COMBINATORICA Bolyai Society – Springer-Verlag

MAXIMAL TOTAL LENGTH OF k DISJOINT CYCLES IN BIPARTITE GRAPHS

HONG WANG

Received January 31, 2002

Let k, s and n be three integers with $s \ge k \ge 2$, $n \ge 2k+1$. Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n$. If the minimum degree of G is at least s+1, then G contains k vertex-disjoint cycles covering at least min(2n, 4s) vertices of G.

1. Introduction

We discuss only finite simple graphs and use standard terminology and notation from [1] except as indicated. Let k be an integer with $k \ge 2$. Let G be a graph of order $n \ge 3$. P. Erdős and T. Gallai [5] showed that if G is 2-connected and every vertex of G with at most one exception has degree at least k, then G contains a cycle of length at least min(2k, n). Corrádi and Hajnal [2] investigated the maximum number of vertex-disjoint cycles in a graph. They proved that if G is a graph of order at least 3k with minimum degree at least 2k, then G contains k vertex-disjoint cycles. In particular, when the order of G is exactly 3k, then G contains k vertex-disjoint triangles. Motivated by these results, we conjectured [12] that if t, k and n are three integers with $k \ge 2$, $t \ge 2k$ and $n \ge 3k$, and G is a graph of order n with minimum degree at least t, then G contains k vertex-disjoint cycles covering at least min(2t, n) vertices of G. This conjecture was verified for k = 2in [12]. Yoshimi Egawa, Kenichi Kawarabayashi and Hong Wang provided a complete proof of this conjecture in [13]. The result is as follows:

Mathematics Subject Classification (2000): 05Cxx

Theorem A ([13]). If t, k and n are three integers with $k \ge 3$, $t \ge 2k$ and $n \ge 3k$, and G is a graph of order n such that $d(x,G) + d(y,G) \ge 2t$ for each pair of non-adjacent vertices x and y, then G contains k vertex-disjoint cycles covering at least min(2t, n) vertices of G.

In [10], we showed that if $G = (V_1, V_2; E)$ is a 2-connected bipartite graph with minimum degree larger than (k+1)/2, then G contains a cycle of length at least min(2a, 2k) where $a = \min(|V_1|, |V_2|)$. We also showed [11] that if $|V_1| = |V_2| > 2k$ and the minimum degree is at least k+1, then G contains k vertex-disjoint cycles. In this paper, we prove an analogous result (with Theorem A) for bipartite graphs. We will show:

Theorem B. Let k, s and n be three integers with $s \ge k \ge 2$, $n \ge 2k + 1$. Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n$. If the minimum degree of G is at least s+1, then G contains k vertex-disjoint cycles covering at least min(2n, 4s) vertices of G.

To demonstrate the sharpness of the minimum degree condition in Theorem B, we construct the bipartite graphs $H_{s,m}$ for positive integers s and m with $m \ge s+1$ as follows. Let $H_1 = (A, B; E_1)$ and $H_2 = (X, Y; E_2)$ be two vertex-disjoint complete bipartite graphs with |A| = |Y| = s - 1and |B| = |X| = m. Let b be a fixed vertex of B and x a fixed vertex of X. Then $H_{s,m}$ consists of H_1 and H_2 such that b is adjacent to every vertex of $X - \{x\}$ and x is adjacent to every vertex of $B - \{b\}$. Clearly, $\delta(H_{s,m}) = s$. It is easy to see that any k vertex-disjoint cycles of $H_{s,m}$ contains no more than 4s vertices of $H_{s,m}$. When s = k, the examples $G_{k,m}$ in [11] shows that $\delta(G_{k,m}) = k$ but it does not have k vertex-disjoint cycles. When s > k, we do not have appropriate bipartite graphs G such that $\delta(G) = s$ but any k vertex-disjoint cycles of G contains no more than 4s - 1vertices.

We shall use the following terminology and notation. Let G be a graph. For a vertex $u \in V(G)$ and a subgraph H of G, N(u, H) is the set of neighbors of u contained in H, i.e., $N(u, H) = N(u) \cap V(H)$. We let d(u, H) = |N(u, H)|. Thus d(u, G) is the degree of u in G. Similarly, we define N(u, X) and d(u, X) for a subset X of V(G). For a subset U of V(G), G[U] denotes the subgraph of G induced by U. Let C be a cycle of G. If u is a vertex of C and w is a vertex of G - V(C) such that C - u + w is hamiltonian, we say that u is replaceable by w (in C). We use e(G) to denote the number of edges of G. If A and B are two disjoint subsets of V(G), we use e(A, B) to denote the number of edges of G between Aand B.

2. Lemmas

Let $G = (V_1, V_2; E)$ be a bipartite graph in the following.

Lemma 2.1. Let C be a cycle of order 2m in G. Let P be a path of even order in G - V(C). Let x and y be the two endvertices of P. If $d(x,C) + d(y,C) \ge m$, then $G[V(C \cup P)]$ is hamiltonian unless either d(x,C) = 0 or d(y,C) = 0.

Proof. Let A = N(u,C) and $B = \{v | uv \in E(C) \text{ and } u \in A\}$. Clearly, if $N(y,C) \cap B \neq \emptyset$ then $G[V(C \cup P)]$ is hamiltonian. It is also clear that if $A \neq \emptyset$ and $|A| \neq m$ then |B| > |A|. If $G[V(C \cup P)]$ is not hamiltonian, then $d(x,C) + d(y,C) \leq |A| + m - |B|$. Furthermore, we see that either $A = \emptyset$ or |A| = m since $d(x,C) + d(y,C) \geq m$, and therefore either d(x,C) = 0 or d(y,C) = 0.

Lemma 2.2. Let C be a cycle of order 2m in G and let x and y be two vertices in G - V(C) such that $x \in V_1$ and $y \in V_2$. Suppose that $d(x,C) + d(y,C) \ge m+1$ and $G[V(C) \cup \{x,y\}]$ is not hamiltonian. Then there exist a labeling $C = a_1b_1a_2b_2...a_mb_ma_1$ and an integer $r \in \{1, 2, ..., m\}$ such that $N(x,C) = \{b_1,b_2,...,b_r\}$ and $N(y,C) = \{a_1,a_{r+1},a_{r+2},...,a_m\}$. Moreover, $a_ib_j \notin E$ for all $i \in \{2,...,r\}$ and $j \in \{r+1,...,m\}$.

Proof. Let $C = a_1b_1a_2b_2...a_mb_ma_1$. Then $d(x,C)+d(y,C) = \sum_{i=1}^m (d(x,a_ib_i)+d(y,a_ib_i)) \ge m+1$. This implies that there exists $i \in \{1,2,...,m\}$, say i = 1, such that $d(x,a_1b_1) + d(y,a_1b_1) = 2$. Say $\{xb_1,ya_1\} \subseteq E$. Then we see that $\{xb_i,ya_i\} \not\subseteq E$ for all $i \in \{2,3,...,m\}$ for otherwise $G[V(C) \cup \{x,y\}]$ is hamiltonian. It follows that $d(x,a_ib_i)+d(y,a_ib_i)=1$ for all $i \in \{2,3,...,m\}$.

Let r be the largest number in $\{1, 2, \ldots, m\}$ such that $\{b_1, b_2, \ldots, b_r\} \subseteq N(x, C)$. If r = m, the lemma holds. We assume r < m. Then $ya_{r+1} \in E$ as $xb_{r+1} \notin E$. Let s be the largest number in $\{r+1, r+2, \ldots, m\}$ such that $\{a_{r+1}, a_{r+2}, \ldots, a_s\} \subseteq N(y, C)$. We claim that s = m. If it is not true, then $xb_{s+1} \in E$ as $ya_{s+1} \notin E$, and we let t be the largest number in $\{s+1, s+2, \ldots, m\}$ such that $\{b_{s+1}, b_{s+2}, \ldots, b_t\} \subseteq N(x, C)$. If t < m, then $ya_{t+1} \in E$ as $xb_{t+1} \notin E$. If t = m, we let $a_{t+1} = a_1$ and so we still have $ya_{t+1} \in E$. Thus

$$xb_ra_rb_{r-1}\ldots a_2b_1a_1b_ma_m\ldots b_{t+1}a_{t+1}yb_{r+1}a_{r+1}\ldots a_tb_tx$$

is a hamiltonian cycle of $G[V(C) \cup \{x, y\}]$, a contradiction. Hence s = m. If there exist $i \in \{2, 3, ..., r\}$ and $j \in \{r+1, r+2, ..., m\}$ such that $a_i b_j \in E$, then

$$a_i b_j a_j b_{j-1} a_{j-1} \dots b_{r+1} a_{r+1} y_{a_{j+1}} b_{j+1} \dots a_m b_m a_1 b_1 \dots \dots a_{i-1} b_{i-1} x b_r a_r b_{r-1} a_{r-1} \dots b_i a_i$$

is a hamiltonian cycle of $G[V(C) \cup \{x, y\}]$, a contradiction. Therefore $a_i b_j \notin E$ for all $i \in \{2, 3, ..., r\}$ and $j \in \{r+1, r+2, ..., m\}$. This proves the lemma.

Lemma 2.3. Let C be a cycle of order 2m in G and P a path of order 2t in G-V(C). Let u and w be the two endvertices of P. Suppose that $G[V(C\cup P)]$ does not contain a cycle longer than C. If d(u,C) > 0 and d(w,C) > 0, then $m \ge 2t - 1 + d(u,C) + d(w,C)$.

Proof. Let $C = a_1b_1 \dots a_mb_ma_1$ and $P = x_1y_1 \dots x_ty_t$ with $\{a_1, x_1\} \subseteq V_1$. We may assume that $y_ta_1 \in E$ and $x_1b_j \in E$ for some $j \in \{1, \dots, m\}$ such that $d(x_1, \{b_1, \dots, b_{j-1}\}) = 0$ and $d(y_t, \{a_2, \dots, a_j\}) = 0$. As $G[V(C \cup P)]$ does not contain a cycle longer than C, we see that $j \ge t+1$. Let p be the largest number in $\{1, \dots, m\}$ such that $x_1b_p \in E$. For the same reason, we see that $m-p \ge t$ and $d(y_t, \{a_{p+1}, \dots, a_{p+t}\}) = 0$. Thus $m-p \ge t+d(y_t, \{a_{p+1}, \dots, a_m\})$. Clearly, $d(x_1, a_ib_i) + d(y_t, a_ib_i) \le 1$ for each $i \in \{j+1, \dots, p\}$. Thus $p-j \ge d(x_1, \{b_{j+1}, \dots, b_p\}) + d(y_t, \{a_{j+1}, \dots, a_p\})$. As $j \ge t+1$, it follows that $m \ge 2t-1+d(x_1, C)+d(y_t, C)$.

Lemma 2.4. Let C be a cycle of order 2m in G and P a path of order 2t-1 $(t \ge 2)$ in G-V(C). Let u and w be the two endvertices of P. Suppose that $G[V(C \cup P)]$ does not contain a cycle longer than C. If d(u,C) > 0, d(w,C) > 0 and $|N(u,C) \cup N(w,C)| \ge 2$, then $m \ge 2(t-2) + d(u,C) + d(w,C)$.

Proof. Let $C = a_1b_1 \dots a_mb_ma_1$ and $P = x_1y_1 \dots x_{t-1}y_{t-1}x_t$. W.l.o.g., say $\{a_1, x_1\} \subseteq V_1$. We may assume that $x_1b_1 \in E$ and $x_tb_j \in E$ for some $j \in \{2, \dots, m\}$ such that $d(x_1, \{b_2, \dots, b_{j-1}\}) = 0$ and $d(x_t, \{b_2, \dots, b_{j-1}\}) = 0$. As $G[V(C \cup P)]$ does not contain a cycle longer than C, we see that $j \ge t+1$. Let p be the largest number in $\{1, \dots, m\}$ such that $x_tb_p \in E$. For the same reason, we see that $m - p \ge t - 1$ and $d(x_1, \{b_{p+1}, \dots, b_{p+t-1}\}) = 0$. Thus $m - p \ge t - 1 + d(x_1, \{b_{p+1}, \dots, b_m\})$. Clearly, for each $i \in \{1, \dots, m\}$, if $x_tb_i \in E$ then $x_1b_{i-1} \notin E$ and $x_1b_{i+1} \notin E$ since $G[V(C \cup P)]$ does not contain a cycle longer than C, where the subscripts are taken modulo m in $\{1, \dots, m\}$. This implies that $p - j \ge d(x_1, \{b_{j+1}, \dots, b_p\}) + d(x_t, \{b_{j+1}, \dots, b_p\})$. As $j \ge t+1$, it follows that $m \ge 2t + d(x_1, \{b_{j+1}, \dots, b_m\}) + d(x_t, \{b_{j+1}, \dots, b_m\})$. Consequently, $m \ge 2(t-2) + d(x_1, C) + d(x_t, C)$.

3. Proof of Theorem B

Let k and s be two integers with $s \ge k \ge 2$. Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n > 2k$ and $\delta(G) \ge s + 1$. Suppose, for a contradiction, that G does not contain k vertex-disjoint cycles covering at least min(2n, 4s) vertices. By the result of [11] mentioned in the above introduction, G has k vertex-disjoint cycles. Hence s > k. We choose k vertex-disjoint cycles C_1, \ldots, C_k such that

(1)
$$\sum_{i=1}^{k} |V(C_i)| \text{ is maximum.}$$

Subject to (1), we choose C_1, \ldots, C_k such that

(2) The length of a longest path of $G - V(\bigcup_{i=1}^{k} C_i)$ is maximum.

Subject to (1) and (2), we choose C_1, \ldots, C_k such that

(3) The number of quadrilaterals in $\{C_1, \ldots, C_k\}$ is maximum.

Subject to (1), (2) and (3), we finally choose C_1, \ldots, C_k such that

(4)
$$\sum_{i=1}^{k} e(G[V(C_i)]) \text{ is maximum.}$$

Let $H = \bigcup_{i=1}^{k} C_i$ and D = G - V(H). Let P be a longest path of D. Say $|V(C_i)| = 2m_i$ for each $i \in \{1, \ldots, k\}$ and let $m = \sum_{i=1}^{k} m_i$. Then m < 2s. We divide our proof into the following two cases.

Case I. The order of P is one, i.e., e(D) = 0.

Let $x \in V(D) \cap V_1$ and $y \in V(D) \cap V_2$. Then $d(x, H) + d(y, H) \ge 2s + 2$. By Lemma 2.2, $d(x,C_i) + d(y,C_i) \le m_i + 1$ for each $i \in \{1,...,k\}$. As m < 2s, we see that there exist C_p and C_q in H with $p \neq q$ such that $d(x,C_p)+d(y,C_p)=m_p+1$ and $d(x,C_q)+d(y,C_q)=m_q+1$. For the sake of convenience, say $\{p,q\} = \{1,2\}$. By Lemma 2.2, there exist a labeling of $C_1 = a_1 b_1 \dots a_{m_1} b_{m_1} a_1$ and $r \in \{1, \dots, m_1\}$ such that $N(x, C_1) =$ $\{b_1,\ldots,b_r\}$ and $N(y,C_1)=\{a_1,a_{r+1},\ldots,a_{m_1}\}$. Furthermore, we have that $e(\{a_2,\ldots,a_r\},\{b_{r+1},\ldots,b_{m_1}\})=0$. Clearly, a_i is replaceable by x and b_i is replaceable by y for each $i \in \{2, ..., r\}$ and $j \in \{r+1, ..., m_1\}$. Thus by (4), $d(a_i, C_1) \ge d(x, C_1)$ and $d(b_i, C_1) \ge d(y, C_1)$ for each $i \in \{2, \dots, r\}$ and $j \in \{r+1, \ldots, m_1\}$. It follows that if $G_1 = G[\{a_2, \ldots, a_r\} \cup \{b_1, \ldots, b_{r-1}\}]$ and $G_2 = G[\{a_{r+1}, \dots, a_{m_1}\} \cup \{b_{r+1}, \dots, b_{m_1}\}]$, then G_1 and G_2 are two complete bipartite graphs. Clearly, $m_1 \ge 3$ for otherwise $G[V(C_1) \cup \{x, y\}]$ contains a quadrilateral and a path of order 2 such that they are vertex-disjoint, contradicting (2). Since $G[V(C_2) \cup \{x, y\}]$ has a hamiltonian path from x to y, we readily see that $G[V(C_1 \cup C_2) \cup \{x, y\} - V(G_i)]$ is hamiltonian for each $i \in \{1, 2\}$. Hence G_1 and G_2 must be of order 2 for otherwise (1) is violated. Therefore C_1 is of order 6 and r=2. Thus $d(a_2, D) = 0$ and $d(b_3, D) = 0$ for otherwise $G[V(C_1 \cup D)]$ contains a cycle of order 6 and a path of order 2 such that they are vertex-disjoint. Let $Q = xb_1a_2b_2x$, $C'_1 = ya_1b_3a_3y$ and $m'_1 = 2$. Set $C'_i = C_i$ and $m'_i = m_i$ for each $i \in \{2, \ldots, k\}$. Say $m' = \sum_{i=1}^k m'_i$. Clearly, $m' = m - 1 \le 2s - 2$. Similarly, we have $m_2 = 3$. By (1) and Lemma 2.1, we have

(5) $d(u, C'_i) + d(w, C'_i) \le m'_i$ for each $i \in \{1, ..., k\}$ and $uw \in E(Q)$.

As $m' \leq 2s-2$, see that $d(u, Q \cup D) + d(w, Q \cup D) \geq 4$ for each $uw \in E(Q)$. First, let us assume that $N(b_1, D) = N(b_2, D) = \{x\}$. Then equality must hold in (5). By Lemma 2.1, $d(u, C_i) = 0$ or $d(w, C_i) = 0$ for each $i \in \{1, \ldots, k\}$ and $uw \in E(Q)$. Then it is easy to see that $G[V(C'_2 \cup Q)]$ contains a cycle C''_2 of order 8. Replacing C_1 and C_2 by C'_1 and C''_2 in the set $\{C_1, \ldots, C_k\}$, we see that (3) is violated while (1) and (2) are maintained.

Therefore, we must have that either $d(b_1, D) \ge 2$ or $d(b_2, D) \ge 2$. W.l.o.g., say the latter holds. Let $P' = xb_1a_2b_2z$ where $z \in V(D)$ and $z \ne x$. By (1) and Lemma 2.4, we have

(6)
$$d(x, C'_i) + d(z, C'_i) \le m'_i \text{ for each } i \in \{1, \dots, k\}.$$

Since $m' \leq 2s-2$, d(x,D) = 0 and d(z,D) = 0, equality must hold in (6). Moreover, d(z,Q) = 2. We claim that for each $i \in \{1,\ldots,k\}$, either $d(x,C'_i) = 0$ or $d(z,C'_i) = 0$. If this is false, say $d(x,C'_i) > 0$ and $d(z,C'_i) > 0$ for some $i \in \{1,\ldots,k\}$. By (1) and Lemma 2.4, $N(x,C'_i) = N(z,C'_i) = \{v\}$ for some $v \in V(C'_i)$. Since equality holds in (6), we obtain that $m'_i = 2$. Clearly, $G[V(P' \cup C'_i)]$ contains a cycle of order 6 and a path of order 3. This would violate (2) while (1) is maintained. Hence the claim holds. As $P'' = xb_1zb_2a_2$ and $P''' = a_2b_1xb_2z$ are two paths of G[V(P')] and $d(a_2,D) = 0$, we may repeat this argument with P' replaced by either of P'' and P'''. Then equality in (6) must hold when x or z is replaced by a_2 , and similar claims follow, too. Clearly, $d(u, \cup_{i=1}^k C'_i) \geq s-1$ for each $u \in \{x, a_2, z\}$. It follows that $m' \geq 3(s-1) \geq 2s$, a contradiction.

Case II. The order of P is at least 2.

In this case, if u and w are the two endvertices of P, we define r(P) = d(u, P) + d(w, P). We choose a longest path P of D with r(P) as large as possible. When P is of even order, let $P = x_1y_1 \dots x_ty_t$ with $x_1 \in V_1$. When P is of odd order, let $P = x_1y_1 \dots x_{t-1}y_{t-1}x_t$ with $x_1 \in V_1$. Set $r_1 = d(x_1, P)$ and $r_2 = d(w, P)$ where w is the other endvertex of P. Thus $r(P) = r_1 + r_2$.

We may assume $r_1 \ge r_2$. Clearly, $r_1 \le s-1$ for otherwise D has a cycle of order at least 2s, and then by (1), $m \ge m_1 + m_2 \ge 2s$. Thus

(7)
$$d(x_1, H) \ge s + 1 - r_1 \ge 2 \text{ and } d(w, H) \ge s + 1 - r_2 \ge 2.$$

We now break into the following two subcases.

Case 2.1. The order of P is even.

In this subcase, $P = x_1y_1, \ldots, x_ty_t$, $w = y_t$ and $t \ge r_1$. By (1) and Lemma 2.1, we see that $d(x_1, C_i) + d(y_t, C_i) \le m_i$ for all $i \in \{1, \ldots, k\}$. It follows that $r_1 \ge 2$ as $m \le 2s - 1$. Thus D has a cycle of order at least $2r_1$. Therefore $kr_1 < 2s$, i.e., $r_1 < 2s/k$. Let us assume that there exists C_i in H, say $C_i = C_1$, such that $d(x_1, C_1) > 0$ and $d(y_t, C_1) > 0$. By Lemma 2.3, $m_1 \ge 2t - 1 + d(x_1, C_1) + d(y_t, C_1)$. Then

$$m \ge 2t - 1 + d(x_1, H) + d(y_t, H) \ge 2t - 1 + 2(s + 1) - (r_1 + r_2) \ge 2s + 1,$$

a contradiction. Therefore, for each $i \in \{1, ..., k\}$, either $d(x_1, C_i) = 0$ or $d(y_t, C_i) = 0$. Let p be the largest number in $\{1, ..., t\}$ such that $x_1y_p \in E$. Set

$$P' = x_p y_{p-1} \dots x_2 y_1 x_1 y_p x_{p+1} y_{p+1} \dots x_t y_t$$
 and $P'' = x_1 y_1 x_2 \dots y_{p-1} x_p$

Then P' is a longest path of D, too. By the maximality of r(P), we see that $d(x_p, P) \leq r_1 \leq p$. As in (7), we must have that $d(x_p, H) \geq s + 1 - r_1 \geq 2$. Similarly, it also holds that for each $i \in \{1, \ldots, k\}$, either $d(x_p, C_i) = 0$ or $d(y_t, C_i) = 0$. Let us consider the relation between P'' and each C_i . Suppose that there exists C_i in H, say $C_i = C_1$, such that $d(x_1, C_1) > 0$, $d(x_p, C_1) > 0$ and $|N(x_1, C_1) \cup N(x_p, C_1)| \geq 2$. By Lemma 2.4, $m_1 \geq 2(p-2) + d(x_1, P) + d(x_p, C_1)$. Then

$$m \ge 2(p-2) + d(x_1, H) + d(x_p, H) + d(y_t, H)$$

$$\ge 3(s+1) - 2r_1 - r_2 + 2(p-2) \ge 2s,$$

a contradiction. Therefore for each $i \in \{1, \ldots, k\}$, if $d(x_1, C_i) > 0$ and $d(x_p, C_i) > 0$ then $N(x_1, C_i) = N(x_p, C_i) = \{a_i\}$ for some $a_i \in V(C_i)$. Let

$$A = \{i | d(x_1, C_i) > 0 \text{ or } d(x_p, C_i) > 0; 1 \le i \le k\}.$$

Set $B = \{1, \ldots, k\} - A$. Since $d(x_1, H) \ge 2$, $d(x_p, H) \ge 2$ and $d(y_t, H) \ge 2$, we conclude that $|A| \ge 2$ and $|B| \ge 1$. Thus

(8)
$$\sum_{i \in A} m_i \ge d(x_1, H) + d(x_p, H) \ge 2(s+1) - 2r_1;$$

(9)
$$\sum_{i \in B} m_i \ge d(y_t, H) \ge s + 1 - r_2.$$

We claim that $r_2 \geq 3$. If this is false, then (8) and (9) imply that $r_1 > (s+1)/2$ since $m \leq 2s-1$. Since D has a cycle of order at least $2r_1$, it follows that $m > |A|(s+1)/2 + (s+1-r_2) \geq 2s$, a contradiction. Therefore $r_2 \geq 3$. Let q be the smallest number in $\{1, \ldots, t-1\}$ such that $y_t x_q \in E$. Set $P^{(3)} = x_1 y_1 \ldots x_q y_t x_t y_{t-1} \ldots x_{q+1} y_q$ and $P^{(4)} = y_q x_{q+1} \ldots x_t y_t$. Repeating the above argument with $P^{(3)}$ and $P^{(4)}$ playing the role of P' and P'', we can readily show that for each C_i in H, either $d(x_1, C_i) = 0$ or $d(y_q, C_i) = 0$. Furthermore, for each C_i in H, if $d(y_q, C_i) > 0$ and $d(y_t, C_i) > 0$, then $N(y_q, C_i) = N(y_t, C_i) = \{b_i\}$ for some $b_i \in V(C_i)$. Assume that q > p. Then $x_p y_{p-1} \ldots y_1 x_1 y_p x_{p+1} \ldots x_q y_t x_{t-1} \ldots x_{q+1} y_q$ is a hamiltonian path of G[V(P)]. Again, we can show, as above, that for each C_i in H, either $d(x_p, C_i) = 0$ or $d(y_q, C_i) = 0$. Thus $d(y_q, C_i) = 0$ for all $i \in A$. As $d(y_t, H) \geq 2$, it follows that $|B| \geq 2$. Hence $k \geq 4$, and consequently, $r_1 < s/2$. But then

$$m \ge \sum_{i \in A} m_i + \sum_{i \in B} m_i$$

$$\ge \sum_{u \in R} d(u, H) \ge 4(s+1) - 2r_1 - 2r_2 > 2s$$

where $R = \{x_1, x_p, y_q, y_t\}$, a contradiction. Hence $q \leq p$. Clearly, the above calculation is still valid if for each $i \in \{1, \ldots, k\}$, we still have that either $d(x_p, C_i) = 0$ or $d(y_q, C_i) = 0$. Therefore we may assume that there exists C_i in H, say $C_i = C_1$, such that $d(x_p, C_1) > 0$ and $d(y_q, C_1) > 0$. By Lemma 2.3, $m_1 \geq 2\lceil (p+1)/2 \rceil - 1 + d(x_p, C_1) + d(y_q, C_1)$ since D has a path of order at least $2\lceil (p+1)/2 \rceil$ from x_p to y_q . Then

$$m \ge 2\lceil (p+1)/2 \rceil - 1 + \sum_{u \in R} d(u, H)$$

$$\ge 4(s+1) + p - 2r_1 - 2r_2 \ge 4s + 4 - 3r_1.$$

As $k \ge |A| + |B| \ge 3$, we have that $3r_1 < 2s$. It follows that m > 2s, a contradiction.

Case 2.2. The order of P is odd.

In this case, $P = x_1y_1...x_{t-1}y_{t-1}x_t$, $w = x_t$ and $t \ge r_1 + 1$. Suppose that there exits C_i in H such that $d(x_1, C_i) > 0$, $d(x_t, C_i) > 0$ and $|N(x_1, C_i) \cup N(x_t, C_i)| \ge 2$. By Lemma 2.4, we get

$$m \ge 2(t-2) + d(x_1, H) + d(x_t, H) \ge 2(t-2) + 2(s+1) - r_1 - r_2 \ge 2s,$$

a contradiction.

Therefore for each $i \in \{1, \ldots, k\}$, either $d(x_1, C_i) = 0$, or $d(x_t, C_i) = 0$, or $N(x_1, C_i) = N(x_t, C_i) = \{a_i\}$ for some $a_i \in V(C_i)$. Furthermore, for $i \in$ $\{1,\ldots,k\}$, if $N(x_1,C_i) = N(x_t,C_i) = \{a_i\}$ then a_iPa_i is a cycle of G and therefore $m_i \ge t$ by (1). Since $2s-1 \ge m \ge d(x_1,H) + d(x_t,H)$ by Lemma 2.4 and therefore $2s-1 \ge 2(s+1)-r_1-r_2$, we see that $r_1 \ge 2$ and therefore $t \ge 3$. Let p be the largest number in $\{1,\ldots,t-1\}$ such that $x_1y_p \in E$. Clearly, $p \ge r_1$ and G[V(P)] has a hamiltonian path from x_p to x_t . Thus for each $i \in \{1,\ldots,k\}$, either $d(x_p,C_i)=0$, or $d(x_t,C_i)=0$, or $N(x_p,C_i)=N(x_t,C_i)=$ $\{b_i\}$ for some $b_i \in V(C_i)$. By Lemma 2.4 and the above argument, it follows that $m \ge d(x_1,H) + d(x_p,H) + d(x_t,H)$. If there exists C_i in H such that $d(x_1,C_i) > 0$, $d(x_p,C_i) > 0$ and $|N(x_1,C_i) \cup N(x_p,C_i)| \ge 2$, then by (7) and Lemma 2.4, we further obtain

$$m \ge 2(p-2) + d(x_1, H) + d(x_p, H) + d(x_t, H)$$

$$\ge 2(p-2) + 2(s+1-r_1) + (s+1) - r_2 \ge 2s,$$

a contradiction. Therefore for each $i \in \{1, \ldots, k\}$, either $d(x_1, C_i) = 0$, or $d(x_p, C_i) = 0$, or $N(x_1, C_i) = N(x_p, C_i) = \{c_i\}$ for some $c_i \in V(C_i)$.

If k=2, then from the above, we see that $d(x_1, C_i) = d(x_p, C_i) = d(x_t, C_i) = 1$ for each $i \in \{1, 2\}$. Furthermore, $a_1 P a_1$ and $a_2 P a_2$ are two cycles of order 2t in G. As $t-1 \ge r_1 \ge s+1-2=s-1$, we obtain that $m \ge 2t \ge 2s$ by (1), a contradiction.

Therefore $k \ge 3$. We claim that $r_2 \ge 3$. On the contrary, say $r_2 \le 2$. Then $d(x_t, H) \ge s+1-r_2 \ge s-1$. Since $2s-1 \ge m \ge d(x_1, H) + d(x_p, H) + d(x_t, H) \ge 2(s+1-r_1)+s-1$, we get that $r_1 \ge (s+2)/2$. Since $m_i \ge r_1$ for each $i \in \{1, \ldots, k\}$, we see that k=3 as $m \le 2s-1$. As $m_1+m_2 \ge s+2$, we see that $d(x_t, C_1 \cup C_2) > 0$ for otherwise $m \ge s+2+d(x_t, H) \ge 2s+1$. Say w.l.o.g. $d(x_t, C_1) > 0$. Similarly, we have that $d(x_t, C_2 \cup C_3) > 0$, say $d(x_t, C_2) > 0$. As $3(s-1) \ge 2s$, we must have that $r_1 \le s-2$ for otherwise $m \ge 3r_1 \ge 2s$. Thus $d(u, H) \ge 3$ for each $u \in \{x_1, x_p, x_t\}$. It follows from the above argument that $d(u, C_i) = 1$ for all $u \in \{x_1, x_p, x_t\}$ and $i \in \{1, 2, 3\}$. Therefore $r_1 = r_2 = s-2$. Since $a_i Pa_i$ is a cycle of G for each $i \in \{1, 2, 3\}$, we see, by (1), that $m_i \ge t \ge s-1$ for each $i \in \{1, 2, 3\}$, and therefore $m \ge 3(s-1) \ge 2s$, a contradiction. This proves that $r_2 \ge 3$.

As $r_1 \ge r_2 \ge 3$, we see $t \ge 4$. Let q be an integer in $\{1, 2, \ldots, t-2\}$ such that $x_t y_q \in E$. We first suppose that $q \ge p$. In this situation, it is clear that G[V(P)] has a hamiltonian path from x to x_{q+1} for each $x \in \{x_1, x_p\}$. As argued in the above, we see that for each $i \in \{1, \ldots, k\}$ and $x \in \{x_1, x_p\}$, either $d(x, C_i) = 0$, or $d(x_{q+1}, C_i) = 0$, or $d(x, C_i) = d(x_{q+1}, C_i) = 1$ with $N(x, C_i) = N(x_{q+1}, C_i)$. As $t \ge 4$ and by Lemma 2.4, we readily see

$$2s-1 \ge m \ge d(x_1, H) + d(x_p, H) + d(x_{q+1}, H) + d(x_t, H) \ge 4(s+1) - 2r_1 - 2r_2.$$

This implies that $r_1 > s/2 + 1$, and thus k = 3. By Lemma 2.4, $m_3 \ge d(x_{q+1}, C_1) + d(x_t, C_1)$. Since $m_1 + m_2 \ge 2r_1$, we must have that

 $d(x_{q+1}, C_3) + d(x_t, C_3) < 2(s - r_1)$. Thus $d(x_{q+1}, C_1 \cup C_2) + d(x_t, C_1 \cup C_2) > 2(s + 1 - r_2) - 2(s - r_1) > 0$. W.l.o.g., say $d(x_{q+1}, C_1) + d(x_t, C_1) > 0$. Similarly, we can show that $d(x_{q+1}, C_2 \cup C_3) + d(x_t, C_2 \cup C_3) > 0$. W.l.o.g., say $d(x_{q+1}, C_2) + d(x_t, C_2) > 0$. As $3r_1 < 2s$, we have that $r_1 \leq s - 2$. Thus $d(x, H) \geq 3$ for each $x \in \{x_1, x_p, x_{q+1}, x_t\}$. In summation of the above argument, we conclude that $d(x, C_i) = 1$ for all $i \in \{1, 2, 3\}$ and $x \in \{x_1, x_p, x_{q+1}, x_t\}$. It follows that $r_1 = r_2 = s - 2$. Since $a_i Pa_i$ is a cycle of G for each $i \in \{1, 2, 3\}$, we must have that $m_i \geq t \geq s - 1$ for each $i \in \{1, 2, 3\}$, and consequently, $m \geq 3(s-1) \geq 2s$, a contradiction.

Therefore $x_t y_i \notin E$ for all $i \in \{p, \ldots, t-1\}$. We may now choose q to be the smallest integer in $\{1, \ldots, t-1\}$ with $x_t y_q \in E$. As $r_2 \geq 3$, $q \leq p-2$. Then G[V(P)] still has a hamiltonian path from x_1 to x_{q+1} . If it is still the case that for each $i \in \{1, \ldots, k\}$, either $d(x_p, C_i) = 0$, or $d(x_{q+1}, C_i) = 0$, or $d(x_p, C_i) = d(x_{q+1}, C_i) = 1$ with $N(x_p, C_i) = N(x_{q+1}, C_i)$, then the above argument still prevails and it follows that $m \geq 3(s-1) \geq 2s$. Therefore, there must exist C_i in H, say C_1 , such that $d(x_p, C_1) > 0$, $d(x_{q+1}, C_1) > 0$ and $|N(x_p, C_1) \cup N(x_{q+1}, C_1)| \geq 2$. Clearly, G[V(P)] has a path of order at least $2\lceil (p+1)/2 \rceil - 1$ from x_p to x_{q+1} . By Lemma 2.4, $m_1 \geq 2(\lceil (p+1)/2 \rceil - 2) + d(x_p, C_1) + d(x_{q+1}, C_1)$. By Lemma 2.4, it follows

$$\begin{split} m &\geq 2(\lceil (p+1)/2 \rceil - 2) + d(x_1, H) + d(x_p, H) + d_{q+1}, H) + d(x_t, H) \\ &\geq p - 3 + 4(s+1) - 2r_1 - 2r_2 \\ &\geq 4s + 1 - 3r_1. \end{split}$$

Since $3r_1 < 2s$ by (1), it follows that $m \ge 4s+1-3r_1 \ge 2s+2$, a contradiction. This proves the theorem.

References

- [1] B. BOLLOBÁS: Extremal Graph Theory, Academic Press, London, 1978.
- [2] K. CORRÁDI and A. HAJNAL: On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963), 423–439.
- [3] G. A. DIRAC: Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952), 69–81.
- [4] M. H. EL-ZAHAR: On circuits in graphs, Discrete Math. 50 (1984), 227–230.
- [5] P. ERDŐS and T. GALLAI: On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337–356.
- [6] P. ERDŐS: Some recent combinatorial problems, Technical Report, University of Bielefeld, Nov. 1990.
- [7] H. WANG: Partition of a bipartite graph into cycles, *Discrete Mathematics* 117 (1993), 287–291.
- [8] H. WANG: Covering a graph with cycles, Journal of Graph Theory 20(2) (1995), 203-211.

- [9] H. WANG: Two vertex-disjoint cycles in a graph, Graphs and Combinatorics 11 (1995), 389–396.
- [10] H. WANG: On long cycles in a bipartite graph, Graphs and Combinatorics 12 (1996), 373–384.
- [11] H. WANG: On the maximum number of independent cycles in a bipartite graph, Journal of Combinatorial Theory, Series B 67 (1996), 152–164.
- [12] H. WANG: On the Maximal Number of Vertices Covered by Disjoint Cycles, The Australasian Journal of Combinatorics 21 (2000), 179–186.
- [13] Y. EGAWA, K. KAWARABAYASHI and H. WANG: Covering Vertices of a Graph by k Disjoint Cycles, to appear.

Hong Wang

Department of Mathematics The University of Idaho Moscow, Idaho 83844 USA hwang@uidaho.edu