ON THE CHROMATIC NUMBER OF PENTAGON-FREE GRAPHS OF LARGE MINIMUM DEGREE

[CARSTEN THOMASSEN](#page-2-0)

Received September 3, 2002

We prove that, for each fixed real number $c > 0$, the pentagon-free graphs of minimum degree at least cn (where n is the number of vertices) have bounded chromatic number. This problem was raised by Erdős and Simonovits in 1973. A similar result holds for any other fixed odd cycle, except the triangle for which there is no such result for $c < 1/3$.

1. Introduction

Hajnal (see [[2](#page-2-0)]) used the Kneser graphs to show that there are trianglefree graph of arbitrarily large chromatic number and of minimum degree close to $n/3$, where n is the number of vertices. Erdős and Simonovits [[2](#page-2-0)] conjectured that this is best possible, and this was verified in $[4]$ in the following sense: For each natural number t , let c_t be the smallest number such that every triangle-free graph with n vertices and minimum degree $>c_t n$ has chromatic number $\lt t$. Then $c_t\rightarrow1/3$ as $t\rightarrow\infty$. For related results and problems, see Brandt [[1](#page-2-0)].

In contrast to this we prove in the present note that for every odd natural number $k > 3$ and every real number c, $0 < c < 1$, there exists a natural number $\chi(c, k)$ such that the following holds: If G is a graph with n vertices and minimum degree $>cn$, then either G contains the cycle C_k of length k or else G has chromatic number at most $\chi(c, k)$. In particular, $\chi(c, 5) \leq 6/c$. This answers the last question in the paper of Erdős and Simonovits [[2](#page-2-0)].

0209–9683/107/\$6.00 © 2007 János Bolyai Mathematical Society and Springer-Verlag

Mathematics Subject Classification (2000): 05C15

2. Bounding the chromatic number

Theorem 2.1. *Let* c *be any fixed positive real number. Let* k *be any fixed odd natural number,* $k \geq 5$ *. Then there exists a natural number* $\chi(c, k)$ *such that every graph* G *with* n *vertices and minimum degree at least* cn *either contains a cycle* C_k *of length* k *or has chromatic number at most* $\chi(c, k)$ *(or*) *both*). In particular, $\chi(c,5) \leq 6/c$.

Proof. Let $A = \{a_1, a_2, \ldots, a_m\}$ be a maximal set of vertices of G such that no two distinct vertices of A are joined by a path of length 1 or 2. Let $N(a_i, G)$ denote the set of neighbors of a_i for $i = 1, 2, \ldots, m$. If z is a vertex in G but not in A or any of $N(a_i,G)$ for $i=1,2,\ldots,m$, then the maximality of A implies that z is joined to some $N(a_i, G)$ for $i = 1, 2, ..., m$. Let A_i be the set of those such vertices z that are joined to some vertex of $N(a_i,G)$ but not to any vertex of $N(a_i, G)$ when $j < i$. Then the sets $\{a_i\} \cup N(a_i, G) \cup A_i$, $i=1,2,\ldots,m$ form a partition of the vertex set $V(G)$ of G.

Let us consider the case $k=5$. Let us assume that G contains no C_5 . For each $i = 1, 2, \ldots, m$, the subgraph of G induced by $N(a_i, G)$ is 3-colorable since otherwise it contains a path of length 3. (This follows because any minimal graph of chromatic number 4 has minimum degree at least 3.) This path together with a_i gives a C_5 , a contradiction. Also, the subgraph of G induced by A_i is 3-colorable since otherwise it contains a path $v_1v_2v_3v_4$ of length 3. If the vertices of this path all have a common neighbor in $N(a_i, G)$, we get a $C₅$ as in the previous argument. So we may assume that two consecutive vertices of $v_1v_2v_3v_4$ have distinct neighbors in $N(a_i,G)$. This results in a C_5 containing a_i , a contradiction. It follows that the subgraph of G induced by ${a_i} \cup N(a_i, G) \cup A_i$ is 6-colorable for $i = 1, 2, ..., m$. Since the sets $N(a_i, G)$, $i = 1, 2, \ldots, m$, are pairwise disjoint and of cardinality at least cn each, it follows that $cnm < n$, and hence G has chromatic number at most $6m < 6/c$. This proves the theorem for $k = 5$.

Assume now that $k > 5$ and that G contains no C_k . As in the previous case, we conclude that, for each $i = 1, 2, \ldots, m$, the subgraph of G induced by $N(a_i,G)$ is $(k-2)$ -colorable since otherwise it contains a path of length $k-2$ which together with a_i gives a C_k , a contradiction. Corollary 4 in [[3](#page-2-0)] says that for each natural number p, there exists a natural number $\theta(p)$ such that every 2-connected, nonbipartite graph of minimum degree at least $\theta(p)$ contains cycles of all lengths modulo k . We claim that the subgraph of G induced by A_i is $\theta(2k-8)$ -colorable since otherwise it contains a cycle C $v_1v_2v_3...$ of length 1 modulo $2k-8$. Consider a subpath P of C of length k − 4. Both ends have a neighbor in $N(a_i, G)$. These two neighbors must be identical since otherwise, G has a cycle C_k through a_i . Since this holds for every P , it follows that all vertices of C have a common neighbor in $N(a_i, G)$. Then clearly G has a C_k , a contradiction. This proves the claim that the subgraph of G induced by A_i is $\theta(2k-8)$ -colorable. Hence G has chromatic number at most $m(k-2)\theta(2k-8) < (k-2)\theta(2k-8)/c$.

References

- [1] S. Brandt: On the structure of dense triangle-free graphs, Combinatorics, Probability, and Computing **8** (1999), 237–245.
- [2] P. ERDŐS and M. SIMONOVITS: On a valence problem in extremal graph theory, Discrete Math. **5** (1973), 323–334.
- [3] C. Thomassen: Graph decomposition with applications to subdivisions and path systems modulo k, J.Graph Theory **7** (1983), 261–271.
- [4] C. Thomassen: On the chromatic number of triangle-free graphs of large minimum degree, Combinatorica **22(4)** (2002), 591–596.

Carsten Thomassen

Department of Mathematics Technical University of Denmark Building 303 DK-2800 Lyngby Denmark C.Thomassen@mat.dtu.dk