COMBINATORICA Bolyai Society – Springer-Verlag

MAXIMAL TOTAL LENGTH OF k DISJOINT CYCLES IN BIPARTITE GRAPHS

[HONG WANG](#page-10-0)

Received January 31, 2002

Let k, s and n be three integers with $s > k > 2$, $n > 2k+1$. Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1|=|V_2|=n$. If the minimum degree of G is at least $s+1$, then G contains k vertex-disjoint cycles covering at least $\min(2n, 4s)$ vertices of G.

1. Introduction

We discuss only finite simple graphs and use standard terminology and no-tation from [[1](#page-9-0)] except as indicated. Let k be an integer with $k \geq 2$. Let G be a graph of order $n \geq 3$. P. Erdős and T. Gallai [\[5\]](#page-9-0) showed that if G is 2-connected and every vertex of G with at most one exception has degree at least k, then G contains a cycle of length at least $\min(2k,n)$. Corrádi and Hajnal [[2](#page-9-0)] investigated the maximum number of vertex-disjoint cycles in a graph. They proved that if G is a graph of order at least $3k$ with minimum degree at least $2k$, then G contains k vertex-disjoint cycles. In particular, when the order of G is exactly $3k$, then G contains k vertex-disjoint triangles. Motivated by these results, we conjectured $[12]$ $[12]$ $[12]$ that if t, k and n are three integers with $k \geq 2$, $t \geq 2k$ and $n \geq 3k$, and G is a graph of order n with minimum degree at least t , then G contains k vertex-disjoint cycles covering at least $\min(2t,n)$ vertices of G. This conjecture was verified for $k=2$ in [\[12\]](#page-10-0). Yoshimi Egawa, Kenichi Kawarabayashi and Hong Wang provided a complete proof of this conjecture in [\[13\]](#page-10-0). The result is as follows:

Mathematics Subject Classification (2000): 05Cxx

Theorem A ([[13](#page-10-0)]). If t, k and n are three integers with $k > 3$, $t > 2k$ *and* $n \geq 3k$, and G is a graph of order n such that $d(x, G) + d(y, G) \geq 2t$ for *each pair of non-adjacent vertices* x *and* y*, then* G *contains* k *vertex-disjoint cycles covering at least* $min(2t, n)$ *vertices of G.*

In [[10\]](#page-10-0), we showed that if $G = (V_1, V_2; E)$ is a 2-connected bipartite graph with minimum degree larger than $(k+1)/2$, then G contains a cycle of length at least $\min(2a,2k)$ where $a=\min(|V_1|,|V_2|)$. We also showed [[11\]](#page-10-0) that if $|V_1| = |V_2| > 2k$ and the minimum degree is at least $k+1$, then G contains k vertex-disjoint cycles. In this paper, we prove an analogous result (with Theorem A) for bipartite graphs. We will show:

Theorem B. Let k, s and n be three integers with $s \geq k \geq 2$, $n \geq 2k+1$. Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n$. If the minimum *degree of* G *is at least* s+1*, then* G *contains* k *vertex-disjoint cycles covering* at least $\min(2n, 4s)$ *vertices of G.*

To demonstrate the sharpness of the minimum degree condition in Theorem B, we construct the bipartite graphs $H_{s,m}$ for positive integers s and m with $m \geq s+1$ as follows. Let $H_1 = (A, B; E_1)$ and $H_2 = (X, Y; E_2)$ be two vertex-disjoint complete bipartite graphs with $|A| = |Y| = s - 1$ and $|B| = |X| = m$. Let b be a fixed vertex of B and x a fixed vertex of X. Then $H_{s,m}$ consists of H_1 and H_2 such that b is adjacent to every vertex of $X - \{x\}$ and x is adjacent to every vertex of $B - \{b\}$. Clearly, $\delta(H_{s,m}) = s$. It is easy to see that any k vertex-disjoint cycles of $H_{s,m}$ contains no more than 4s vertices of $H_{s,m}$. When $s = k$, the examples $G_{k,m}$ in [[11](#page-10-0)] shows that $\delta(G_{k,m}) = k$ but it does not have k vertex-disjoint cycles. When $s > k$, we do not have appropriate bipartite graphs G such that $\delta(G)=s$ but any k vertex-disjoint cycles of G contains no more than $4s-1$ vertices.

We shall use the following terminology and notation. Let G be a graph. For a vertex $u \in V(G)$ and a subgraph H of G, $N(u,H)$ is the set of neighbors of u contained in H, i.e., $N(u,H) = N(u) \cap V(H)$. We let $d(u,H) = |N(u,H)|$. Thus $d(u, G)$ is the degree of u in G. Similarly, we define $N(u, X)$ and $d(u, X)$ for a subset X of $V(G)$. For a subset U of $V(G)$, $G[U]$ denotes the subgraph of G induced by U. Let C be a cycle of G. If u is a vertex of C and w is a vertex of $G - V(C)$ such that $C - u + w$ is hamiltonian, we say that u is replaceable by w (in C). We use $e(G)$ to denote the number of edges of G. If A and B are two disjoint subsets of $V(G)$, we use $e(A, B)$ to denote the number of edges of G between A and B.

2. Lemmas

Let $G = (V_1, V_2; E)$ be a bipartite graph in the following.

Lemma 2.1. *Let* C *be a cycle of order* 2m *in* G*. Let* P *be a path of even order in* $G - V(C)$ *. Let* x and y be the two endvertices of P. If $d(x, C)$ + $d(y, C) \geq m$, then $G[V(C \cup P)]$ is hamiltonian unless either $d(x, C) = 0$ or $d(y, C) = 0.$

Proof. Let $A = N(u, C)$ and $B = \{v|uv \in E(C) \text{ and } u \in A\}$. Clearly, if $N(y, C) \cap B \neq \emptyset$ then $G[V(C \cup P)]$ is hamiltonian. It is also clear that if $A \neq \emptyset$ and $|A| \neq m$ then $|B| > |A|$. If $G[V(C \cup P)]$ is not hamiltonian, then $d(x,C) + d(y,C) \leq |A| + m - |B|$. Furthermore, we see that either $A = \emptyset$ or $|A| = m$ since $d(x,C) + d(y,C) \geq m$, and therefore either $d(x,C) = 0$ or $d(y, C) = 0.$ Ш

Lemma 2.2. *Let* C *be a cycle of order* 2m *in* G *and let* x *and* y *be two vertices in* $G - V(C)$ *such that* $x \in V_1$ *and* $y \in V_2$ *. Suppose that* $d(x, C)$ + $d(y, C) \geq m+1$ and $G[V(C) \cup \{x, y\}]$ is not hamiltonian. Then there exist *a labeling* $C = a_1b_1a_2b_2...a_mb_ma_1$ *and an integer* $r \in \{1,2,...,m\}$ *such that* $N(x,C) = \{b_1, b_2, \ldots, b_r\}$ and $N(y,C) = \{a_1, a_{r+1}, a_{r+2}, \ldots, a_m\}$. Moreover, $a_i b_j \notin E$ for all $i \in \{2, \ldots, r\}$ and $j \in \{r+1, \ldots, m\}$.

Proof. Let $C = a_1b_1a_2b_2... a_mb_ma_1$. Then $d(x, C)+d(y, C) = \sum_{i=1}^{m} (d(x, a_ib_i)+d(y, C))$ $d(y,a_ib_i)) \geq m+1$. This implies that there exists $i \in \{1,2,\ldots,m\}$, say $i =$ 1, such that $d(x, a_1b_1) + d(y, a_1b_1) = 2$. Say $\{xb_1, ya_1\} \subseteq E$. Then we see that $\{xb_i,ya_i\} \nsubseteq E$ for all $i \in \{2,3,\ldots,m\}$ for otherwise $G[V(C) \cup \{x,y\}]$ is hamiltonian. It follows that $d(x, a_i b_i)+d(y, a_i b_i)=1$ for all $i\in\{2,3,\ldots,m\}$.

Let r be the largest number in $\{1,2,\ldots,m\}$ such that $\{b_1,b_2,\ldots,b_r\} \subseteq$ $N(x, C)$. If $r = m$, the lemma holds. We assume $r < m$. Then $ya_{r+1} \in E$ as $xb_{r+1} \notin E$. Let s be the largest number in $\{r+1, r+2,...m\}$ such that ${a_{r+1}, a_{r+2}, \ldots, a_s} \subseteq N(y, C)$. We claim that $s=m$. If it is not true, then $xb_{s+1} \in E$ as $ya_{s+1} \notin E$, and we let t be the largest number in $\{s+1, s+1\}$ 2,...,m} such that $\{b_{s+1},b_{s+2},\ldots,b_t\} \subseteq N(x,C)$. If $t < m$, then $ya_{t+1} \in E$ as $xb_{t+1} \notin E$. If $t=m$, we let $a_{t+1} = a_1$ and so we still have $ya_{t+1} \in E$. Thus

$$
xb_ra_r b_{r-1}\ldots a_2b_1a_1b_ma_m\ldots b_{t+1}a_{t+1}yb_{r+1}a_{r+1}\ldots a_t b_tx
$$

is a hamiltonian cycle of $G[V(C) \cup \{x,y\}]$, a contradiction. Hence $s=m$. If there exist $i \in \{2,3,\ldots,r\}$ and $j \in \{r+1,r+2,\ldots,m\}$ such that $a_i b_j \in E$, then

$$
a_i b_j a_j b_{j-1} a_{j-1} \dots b_{r+1} a_{r+1} y a_{j+1} b_{j+1} \dots a_m b_m a_1 b_1 \dots \dots a_{i-1} b_{i-1} x b_r a_r b_{r-1} a_{r-1} \dots b_i a_i
$$

is a hamiltonian cycle of $G[V(C) \cup \{x,y\}]$, a contradiction. Therefore $a_i b_j \notin E$ for all $i \in \{2,3,\ldots,r\}$ and $j \in \{r+1,r+2,\ldots,m\}$. This proves the lemma.

Lemma 2.3. *Let* C *be a cycle of order* 2m *in* G *and* P *a path of order* 2t *in* $G-V(C)$ *. Let* u and w be the two endvertices of P. Suppose that $G[V(C \cup P)]$ *does not contain a cycle longer than* C. If $d(u, C) > 0$ and $d(w, C) > 0$, then $m \geq 2t-1+d(u, C)+d(w, C)$.

Proof. Let $C = a_1b_1...a_mb_ma_1$ and $P = x_1y_1...x_ty_t$ with $\{a_1, x_1\} \subseteq V_1$. We may assume that $y_t a_1 \in E$ and $x_1 b_j \in E$ for some $j \in \{1, \ldots, m\}$ such that $d(x_1,\{b_1,\ldots,b_{j-1}\}) = 0$ and $d(y_t,\{a_2,\ldots,a_j\}) = 0$. As $G[V(C \cup P)]$ does not contain a cycle longer than C, we see that $j \geq t+1$. Let p be the largest number in $\{1,\ldots,m\}$ such that $x_1b_p \in E$. For the same reason, we see that $m-p\geq t$ and $d(y_t, \{a_{p+1},\ldots,a_{p+t}\})=0$. Thus $m-p\geq t+d(y_t, \{a_{p+1},\ldots,a_m\})$. Clearly, $d(x_1, a_i b_i) + d(y_t, a_i b_i) \leq 1$ for each $i \in \{j+1,\ldots,p\}$. Thus $p - j \geq$ $d(x_1, \{b_{j+1},...,b_p\}) + d(y_t, \{a_{j+1},...,a_p\})$. As $j \ge t+1$, it follows that $m \ge$ $2t-1+d(x_1,C)+d(y_t,C).$

Lemma 2.4. *Let* C *be a cycle of order* 2m *in* G *and* P *a path of order* 2t−1 (t≥2) *in* G−V (C)*. Let* u *and* w *be the two endvertices of* P*. Suppose that* $G[V(C \cup P)]$ *does not contain a cycle longer than* C*. If* $d(u, C) > 0$ *,* $d(w, C) > 0$ *and* $|N(u, C) \cup N(w, C)| \ge 2$ *, then* $m \ge 2(t-2) + d(u, C) + d(w, C)$ *.*

Proof. Let $C = a_1b_1...a_mb_ma_1$ and $P = x_1y_1...x_{t-1}y_{t-1}x_t$. W.l.o.g., say ${a_1, x_1} \subseteq V_1$. We may assume that $x_1b_1 \in E$ and $x_tb_i \in E$ for some $j \in$ $\{2,\ldots,m\}$ such that $d(x_1,\{b_2,\ldots,b_{j-1}\})=0$ and $d(x_t,\{b_2,\ldots,b_{j-1}\})=0$. As $G[V(C \cup P)]$ does not contain a cycle longer than C, we see that $j \geq t+1$. Let p be the largest number in $\{1,\ldots,m\}$ such that $x_t b_p \in E$. For the same reason, we see that $m - p \ge t - 1$ and $d(x_1, \{b_{p+1},..., b_{p+t-1}\}) = 0$. Thus $m-p \geq t-1+d(x_1,\{b_{p+1},\ldots,b_m\})$. Clearly, for each $i \in \{1,\ldots,m\}$, if $x_t b_i \in E$ then $x_1b_{i-1} \notin E$ and $x_1b_{i+1} \notin E$ since $G[V(C \cup P)]$ does not contain a cycle longer than C, where the subscripts are taken modulo m in $\{1,\ldots,m\}$. This implies that $p-j \geq d(x_1, {b_{j+1},...,b_p})+d(x_t,{b_{j+1},...,b_p})$. As $j \geq t+1$, it follows that $m \geq 2t+d(x_1,\{b_{i+1},\ldots,b_m\})+d(x_t,\{b_{i+1},\ldots,b_m\})$. Consequently, $m \geq 2(t-2)+d(x_1, C)+d(x_t, C).$ П

3. Proof of [Theorem B](#page-1-0)

Let k and s be two integers with $s \ge k \ge 2$. Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n > 2k$ and $\delta(G) \geq s+1$. Suppose, for a contradiction, that G does not contain k vertex-disjoint cycles covering at least $\min(2n, 4s)$ vertices. By the result of [\[11](#page-10-0)] mentioned in the above introduction, G has k vertex-disjoint cycles. Hence $s > k$. We choose k vertex-disjoint cycles C_1, \ldots, C_k such that

(1)
$$
\sum_{i=1}^{k} |V(C_i)|
$$
 is maximum.

Subject to (1), we choose C_1, \ldots, C_k such that

(2) The length of a longest path of $G - V(\bigcup_{i=1}^{k} C_i)$ is maximum.

Subject to (1) and (2), we choose C_1, \ldots, C_k such that

(3) The number of quadrilaterals in $\{C_1,\ldots,C_k\}$ is maximum.

Subject to (1), (2) and (3), we finally choose C_1, \ldots, C_k such that

(4)
$$
\sum_{i=1}^{k} e(G[V(C_i)])
$$
 is maximum.

Let $H = \bigcup_{i=1}^{k} C_i$ and $D = G - V(H)$. Let P be a longest path of D. Say $|V(C_i)| = 2m_i$ for each $i \in \{1, ..., k\}$ and let $m = \sum_{i=1}^k m_i$. Then $m < 2s$. We divide our proof into the following two cases.

Case I. The order of P is one, i.e., $e(D)=0$.

Let $x \in V(D) \cap V_1$ and $y \in V(D) \cap V_2$. Then $d(x,H) + d(y,H) \geq 2s + 2$. By [Lemma 2.2](#page-2-0), $d(x, C_i) + d(y, C_i) \leq m_i + 1$ for each $i \in \{1, ..., k\}$. As $m < 2s$, we see that there exist C_p and C_q in H with $p \neq q$ such that $d(x, C_p) + d(y, C_p) = m_p + 1$ and $d(x, C_q) + d(y, C_q) = m_q + 1$. For the sake of convenience, say $\{p,q\} = \{1,2\}$. By [Lemma 2.2,](#page-2-0) there exist a labeling of $C_1 = a_1b_1...a_{m_1}b_{m_1}a_1$ and $r \in \{1,...,m_1\}$ such that $N(x, C_1) =$ $\{b_1,...,b_r\}$ and $N(y,C_1) = \{a_1, a_{r+1},..., a_{m_1}\}.$ Furthermore, we have that $e({a_2,\ldots,a_r},\{b_{r+1},\ldots,b_{m_1}\}) = 0.$ Clearly, a_i is replaceable by x and b_j is replaceable by y for each $i \in \{2,\ldots,r\}$ and $j \in \{r+1,\ldots m_1\}$. Thus by (4), $d(a_i, C_1) \geq d(x, C_1)$ and $d(b_i, C_1) \geq d(y, C_1)$ for each $i \in \{2, ..., r\}$ and $j \in \{r+1,\ldots,m_1\}$. It follows that if $G_1 = G[\{a_2,\ldots,a_r\} \cup \{b_1,\ldots,b_{r-1}\}]$ and $G_2 = G[{a_{r+1},...,a_{m_1}} \cup {b_{r+1},...,b_{m_1}}]$, then G_1 and G_2 are two complete bipartite graphs. Clearly, $m_1 \geq 3$ for otherwise $G[V(C_1) \cup \{x,y\}]$ contains a quadrilateral and a path of order 2 such that they are vertex-disjoint, contradicting (2). Since $G[V(C_2) \cup \{x,y\}]$ has a hamiltonian path from x to y, we readily see that $G[V(C_1\cup C_2)\cup \{x,y\}-V(G_i)]$ is hamiltonian for each $i \in \{1,2\}$. Hence G_1 and G_2 must be of order 2 for otherwise (1) is violated.

372 HONG WANG

Therefore C_1 is of order 6 and $r=2$. Thus $d(a_2, D) = 0$ and $d(b_3, D) = 0$ for otherwise $G[V(C_1\cup D)]$ contains a cycle of order 6 and a path of order 2 such that they are vertex-disjoint. Let $Q = xb_1a_2b_2x, C'_1 = ya_1b_3a_3y$ and $m'_1 = 2$. Set $C_i' = C_i$ and $m_i' = m_i$ for each $i \in \{2, ..., k\}$. Say $m' = \sum_{i=1}^k m_i'$. Clearly, $m'=m-1\leq 2s-2$ $m'=m-1\leq 2s-2$ $m'=m-1\leq 2s-2$. Similarly, we have $m_2=3$. By (1) and [Lemma 2.1,](#page-2-0) we have

(5) $d(u, C'_i) + d(w, C'_i) \le m'_i$ for each $i \in \{1, ..., k\}$ and $uw \in E(Q)$.

As $m' \leq 2s-2$, see that $d(u, Q \cup D) + d(w, Q \cup D) \geq 4$ for each $uw \in E(Q)$. First, let us assume that $N(b_1, D) = N(b_2, D) = \{x\}$. Then equality must hold in (5). By [Lemma 2.1,](#page-2-0) $d(u, C_i) = 0$ or $d(w, C_i) = 0$ for each $i \in \{1, ..., k\}$ and $uw \in E(Q)$. Then it is easy to see that $G[V(C_2' \cup Q)]$ contains a cycle C_2'' of order 8. Replacing C_1 and C_2 by C_1' and C_2'' in the set $\{C_1,\ldots,C_k\}$, we see that [\(3](#page-4-0)) is violated while ([1](#page-4-0)) and [\(2\)](#page-4-0) are maintained.

Therefore, we must have that either $d(b_1, D) \geq 2$ or $d(b_2, D) \geq 2$. W.l.o.g., say the latter holds. Let $P' = xb_1a_2b_2z$ where $z \in V(D)$ and $z \neq x$. By ([1\)](#page-4-0) and [Lemma 2.4,](#page-3-0) we have

(6)
$$
d(x, C'_i) + d(z, C'_i) \leq m'_i \text{ for each } i \in \{1, ..., k\}.
$$

Since $m' \leq 2s - 2$, $d(x,D) = 0$ and $d(z,D) = 0$, equality must hold in (6). Moreover, $d(z, Q) = 2$. We claim that for each $i \in \{1, ..., k\}$, either $d(x, C'_i) = 0$ or $d(z, C'_i) = 0$. If this is false, say $d(x, C'_i) > 0$ and $d(z, C'_i) > 0$ for some $i \in \{1, ..., k\}$ $i \in \{1, ..., k\}$ $i \in \{1, ..., k\}$. By (1) and [Lemma 2.4,](#page-3-0) $N(x, C'_i) = N(z, C'_i) = \{v\}$ for some $v \in V(C_i')$. Since equality holds in (6), we obtain that $m_i' = 2$. Clearly, $G[V(P' \cup C'_i)]$ contains a cycle of order 6 and a path of order 3. This would violate ([2](#page-4-0)) while [\(1](#page-4-0)) is maintained. Hence the claim holds. As $P'' = xb_1zb_2a_2$ and $P''' = a_2b_1xb_2z$ are two paths of $G[V(P')]$ and $d(a_2,D) = 0$, we may repeat this argument with P' replaced by either of P'' and P''' . Then equality in (6) must hold when x or z is replaced by a_2 , and similar claims follow, too. Clearly, $d(u, \bigcup_{i=1}^k C'_i) \ge s-1$ for each $u \in \{x, a_2, z\}$. It follows that $m' \ge$ $3(s-1) \geq 2s$, a contradiction.

Case II. The order of P is at least 2.

In this case, if u and w are the two endvertices of P, we define $r(P)$ = $d(u,P) + d(w,P)$. We choose a longest path P of D with $r(P)$ as large as possible. When P is of even order, let $P = x_1y_1...x_ty_t$ with $x_1 \in V_1$. When P is of odd order, let $P = x_1y_1 \ldots x_{t-1}y_{t-1}x_t$ with $x_1 \in V_1$. Set $r_1 = d(x_1, P)$ and $r_2 = d(w, P)$ where w is the other endvertex of P. Thus $r(P) = r_1 + r_2$.

We may assume $r_1 > r_2$. Clearly, $r_1 \leq s - 1$ for otherwise D has a cycle of order at least 2s, and then by ([1](#page-4-0)), $m \ge m_1 + m_2 \ge 2s$. Thus

(7)
$$
d(x_1, H) \ge s + 1 - r_1 \ge 2 \text{ and } d(w, H) \ge s + 1 - r_2 \ge 2.
$$

We now break into the following two subcases.

Case 2.1. The order of P is even.

In this subcase, $P = x_1y_1,...,x_ty_t$, $w = y_t$ and $t \geq r_1$. By [\(1\)](#page-4-0) and [Lemma 2.1,](#page-2-0) we see that $d(x_1, C_i) + d(y_t, C_i) \leq m_i$ for all $i \in \{1, ..., k\}$. It follows that $r_1 \geq 2$ as $m \leq 2s-1$. Thus D has a cycle of order at least $2r_1$. Therefore $kr_1 < 2s$, i.e., $r_1 < 2s/k$. Let us assume that there exists C_i in H, say $C_i = C_1$, such that $d(x_1, C_1) > 0$ and $d(y_t, C_1) > 0$. By [Lemma 2.3](#page-3-0), $m_1 > 2t-1+d(x_1,C_1)+d(y_t,C_1)$. Then

$$
m \ge 2t - 1 + d(x_1, H) + d(y_t, H) \ge 2t - 1 + 2(s + 1) - (r_1 + r_2) \ge 2s + 1,
$$

a contradiction. Therefore, for each $i \in \{1,\ldots,k\}$, either $d(x_1, C_i) = 0$ or $d(y_t, C_i) = 0$. Let p be the largest number in $\{1, \ldots, t\}$ such that $x_1 y_p \in E$. Set

$$
P' = x_p y_{p-1} \dots x_2 y_1 x_1 y_p x_{p+1} y_{p+1} \dots x_t y_t \text{ and } P'' = x_1 y_1 x_2 \dots y_{p-1} x_p.
$$

Then P' is a longest path of D, too. By the maximality of $r(P)$, we see that $d(x_p, P) \leq r_1 \leq p$. As in (7), we must have that $d(x_p, H) \geq s + 1 - r_1 \geq 2$. Similarly, it also holds that for each $i \in \{1,\ldots,k\}$, either $d(x_p, C_i) = 0$ or $d(y_t, C_i)=0$. Let us consider the relation between P'' and each C_i . Suppose that there exists C_i in H, say $C_i = C_1$, such that $d(x_1, C_1) > 0$, $d(x_p, C_1) > 0$ and $|N(x_1, C_1) \cup N(x_p, C_1)| \geq 2$. By [Lemma 2.4](#page-3-0), $m_1 \geq 2(p-2) + d(x_1, P) + d(x_2, P)$ $d(x_p, C_1)$. Then

$$
m \ge 2(p-2) + d(x_1, H) + d(x_p, H) + d(y_t, H)
$$

\n
$$
\ge 3(s+1) - 2r_1 - r_2 + 2(p-2) \ge 2s,
$$

a contradiction. Therefore for each $i \in \{1,\ldots,k\}$, if $d(x_1, C_i) > 0$ and $d(x_p, C_i) > 0$ then $N(x_1, C_i) = N(x_p, C_i) = \{a_i\}$ for some $a_i \in V(C_i)$. Let

$$
A = \{i | d(x_1, C_i) > 0 \text{ or } d(x_p, C_i) > 0; 1 \le i \le k\}.
$$

Set $B = \{1, ..., k\} - A$. Since $d(x_1, H) \geq 2$, $d(x_p, H) \geq 2$ and $d(y_t, H) \geq 2$, we conclude that $|A|\geq 2$ and $|B|\geq 1$. Thus

(8)
$$
\sum_{i \in A} m_i \ge d(x_1, H) + d(x_p, H) \ge 2(s+1) - 2r_1;
$$

(9)
$$
\sum_{i \in B} m_i \ge d(y_t, H) \ge s + 1 - r_2.
$$

374 HONG WANG

We claim that $r_2 \geq 3$. If this is false, then ([8](#page-6-0)) and ([9](#page-6-0)) imply that $r_1 >$ $(s+1)/2$ since $m \leq 2s-1$. Since D has a cycle of order at least $2r_1$, it follows that $m > |A|(s+1)/2 + (s+1-r_2) \geq 2s$, a contradiction. Therefore $r_2 \geq 3$. Let q be the smallest number in $\{1,\ldots,t-1\}$ such that $y_tx_q \in E$. Set $P^{(3)} = x_1y_1 \ldots x_qy_tx_ty_{t-1} \ldots x_{q+1}y_q$ and $P^{(4)} = y_qx_{q+1} \ldots x_ty_t$. Repeating the above argument with $P^{(3)}$ and $P^{(4)}$ playing the role of P' and P'' , we can readily show that for each C_i in H, either $d(x_1, C_i) = 0$ or $d(y_q, C_i) =$ 0. Furthermore, for each C_i in H, if $d(y_q, C_i) > 0$ and $d(y_t, C_i) > 0$, then $N(y_a, C_i) = N(y_t, C_i) = \{b_i\}$ for some $b_i \in V(C_i)$. Assume that $q > p$. Then $x_py_{p-1} \ldots y_1x_1y_px_{p+1} \ldots x_qy_tx_{t-1} \ldots x_{q+1}y_q$ is a hamiltonian path of $G[V(P)]$. Again, we can show, as above, that for each C_i in H, either $d(x_p, C_i)=0$ or $d(y_q, C_i) = 0$. Thus $d(y_q, C_i) = 0$ for all $i \in A$. As $d(y_t, H) \geq 2$, it follows that $|B|\geq 2$. Hence $k\geq 4$, and consequently, $r_1\lt s/2$. But then

$$
m \ge \sum_{i \in A} m_i + \sum_{i \in B} m_i
$$

$$
\ge \sum_{u \in R} d(u, H) \ge 4(s + 1) - 2r_1 - 2r_2 > 2s
$$

where $R = \{x_1, x_p, y_q, y_t\}$, a contradiction. Hence $q \leq p$. Clearly, the above calculation is still valid if for each $i \in \{1,\ldots,k\}$, we still have that either $d(x_p, C_i) = 0$ or $d(y_q, C_i) = 0$. Therefore we may assume that there exists C_i in H, say $C_i = C_1$, such that $d(x_p, C_1) > 0$ and $d(y_q, C_1) > 0$. By [Lemma 2.3](#page-3-0), $m_1 \geq 2[(p+1)/2] - 1 + d(x_p, C_1) + d(y_q, C_1)$ since D has a path of order at least $2\lceil (p+1)/2 \rceil$ from x_p to y_q . Then

$$
m \ge 2\lceil (p+1)/2 \rceil - 1 + \sum_{u \in R} d(u, H)
$$

$$
\ge 4(s+1) + p - 2r_1 - 2r_2 \ge 4s + 4 - 3r_1.
$$

As $k \geq |A| + |B| \geq 3$, we have that $3r_1 < 2s$. It follows that $m > 2s$, a contradiction.

Case 2.2. The order of P is odd.

In this case, $P = x_1y_1 \ldots x_{t-1}y_{t-1}x_t$, $w = x_t$ and $t \ge r_1 + 1$. Suppose that there exits C_i in H such that $d(x_1, C_i) > 0$, $d(x_t, C_i) > 0$ and $|N(x_1, C_i) \cup$ $N(x_t,C_i)|\geq 2.$ By [Lemma 2.4](#page-3-0), we get

$$
m \ge 2(t-2) + d(x_1, H) + d(x_t, H) \ge 2(t-2) + 2(s+1) - r_1 - r_2 \ge 2s,
$$

a contradiction.

Therefore for each $i \in \{1,\ldots,k\}$, either $d(x_1,C_i) = 0$, or $d(x_t,C_i) = 0$, or $N(x_1, C_i) = N(x_t, C_i) = \{a_i\}$ for some $a_i \in V(C_i)$. Furthermore, for $i \in$ $\{1,\ldots,k\}$, if $N(x_1,C_i)=N(x_t,C_i)=\{a_i\}$ then $a_i Pa_i$ is a cycle of G and therefore $m_i \geq t$ by [\(1](#page-4-0)). Since $2s-1\geq m\geq d(x_1,H)+d(x_t,H)$ by [Lemma 2.4](#page-3-0) and therefore $2s-1\geq 2(s+1)-r_1-r_2$, we see that $r_1\geq 2$ and therefore $t\geq 3$. Let p be the largest number in $\{1,\ldots,t-1\}$ such that $x_1y_p \in E$. Clearly, $p \geq r_1$ and $G[V(P)]$ has a hamiltonian path from x_p to x_t . Thus for each $i \in \{1, ..., k\}$, either $d(x_p, C_i) = 0$, or $d(x_t, C_i) = 0$, or $N(x_p, C_i) = N(x_t, C_i) =$ ${b_i}$ for some $b_i \in V(C_i)$. By [Lemma 2.4](#page-3-0) and the above argument, it follows that $m \geq d(x_1,H) + d(x_2,H) + d(x_t,H)$. If there exists C_i in H such that $d(x_1, C_i) > 0$, $d(x_p, C_i) > 0$ and $|N(x_1, C_i) \cup N(x_p, C_i)| \geq 2$, then by ([7](#page-6-0)) and [Lemma 2.4](#page-3-0), we further obtain

$$
m \ge 2(p-2) + d(x_1, H) + d(x_p, H) + d(x_t, H)
$$

\n
$$
\ge 2(p-2) + 2(s+1-r_1) + (s+1) - r_2 \ge 2s,
$$

a contradiction. Therefore for each $i \in \{1,\ldots,k\}$, either $d(x_1,C_i) = 0$, or $d(x_p, C_i) = 0$, or $N(x_1, C_i) = N(x_p, C_i) = \{c_i\}$ for some $c_i \in V(C_i)$.

If $k=2$, then from the above, we see that $d(x_1,C_i)=d(x_i,C_i)=d(x_t,C_i)=$ 1 for each $i \in \{1,2\}$. Furthermore, $a_1 Pa_1$ and $a_2 Pa_2$ are two cycles of order 2t in G. As $t-1\geq r_1\geq s+1-2=s-1$, we obtain that $m\geq 2t\geq 2s$ by [\(1\)](#page-4-0), a contradiction.

Therefore $k \geq 3$. We claim that $r_2 \geq 3$. On the contrary, say $r_2 \leq 2$. Then $d(x_t,H) \geq s+1-r_2\geq s-1$. Since $2s-1\geq m\geq d(x_1,H)+d(x_t,H)+d(x_t,H)\geq$ $2(s+1-r_1)+s-1$, we get that $r_1 \geq (s+2)/2$. Since $m_i \geq r_1$ for each $i \in \{1,\ldots,k\}$, we see that $k=3$ as $m\leq 2s-1$. As $m_1+m_2\geq s+2$, we see that $d(x_t,C_1\cup C_2)>0$ for otherwise $m \geq s+2+d(x_t,H) \geq 2s+1$. Say w.l.o.g. $d(x_t,C_1) > 0$. Similarly, we have that $d(x_t, C_2 \cup C_3) > 0$, say $d(x_t, C_2) > 0$. As $3(s-1) \geq 2s$, we must have that $r_1 \leq s - 2$ for otherwise $m \geq 3r_1 \geq 2s$. Thus $d(u, H) \geq 3$ for each $u \in \{x_1, x_p, x_t\}$. It follows from the above argument that $d(u, C_i) = 1$ for all $u \in \{x_1, x_n, x_t\}$ and $i \in \{1, 2, 3\}$. Therefore $r_1 = r_2 = s - 2$. Since $a_i Pa_i$ is a cycle of G for each $i \in \{1,2,3\}$ $i \in \{1,2,3\}$ $i \in \{1,2,3\}$, we see, by (1), that $m_i \ge t \ge s-1$ for each $i \in \{1,2,3\}$, and therefore $m \geq 3(s-1) \geq 2s$, a contradiction. This proves that $r_2 \geq 3$.

As $r_1 \ge r_2 \ge 3$, we see $t \ge 4$. Let q be an integer in $\{1,2,\ldots,t-2\}$ such that $x_t y_a \in E$. We first suppose that $q \geq p$. In this situation, it is clear that $G[V(P)]$ has a hamiltonian path from x to x_{q+1} for each $x \in \{x_1, x_p\}$. As argued in the above, we see that for each $i \in \{1, ..., k\}$ and $x \in \{x_1, x_p\}$, either $d(x, C_i) = 0$, or $d(x_{q+1}, C_i) = 0$, or $d(x, C_i) = d(x_{q+1}, C_i) = 1$ with $N(x, C_i) = N(x_{q+1}, C_i)$. As $t \geq 4$ and by [Lemma 2.4](#page-3-0), we readily see

$$
2s-1 \ge m \ge d(x_1, H) + d(x_p, H) + d(x_{q+1}, H) + d(x_t, H) \ge 4(s+1) - 2r_1 - 2r_2.
$$

This implies that $r_1 > s/2 + 1$, and thus $k = 3$. By [Lemma 2.4](#page-3-0), $m_3 \geq d(x_{q+1},C_1) + d(x_t,C_1)$. Since $m_1 + m_2 \geq 2r_1$, we must have that $d(x_{q+1},C_3) + d(x_t,C_3) < 2(s-r_1)$. Thus $d(x_{q+1},C_1 \cup C_2) + d(x_t,C_1 \cup C_2)$ $2(s+1-r_2)-2(s-r_1) > 0$. W.l.o.g., say $d(x_{q+1},C_1)+d(x_t,C_1) > 0$. Similarly, we can show that $d(x_{q+1}, C_2 \cup C_3) + d(x_t, C_2 \cup C_3) > 0$. W.l.o.g., say $d(x_{q+1},C_2) + d(x_t,C_2) > 0$. As $3r_1 < 2s$, we have that $r_1 \leq s - 2$. Thus $d(x,H) \geq 3$ for each $x \in \{x_1,x_p,x_{q+1},x_t\}$. In summation of the above argument, we conclude that $d(x, C_i) = 1$ for all $i \in \{1,2,3\}$ and $x \in \{x_1, x_p, x_{q+1}, x_t\}$. It follows that $r_1 = r_2 = s - 2$. Since $a_i Pa_i$ is a cycle of G for each $i \in \{1,2,3\}$, we must have that $m_i \ge t \ge s-1$ for each $i \in \{1,2,3\}$, and consequently, $m \geq 3(s-1) \geq 2s$, a contradiction.

Therefore $x_t y_i \notin E$ for all $i \in \{p, \ldots, t-1\}$. We may now choose q to be the smallest integer in $\{1,\ldots,t-1\}$ with $x_ty_a \in E$. As $r_2 \geq 3$, $q \leq p-2$. Then $G[V(P)]$ still has a hamiltonian path from x_1 to x_{q+1} . If it is still the case that for each $i \in \{1,\ldots,k\}$, either $d(x_p, C_i) = 0$, or $d(x_{q+1}, C_i) = 0$, or $d(x_p, C_i) = d(x_{q+1}, C_i) = 1$ with $N(x_p, C_i) = N(x_{q+1}, C_i)$, then the above argument still prevails and it follows that $m \geq 3(s-1) \geq 2s$. Therefore, there must exist C_i in H, say C_1 , such that $d(x_p, C_1) > 0$, $d(x_{q+1}, C_1) > 0$ and $|N(x_p,C_1)\cup N(x_{q+1},C_1)|\geq 2$. Clearly, $G[V(P)]$ has a path of order at least $2[(p+1)/2]-1$ from x_p to x_{q+1} . By [Lemma 2.4](#page-3-0), $m_1 \ge 2([p+1)/2]-2)+$ $d(x_p, C_1) + d(x_{q+1}, C_1)$. By [Lemma 2.4,](#page-3-0) it follows

$$
m \ge 2(\lceil (p+1)/2 \rceil - 2) + d(x_1, H) + d(x_p, H) + d_{q+1}, H) + d(x_t, H)
$$

\n
$$
\ge p - 3 + 4(s + 1) - 2r_1 - 2r_2
$$

\n
$$
\ge 4s + 1 - 3r_1.
$$

Since $3r_1 < 2s$ by [\(1\)](#page-4-0), it follows that $m \geq 4s+1-3r_1 \geq 2s+2$, a contradiction. This proves the theorem.

References

- [1] B. BOLLOBÁS: *Extremal Graph Theory*, Academic Press, London, 1978.
- $[2]$ K. CORRÁDI and A. HAJNAL: On the maximal number of independent circuits in a graph, Acta Math.Acad.Sci.Hungar. **14** (1963), 423–439.
- [3] G. A. DIRAC: Some theorems on abstract graphs, *Proc. London Math. Soc.* **2** (1952), 69–81.
- [4] M. H. El-Zahar: On circuits in graphs, Discrete Math. **50** (1984), 227–230.
- [5] P. ERDOS and T. GALLAI: On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. **10** (1959), 337-356.
- [6] P. ERDOS: *Some recent combinatorial problems*, Technical Report, University of Bielefeld, Nov. 1990.
- [7] H. Wang: Partition of a bipartite graph into cycles, Discrete Mathematics **117** (1993), 287–291.
- [8] H. Wang: Covering a graph with cycles, Journal of Graph Theory **20(2)** (1995), 203–211.
- [9] H. Wang: Two vertex-disjoint cycles in a graph, Graphs and Combinatorics **11** (1995), 389–396.
- [10] H. Wang: On long cycles in a bipartite graph, Graphs and Combinatorics **12** (1996), 373–384.
- [11] H. Wang: On the maximum number of independent cycles in a bipartite graph, Journal of Combinatorial Theory, Series B **67** (1996), 152–164.
- [12] H. Wang: On the Maximal Number of Vertices Covered by Disjoint Cycles, The Australasian Journal of Combinatorics **21** (2000), 179–186.
- [13] Y. Egawa, K. Kawarabayashi and H. Wang: Covering Vertices of a Graph by k Disjoint Cycles, to appear.

Hong Wang

Department of Mathematics The University of Idaho Moscow, Idaho 83844 USA hwang@uidaho.edu