Chernoff-type tail bounds, we are able to find
a tight upper bound, dim(G)=O(ρG logρG); see Theorem 5.8 below.

We first strengthen the decomposition of Theorem 5.3. Given m layers
(partitions of V ) P1,P2, . . . ,Pm, we say that a vertex u ∈ V is padded in a
layer j if there exists a cluster C∈Pj such that B(u,3r)⊆C (otherwise, we
say that u is unpadded in layer j). We next show a decomposition in which
every vertex is padded in most of the layers (rather than in one layer).

Theorem 5.6 (Strengthened decomposition theorem). For every
graph G = (V,E) and every r≥36ρG, there exists an r-padded decompo-
sition with m=O(ρG) layers, in which:

(2”) For every u ∈ V there are 3
4m partitions Pj in which there is C ∈ Pj

with B(u,3r)⊆C.

Proof. Similar to the proof of Theorem 5.3, we construct m=O(ρG) layers
of randomized partitions that always satisfy requirement (1), and argue that,
with positive probability, requirement (2”) is satisfied. The probability that
u is unpadded in a single layer is at most 3/r (this followed from Lemma 5.2),
so the expected number of layers in which u is unpadded is at most 3m/r. We
now need the following Chernoff-type tail bound (see, e.g., [20, Chapter 4]).

Lemma 5.7 (A tail bound). Let X1,X2, . . . ,Xn be independent Poisson
trials such that, for 1 ≤ i ≤ n, Pr[Xi = 1] = pi and 0 < pi < 1. Then for
X =

∑
i Xi, μ=E[X], and any δ>0,

Pr[X > (1 + δ)μ] <

(
eδ

(1 + δ)1+δ

)μ

<

(
e

1 + δ

)(1+δ)μ

.
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Let mu be the expected number of layers in which a vertex u is unpadded,
and let Eu be the event that u is unpadded in more than 1

4m layers. Then,
applying the above lemma,

Pr[Eu] = Pr
[
Yu >

r

12
· 3m

r

]
≤ 1

(r/12e)m/4
.

Applying Lemma 5.4 the same way we did in the proof of Theorem 5.3 for
a suitable m=O(ρG), we conclude that Pr

[∧
v∈V Em

v

]
>0.

Theorem 5.8 (Embedding of general graphs). For every graph G =
(V,E) with growth rate ρG, dim(G)=O(ρG logρG).

Proof. We adapt the proof of Theorem 4.2, as follows. First, we use the
strengthened decomposition from Theorem 5.6. Second, we employ a more
careful analysis that exploits the independence of coordinates constructed
from different layers together with the local lemma, instead of applying a
union bound separately in each cluster.

In the sequel, we describe the modifications to that proof. In fact, we will
only show that any one level (in the sense of Section 4.2) can be embedded
into O(ρ logρ) dimensions. Using the nesting techniques of Section 4.3, the
existence of a contractive and injective embedding that uses only O(ρ logρ)
coordinates follows.

Let ρ=ρG. Fix r=22i
and suppose we are given an r-padded decompo-

sition with m=O(ρ) layers P1,P2, . . . ,Pm strengthened as per Theorem 5.6.
We may assume further that m≥ρ, because otherwise we can just duplicate
every layer �ρ/m� times. Let c>0 be a constant to be determined later. We
shall construct, for each cluster S∈Pj, a relative embedding ψS :S→Z

c logρ,
such that for all u,v ∈V with

√
r < d(u,v)≤ r there exist a layer Pj and a

cluster S ∈Pj such that u,v∈S and ψS(u) �=ψS(v). Letting ϕj(u)=ψSu(u)
where Su ∈ Pj is the cluster containing u, and setting ϕ=⊕m

j=1ϕj , we will
conclude that ϕ(u) �= ϕ(v) for all u,v ∈ V with

√
r < d(u,v) ≤ r. As be-

fore, in the base case we shall replace the requirement
√

r<d(u,v)≤r with
0<d(u,v)≤r.

The base case. Assume 16ρ ≤ r ≤ ρO(1) (note that this is where our de-
composition breaks down). We produce, for every cluster S∈Pj, a relative
embedding ψS :S→Z

c logρ as follows: If u /∈∂S, then let ψS(u) be a (c logρ)-
dimensional vector chosen uniformly at random from {0,1}c logρ, and let
ψS(u)=0 otherwise. This ψS is clearly a contraction.

Consider two vertices u,v with 0 < d(u,v) ≤ r and let Pj be a layer in
which u is padded. In this layer, u and v belong to the same cluster S∈Pj
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and u /∈∂S, so Pr[ψS(u) = ψS(v)] ≤ (1
2 )c logρ = ρ−c. Let Eu,v be the event

that, in the resulting embedding ϕ=⊕m
j=1ϕj , we have ϕ(u)=ϕ(v). For this

event to happen, it must be that in every layer in which u is padded, we
have ψS(u)=ψS(v). It then follows that

Pr[Eu,v] = Pr[ϕ(u) = ϕ(v)] ≤ ρ−cm/2 ≤ ρ−cρ/2.

There are Ω(|V |) events Eu,v and we would like to argue that with positive
probability, none of them occur. Again, the local lemma comes to our rescue.
It is not difficult to see that Eu,v is independent of all events Eu′,v′ for which
d(u,u′)>r (because the image of u is chosen independently of the images of
all the corresponding v, u′, and v′). It follows that Eu,v is mutually indepen-
dent of all but at most d= r2ρ ≤ ρO(ρ) other events. Choosing the constant
c to be a large enough relative to the constants in the bound r≤ρO(1), we
see that Pr[Eu,v]≤ρ−cρ/2 ≤1/e(d+1). Thus, applying Lemma 5.4 yields an
embedding for which none of the events Eu,v occur.

Higher levels. Assume r ≥ (16ρ)2. Recall that in Theorem 4.2, for each
layer Pj and each cluster S∈Pj , we produced a random relative embedding
ψS :S →Z

O(m logρ) by constructing (using Lemma 4.3) O(logρ) coordinates
from each layer of an m-layer r1/2-inner decomposition. Here, instead, for
each S ∈ Pj we shall produce a random relative embedding ψS : S → Z

c

(which is of course stronger than using O(logρ) coordinates), by constructing
only c = O(1) coordinates from layer j of the inner decomposition. More
formally, take an m-layer r1/2-inner decomposition of G. Now for each Pj

and each cluster S∈Pj , construct each of the c coordinates of ψS as follows
(this is analogous to Lemma 4.3): Let Qj be the partition of S induced by
layer j of the inner decomposition. For every cluster C∈Qj, choose rC ∈
{0,1, . . . ,r1/2α} uniformly at random. For every u∈S, let Cu∈Qj be the
cluster containing u, and define the image of u to be max{0,d(u,∂Cu)−rCu}.
Clearly, ψS is a relative embedding of S.

Consider two vertices u,v with
√

r <d(u,v)≤ r. Since u is padded in at
least 3

4m layers each decomposition (i.e., the layers {P1, . . . ,Pm} and in the
inner decomposition), we see that for at least 1

2m values of j, the vertex u is
padded both in Pj and in layer j of the inner decomposition. Fix such j, and
let S∈Pj be the cluster containing u. It follows that u,v belong to the same
cluster S∈Pj , but to different clusters of the inner decomposition. Since u
is padded in layer j of the inner decomposition, each coordinate of ψS(u)
is chosen at random from an interval of size at least r−1/2α, independently
of ψS(v), and thus the probability it collides with the corresponding coordi-
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nate of ψS(v) is at most r−1/2α. Hence,

Pr[ϕj(u) = ϕj(v)] = Pr[ψS(u) = ψS(v)] ≤ r−c/2α,

and the embedding ϕ=⊕m
j=1ϕj satisfies Pr[ϕ(u)=ϕ(v)]≤r−cm/4α ≤r−cρ/4α.

Finally, we would like to apply Lemma 5.4 on the events Eu,v ={ϕ(u)=ϕ(v)}
where

√
r<d(u,v)≤r. It can be seen that every event Eu,v is mutually inde-

pendent of all the other events Eu′,v′ but the r2ρ events for which d(u,u′)≤3r
(because every cluster of the inner decomposition is mapped independently).
Hence, for c>0 a sufficiently large constant we can apply Lemma 5.4, which
completes the embedding of a single level.

As mentioned before, the theorem follows by incorporating the nesting
techniques of Section 4.3. It is straightforward to verify the details.

6. Related notions of dimensionality

Theorem 6.1 (Euclidean embeddings). The upper bounds for dim(G)
in Theorems 5.8 and 4.10 hold also for dim2(G).

Proof. Consider a contractive, injective embedding ϕ of G = (V,E) into
Z

d such that for some fixed 0<ε<1, and every two distinct vertices u,v,
their images ϕ(u) and ϕ(v) differ in at least εd coordinates. Our proof of
Theorem 5.8 can be easily modified to yield such an embedding (for some
universal constant ε) by applying appropriate Chernoff bounds when the
coordinates are formed (see the application of Lemma 5.7 in Section 5.3, for
instance). A similar modification to the proof of Theorem 4.10 results with ε
that depends only on the size s of the excluded minor, namely, ε≥Ω(1/4s),
because a modified proof of Theorem 4.2 guarantees that the images of every
two distinct vertices are different in Ω(ρ), out of the O(m2ρ), coordinates.

After scaling ϕ by (εd)−
1
2 , this embedding satisfies:

1. ‖ϕ(u)−ϕ(v)‖2 ≥1 for all u �=v∈V ; and
2. ‖ϕ(u)−ϕ(v)‖2 ≤1/

√
ε for all (u,v)∈E.

We now show that, for every fixed 0 < ν < 1, the constant 1/
√

ε can be
reduced to (1+ν)3 for an arbitrarily small constant ν >0, while increasing
the dimension d only to O(d), where the hidden constant depends only
on ε and ν. Let K = K(ε,ν) ≥ 1/

√
ε be determined later. For x ∈ R

d, let
B2(x,r)= {y ∈R

d : ‖x−y‖2 <r}. Since, for every distinct u,v∈V , the balls
B2(ϕ(u), 1

2) and B2(ϕ(v), 1
2 ) are disjoint, simple volume arguments show

that, for all u∈V , |{v∈V :‖ϕ(v)−ϕ(u)‖2≤2K}|≤(c1K)d, where c1 >0 is a
universal constant (constant independent of ε and ν).
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We claim that there exists a map β : V → R
c2d, where c2 =c2(K,ν),

satisfying

(∗) 1≤‖β(u)−β(v)‖2 ≤1+ν for u �=v∈V with ‖ϕ(u)−ϕ(v)‖2 ≤K.

Assuming the existence of such a map β, we arrive at our final map γ :V →
R

O(d) defined by the direct sum γ= 1
K ϕ⊕β, which satisfies

(1’) ‖γ(u)−γ(v)‖2 ≥1 for all u �=v∈V ; and
(2’) ‖γ(u)−γ(v)‖2 ≤

√
1/K2ε+(1+ν)2 for all (u,v)∈E.

Choosing K(ε,ν) to be sufficiently large, say K =1/
√

εν, we see that the
bound in (2’) is at most (1+ν)3.

It remains now to prove the existence of such β. Let c2 = c2(K,ν) be
determined later. We define β(u) to be a random vector in R

c2d, where each
coordinate is chosen to be 0 or 1 uniformly at random. We argue that if c2

is large enough, then with positive probability, the required condition (∗)
holds, up to scaling, and this will complete the proof.

Let Yuv be the number of coordinates in which β(u) and β(v) disagree.
Clearly E[Yuv] = 1

2c2d. Furthermore, by standard Chernoff bounds, there
exists c3 =c3(ν)>0 such that

Pr
[
Yuv <

1
1 + ν

E[Yuv] or Yuv > (1 + ν) E[Yuv]
]
≤ e−c3c2d.

Let Eu be the event that there exists some ϕ(v) ∈ B2(ϕ(u),K), for which
either Yuv < 1

1+ν E[Yuv] or Yuv > (1 + ν)E[Yuv]. Since |{v ∈ V : ‖ϕ(v) −
ϕ(u)‖2 ≤K}| ≤ (c1K)d, we can choose c2 to be large enough so that (by a
union bound) Pr[Eu]≤e−c3c2d/2. Finally, note that each event Eu is mutually
independent of all events Ev for which ϕ(v) /∈B2(ϕ(u),2K). The number of
such events is again at most (c1K)d, and hence choosing c2 > 0 to be large
enough and applying the local lemma (Lemma 5.4), we see that, with positive

probability, no event Eu occurs. In this case, the map β satisfies
√

1
1+ν c2d/2≤

‖β(u)− β(v)‖2 ≤ √
(1+ν)c2d/2 whenever u �= v and ‖ϕ(u)−ϕ(v)‖2 ≤ K.

Scaling this map proves the existence of the required β and completes the
proof of the theorem.

Theorem 6.2. If G = (V,E) is a Θ(k)-degree expander with 1 ≤ k ≤
log |V |, then dim2(G) = Ω

( log |V |
log logk log |V |

)
. For a Θ(log |V |)-degree expander,

dim2(G)=Ω(ρG logρG).

Proof. Similar to that of Theorem 3.2.
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