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Let k, s and n be three integers with s≥k≥2, n≥2k+1. Let G=(V1,V2;E) be a bipartite
graph with |V1|= |V2|=n. If the minimum degree of G is at least s+1, then G contains k
vertex-disjoint cycles covering at least min(2n,4s) vertices of G.

1. Introduction

We discuss only finite simple graphs and use standard terminology and no-
tation from [1] except as indicated. Let k be an integer with k ≥ 2. Let G
be a graph of order n≥ 3. P. Erdős and T. Gallai [5] showed that if G is
2-connected and every vertex of G with at most one exception has degree at
least k, then G contains a cycle of length at least min(2k,n). Corrádi and
Hajnal [2] investigated the maximum number of vertex-disjoint cycles in a
graph. They proved that if G is a graph of order at least 3k with minimum
degree at least 2k, then G contains k vertex-disjoint cycles. In particular,
when the order of G is exactly 3k, then G contains k vertex-disjoint trian-
gles. Motivated by these results, we conjectured [12] that if t, k and n are
three integers with k≥2, t≥2k and n≥3k, and G is a graph of order n with
minimum degree at least t, then G contains k vertex-disjoint cycles cover-
ing at least min(2t,n) vertices of G. This conjecture was verified for k= 2
in [12]. Yoshimi Egawa, Kenichi Kawarabayashi and Hong Wang provided a
complete proof of this conjecture in [13]. The result is as follows:
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Theorem A ([13]). If t, k and n are three integers with k ≥ 3, t ≥ 2k
and n≥3k, and G is a graph of order n such that d(x,G)+d(y,G)≥2t for
each pair of non-adjacent vertices x and y, then G contains k vertex-disjoint
cycles covering at least min(2t,n) vertices of G.

In [10], we showed that if G=(V1,V2;E) is a 2-connected bipartite graph
with minimum degree larger than (k+1)/2, then G contains a cycle of length
at least min(2a,2k) where a = min(|V1|, |V2|). We also showed [11] that if
|V1|= |V2|> 2k and the minimum degree is at least k+1, then G contains
k vertex-disjoint cycles. In this paper, we prove an analogous result (with
Theorem A) for bipartite graphs. We will show:

Theorem B. Let k, s and n be three integers with s≥ k≥ 2, n≥ 2k+1.
Let G=(V1,V2;E) be a bipartite graph with |V1|= |V2|=n. If the minimum
degree of G is at least s+1, then G contains k vertex-disjoint cycles covering
at least min(2n,4s) vertices of G.

To demonstrate the sharpness of the minimum degree condition in The-
orem B, we construct the bipartite graphs Hs,m for positive integers s and
m with m ≥ s+ 1 as follows. Let H1 = (A,B;E1) and H2 = (X,Y ;E2)
be two vertex-disjoint complete bipartite graphs with |A| = |Y | = s− 1
and |B| = |X| = m. Let b be a fixed vertex of B and x a fixed vertex
of X. Then Hs,m consists of H1 and H2 such that b is adjacent to every
vertex of X − {x} and x is adjacent to every vertex of B −{b}. Clearly,
δ(Hs,m)= s. It is easy to see that any k vertex-disjoint cycles of Hs,m con-
tains no more than 4s vertices of Hs,m. When s = k, the examples Gk,m

in [11] shows that δ(Gk,m) = k but it does not have k vertex-disjoint cy-
cles. When s>k, we do not have appropriate bipartite graphs G such that
δ(G)=s but any k vertex-disjoint cycles of G contains no more than 4s−1
vertices.

We shall use the following terminology and notation. Let G be a graph.
For a vertex u∈V (G) and a subgraphH of G, N(u,H) is the set of neighbors
of u contained in H, i.e., N(u,H)=N(u)∩V (H). We let d(u,H)= |N(u,H)|.
Thus d(u,G) is the degree of u in G. Similarly, we define N(u,X) and
d(u,X) for a subset X of V (G). For a subset U of V (G), G[U ] denotes
the subgraph of G induced by U . Let C be a cycle of G. If u is a ver-
tex of C and w is a vertex of G− V (C) such that C − u+ w is hamil-
tonian, we say that u is replaceable by w (in C). We use e(G) to de-
note the number of edges of G. If A and B are two disjoint subsets of
V (G), we use e(A,B) to denote the number of edges of G between A
and B.
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2. Lemmas

Let G=(V1,V2;E) be a bipartite graph in the following.

Lemma 2.1. Let C be a cycle of order 2m in G. Let P be a path of even
order in G−V (C). Let x and y be the two endvertices of P . If d(x,C)+
d(y,C) ≥ m, then G[V (C ∪P )] is hamiltonian unless either d(x,C) = 0 or
d(y,C)=0.

Proof. Let A = N(u,C) and B = {v|uv ∈ E(C) and u ∈ A}. Clearly, if
N(y,C)∩B 	= ∅ then G[V (C ∪P )] is hamiltonian. It is also clear that if
A 	= ∅ and |A| 	=m then |B|> |A|. If G[V (C ∪P )] is not hamiltonian, then
d(x,C) + d(y,C) ≤ |A|+m− |B|. Furthermore, we see that either A = ∅
or |A| =m since d(x,C)+ d(y,C) ≥m, and therefore either d(x,C) = 0 or
d(y,C)=0.

Lemma 2.2. Let C be a cycle of order 2m in G and let x and y be two
vertices in G−V (C) such that x ∈ V1 and y ∈ V2. Suppose that d(x,C)+
d(y,C)≥m+1 and G[V (C)∪{x,y}] is not hamiltonian. Then there exist
a labeling C=a1b1a2b2 . . .ambma1 and an integer r∈{1,2, . . . ,m} such that
N(x,C) = {b1, b2, . . . , br} and N(y,C) = {a1,ar+1,ar+2, . . . ,am}. Moreover,
aibj 	∈E for all i∈{2, . . . ,r} and j∈{r+1, . . . ,m}.

Proof. Let C=a1b1a2b2 . . .ambma1. Then d(x,C)+d(y,C)=
∑m

i=1(d(x,aibi)+
d(y,aibi)) ≥ m+1. This implies that there exists i ∈ {1,2, . . . ,m}, say i =
1, such that d(x,a1b1) + d(y,a1b1) = 2. Say {xb1,ya1} ⊆ E. Then we see
that {xbi,yai} 	⊆E for all i∈ {2,3, . . . ,m} for otherwise G[V (C)∪{x,y}] is
hamiltonian. It follows that d(x,aibi)+d(y,aibi)=1 for all i∈{2,3, . . . ,m}.

Let r be the largest number in {1,2, . . . ,m} such that {b1, b2, . . . , br} ⊆
N(x,C). If r = m, the lemma holds. We assume r<m. Then yar+1 ∈ E
as xbr+1 	∈E. Let s be the largest number in {r+1,r+2, . . .m} such that
{ar+1,ar+2, . . . ,as} ⊆ N(y,C). We claim that s=m. If it is not true, then
xbs+1 ∈ E as yas+1 	∈ E, and we let t be the largest number in {s+1,s+
2, . . . ,m} such that {bs+1, bs+2, . . . , bt}⊆N(x,C). If t<m, then yat+1∈E as
xbt+1 	∈E. If t=m, we let at+1=a1 and so we still have yat+1∈E. Thus

xbrarbr−1 . . . a2b1a1bmam . . . bt+1at+1ybr+1ar+1 . . . atbtx

is a hamiltonian cycle of G[V (C)∪{x,y}], a contradiction. Hence s=m. If
there exist i∈{2,3, . . . ,r} and j∈{r+1,r+2, . . . ,m} such that aibj ∈E, then

aibjajbj−1aj−1 . . . br+1ar+1yaj+1bj+1 . . . ambma1b1 . . .

. . . ai−1bi−1xbrarbr−1ar−1 . . . biai
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is a hamiltonian cycle of G[V (C)∪{x,y}], a contradiction. Therefore aibj 	∈E
for all i∈{2,3, . . . ,r} and j∈{r+1,r+2, . . . ,m}. This proves the lemma.

Lemma 2.3. Let C be a cycle of order 2m in G and P a path of order 2t in
G−V (C). Let u and w be the two endvertices of P . Suppose that G[V (C∪P )]
does not contain a cycle longer than C. If d(u,C)>0 and d(w,C)>0, then
m≥2t−1+d(u,C)+d(w,C).

Proof. Let C=a1b1 . . .ambma1 and P =x1y1 . . .xtyt with {a1,x1}⊆V1. We
may assume that yta1 ∈ E and x1bj ∈ E for some j ∈ {1, . . . ,m} such that
d(x1,{b1, . . . , bj−1})= 0 and d(yt,{a2, . . . ,aj})= 0. As G[V (C ∪P )] does not
contain a cycle longer than C, we see that j ≥ t+1. Let p be the largest
number in {1, . . . ,m} such that x1bp ∈E. For the same reason, we see that
m−p≥ t and d(yt,{ap+1, . . . ,ap+t})=0. Thus m−p≥ t+d(yt,{ap+1, . . . ,am}).
Clearly, d(x1,aibi)+ d(yt,aibi) ≤ 1 for each i ∈ {j +1, . . . ,p}. Thus p− j ≥
d(x1,{bj+1, . . . , bp})+ d(yt,{aj+1, . . . ,ap}). As j ≥ t+1, it follows that m≥
2t−1+d(x1,C)+d(yt,C).

Lemma 2.4. Let C be a cycle of order 2m in G and P a path of order
2t−1 (t≥2) in G−V (C). Let u and w be the two endvertices of P . Suppose
that G[V (C ∪P )] does not contain a cycle longer than C. If d(u,C) > 0,
d(w,C)>0 and |N(u,C)∪N(w,C)|≥2, then m≥2(t−2)+d(u,C)+d(w,C).

Proof. Let C = a1b1 . . .ambma1 and P = x1y1 . . .xt−1yt−1xt. W.l.o.g., say
{a1,x1} ⊆ V1. We may assume that x1b1 ∈ E and xtbj ∈ E for some j ∈
{2, . . . ,m} such that d(x1,{b2, . . . , bj−1})=0 and d(xt,{b2, . . . , bj−1})=0. As
G[V (C ∪P )] does not contain a cycle longer than C, we see that j≥ t+1.
Let p be the largest number in {1, . . . ,m} such that xtbp ∈E. For the same
reason, we see that m− p ≥ t− 1 and d(x1,{bp+1, . . . , bp+t−1}) = 0. Thus
m−p≥ t−1+d(x1,{bp+1, . . . , bm}). Clearly, for each i∈{1, . . . ,m}, if xtbi∈E
then x1bi−1 	∈E and x1bi+1 	∈E since G[V (C∪P )] does not contain a cycle
longer than C, where the subscripts are taken modulo m in {1, . . . ,m}. This
implies that p− j≥d(x1,{bj+1, . . . , bp})+d(xt,{bj+1, . . . , bp}). As j≥ t+1, it
follows thatm≥2t+d(x1,{bj+1, . . . , bm})+d(xt,{bj+1, . . . , bm}). Consequently,
m≥2(t−2)+d(x1,C)+d(xt,C).

3. Proof of Theorem B

Let k and s be two integers with s≥k≥2. Let G=(V1,V2;E) be a bipartite
graph with |V1| = |V2| = n > 2k and δ(G) ≥ s+1. Suppose, for a contra-
diction, that G does not contain k vertex-disjoint cycles covering at least
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min(2n,4s) vertices. By the result of [11] mentioned in the above introduc-
tion, G has k vertex-disjoint cycles. Hence s>k. We choose k vertex-disjoint
cycles C1, . . . ,Ck such that

k∑

i=1

|V (Ci)| is maximum.(1)

Subject to (1), we choose C1, . . . ,Ck such that

The length of a longest path of G− V (∪k
i=1Ci) is maximum.(2)

Subject to (1) and (2), we choose C1, . . . ,Ck such that

The number of quadrilaterals in {C1, . . . , Ck} is maximum.(3)

Subject to (1), (2) and (3), we finally choose C1, . . . ,Ck such that

k∑

i=1

e(G[V (Ci)]) is maximum.(4)

Let H =∪k
i=1Ci and D=G−V (H). Let P be a longest path of D. Say

|V (Ci)|=2mi for each i∈{1, . . . ,k} and let m=
∑k

i=1mi. Then m<2s. We
divide our proof into the following two cases.

Case I. The order of P is one, i.e., e(D)=0.

Let x ∈ V (D)∩V1 and y ∈ V (D)∩V2. Then d(x,H)+ d(y,H) ≥ 2s+2.
By Lemma 2.2, d(x,Ci) + d(y,Ci) ≤ mi + 1 for each i ∈ {1, . . . ,k}. As
m < 2s, we see that there exist Cp and Cq in H with p 	= q such that
d(x,Cp)+ d(y,Cp) =mp+1 and d(x,Cq)+ d(y,Cq) = mq +1. For the sake
of convenience, say {p,q} = {1,2}. By Lemma 2.2, there exist a label-
ing of C1 = a1b1 . . .am1bm1a1 and r ∈ {1, . . . ,m1} such that N(x,C1) =
{b1, . . . , br} and N(y,C1) = {a1,ar+1, . . . ,am1}. Furthermore, we have that
e({a2, . . . ,ar},{br+1, . . . , bm1}) = 0. Clearly, ai is replaceable by x and bj

is replaceable by y for each i ∈ {2, . . . ,r} and j ∈ {r+1, . . .m1}. Thus by
(4), d(ai,C1) ≥ d(x,C1) and d(bj ,C1) ≥ d(y,C1) for each i ∈ {2, . . . ,r} and
j∈{r+1, . . . ,m1}. It follows that if G1=G[{a2, . . . ,ar}∪{b1, . . . , br−1}] and
G2=G[{ar+1, . . . ,am1}∪{br+1, . . . , bm1}], then G1 and G2 are two complete
bipartite graphs. Clearly, m1 ≥3 for otherwise G[V (C1)∪{x,y}] contains a
quadrilateral and a path of order 2 such that they are vertex-disjoint, con-
tradicting (2). Since G[V (C2)∪{x,y}] has a hamiltonian path from x to y,
we readily see that G[V (C1 ∪C2)∪{x,y}−V (Gi)] is hamiltonian for each
i∈{1,2}. Hence G1 and G2 must be of order 2 for otherwise (1) is violated.
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Therefore C1 is of order 6 and r=2. Thus d(a2,D)=0 and d(b3,D)=0 for
otherwise G[V (C1∪D)] contains a cycle of order 6 and a path of order 2 such
that they are vertex-disjoint. Let Q=xb1a2b2x, C ′

1= ya1b3a3y and m′
1=2.

Set C ′
i =Ci and m′

i =mi for each i∈ {2, . . . ,k}. Say m′=
∑k

i=1m
′
i. Clearly,

m′=m−1≤ 2s−2. Similarly, we have m2=3. By (1) and Lemma 2.1, we
have

d(u,C ′
i) + d(w,C ′

i) ≤ m′
i for each i ∈ {1, . . . , k} and uw ∈ E(Q).(5)

As m′≤2s−2, see that d(u,Q∪D)+d(w,Q∪D)≥4 for each uw∈E(Q).
First, let us assume that N(b1,D) = N(b2,D) = {x}. Then equality must
hold in (5). By Lemma 2.1, d(u,Ci)=0 or d(w,Ci)=0 for each i∈{1, . . . ,k}
and uw∈E(Q). Then it is easy to see that G[V (C ′

2∪Q)] contains a cycle C ′′
2

of order 8. Replacing C1 and C2 by C ′
1 and C ′′

2 in the set {C1, . . . ,Ck}, we
see that (3) is violated while (1) and (2) are maintained.

Therefore, we must have that either d(b1,D)≥2 or d(b2,D)≥2. W.l.o.g.,
say the latter holds. Let P ′ = xb1a2b2z where z ∈ V (D) and z 	= x. By (1)
and Lemma 2.4, we have

d(x,C ′
i) + d(z,C ′

i) ≤ m′
i for each i ∈ {1, . . . , k}.(6)

Since m′ ≤ 2s− 2, d(x,D) = 0 and d(z,D) = 0, equality must hold in (6).
Moreover, d(z,Q)=2. We claim that for each i∈{1, . . . ,k}, either d(x,C ′

i)=0
or d(z,C ′

i) = 0. If this is false, say d(x,C ′
i) > 0 and d(z,C ′

i) > 0 for some
i ∈ {1, . . . ,k}. By (1) and Lemma 2.4, N(x,C ′

i) = N(z,C ′
i) = {v} for some

v ∈ V (C ′
i). Since equality holds in (6), we obtain that m′

i = 2. Clearly,
G[V (P ′∪C ′

i)] contains a cycle of order 6 and a path of order 3. This would
violate (2) while (1) is maintained. Hence the claim holds. As P ′′=xb1zb2a2

and P ′′′ = a2b1xb2z are two paths of G[V (P ′)] and d(a2,D) = 0, we may
repeat this argument with P ′ replaced by either of P ′′ and P ′′′. Then equality
in (6) must hold when x or z is replaced by a2, and similar claims follow,
too. Clearly, d(u,∪k

i=1C
′
i)≥ s−1 for each u∈{x,a2,z}. It follows that m′≥

3(s−1)≥2s, a contradiction.

Case II. The order of P is at least 2.

In this case, if u and w are the two endvertices of P , we define r(P ) =
d(u,P )+ d(w,P ). We choose a longest path P of D with r(P ) as large as
possible. When P is of even order, let P =x1y1 . . .xtyt with x1 ∈V1. When
P is of odd order, let P =x1y1 . . .xt−1yt−1xt with x1 ∈V1. Set r1= d(x1,P )
and r2= d(w,P ) where w is the other endvertex of P . Thus r(P )= r1+r2.
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We may assume r1 ≥ r2. Clearly, r1 ≤ s− 1 for otherwise D has a cycle of
order at least 2s, and then by (1), m≥m1+m2≥2s. Thus

d(x1,H) ≥ s+ 1− r1 ≥ 2 and d(w,H) ≥ s+ 1− r2 ≥ 2.(7)

We now break into the following two subcases.

Case 2.1. The order of P is even.
In this subcase, P = x1y1, . . . ,xtyt, w = yt and t ≥ r1. By (1) and

Lemma 2.1, we see that d(x1,Ci) + d(yt,Ci) ≤ mi for all i ∈ {1, . . . ,k}. It
follows that r1 ≥ 2 as m≤ 2s−1. Thus D has a cycle of order at least 2r1.
Therefore kr1 < 2s, i.e., r1 < 2s/k. Let us assume that there exists Ci in
H, say Ci = C1, such that d(x1,C1)> 0 and d(yt,C1)> 0. By Lemma 2.3,
m1≥2t−1+d(x1,C1)+d(yt,C1). Then

m ≥ 2t− 1 + d(x1,H) + d(yt,H) ≥ 2t− 1 + 2(s+ 1)− (r1 + r2) ≥ 2s+ 1,

a contradiction. Therefore, for each i ∈ {1, . . . ,k}, either d(x1,Ci) = 0 or
d(yt,Ci) = 0. Let p be the largest number in {1, . . . , t} such that x1yp ∈E.
Set

P ′ = xpyp−1 . . . x2y1x1ypxp+1yp+1 . . . xtyt and P ′′ = x1y1x2 . . . yp−1xp.

Then P ′ is a longest path of D, too. By the maximality of r(P ), we see that
d(xp,P ) ≤ r1 ≤ p. As in (7), we must have that d(xp,H) ≥ s+1− r1 ≥ 2.
Similarly, it also holds that for each i ∈ {1, . . . ,k}, either d(xp,Ci) = 0 or
d(yt,Ci)=0. Let us consider the relation between P ′′ and each Ci. Suppose
that there exists Ci in H, say Ci=C1, such that d(x1,C1)>0, d(xp,C1)>0
and |N(x1,C1)∪N(xp,C1)| ≥ 2. By Lemma 2.4, m1 ≥ 2(p− 2)+ d(x1,P )+
d(xp,C1). Then

m ≥ 2(p − 2) + d(x1,H) + d(xp,H) + d(yt,H)
≥ 3(s + 1)− 2r1 − r2 + 2(p− 2) ≥ 2s,

a contradiction. Therefore for each i ∈ {1, . . . ,k}, if d(x1,Ci) > 0 and
d(xp,Ci)>0 then N(x1,Ci)=N(xp,Ci)={ai} for some ai∈V (Ci). Let

A = {i|d(x1, Ci) > 0 or d(xp, Ci) > 0; 1 ≤ i ≤ k}.

Set B= {1, . . . ,k}−A. Since d(x1,H)≥ 2, d(xp,H)≥ 2 and d(yt,H)≥ 2, we
conclude that |A|≥2 and |B|≥1. Thus

∑

i∈A

mi ≥ d(x1,H) + d(xp,H) ≥ 2(s + 1)− 2r1;(8)

∑

i∈B

mi ≥ d(yt,H) ≥ s+ 1− r2.(9)
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We claim that r2 ≥ 3. If this is false, then (8) and (9) imply that r1 >
(s+1)/2 since m ≤ 2s− 1. Since D has a cycle of order at least 2r1, it
follows that m> |A|(s+1)/2+(s+1− r2)≥ 2s, a contradiction. Therefore
r2 ≥ 3. Let q be the smallest number in {1, . . . , t− 1} such that ytxq ∈ E.
Set P (3) = x1y1 . . .xqytxtyt−1 . . .xq+1yq and P (4) = yqxq+1 . . . xtyt. Repeating
the above argument with P (3) and P (4) playing the role of P ′ and P ′′ , we
can readily show that for each Ci in H, either d(x1,Ci) = 0 or d(yq,Ci) =
0. Furthermore, for each Ci in H, if d(yq,Ci) > 0 and d(yt,Ci) > 0, then
N(yq,Ci) =N(yt,Ci) = {bi} for some bi ∈ V (Ci). Assume that q>p. Then
xpyp−1 . . . y1x1ypxp+1 . . .xqytxt−1 . . .xq+1yq is a hamiltonian path of G[V (P )].
Again, we can show, as above, that for each Ci in H, either d(xp,Ci) = 0
or d(yq,Ci) = 0. Thus d(yq,Ci) = 0 for all i∈A. As d(yt,H) ≥ 2, it follows
that |B|≥2. Hence k≥4, and consequently, r1<s/2. But then

m ≥
∑

i∈A

mi +
∑

i∈B

mi

≥
∑

u∈R

d(u,H) ≥ 4(s + 1)− 2r1 − 2r2 > 2s

where R = {x1,xp,yq,yt}, a contradiction. Hence q≤p. Clearly, the above
calculation is still valid if for each i ∈ {1, . . . ,k}, we still have that either
d(xp,Ci)=0 or d(yq,Ci)=0. Therefore we may assume that there exists Ci

in H, say Ci=C1, such that d(xp,C1)>0 and d(yq,C1)>0. By Lemma 2.3,
m1 ≥ 2
(p+1)/2�−1+d(xp,C1)+d(yq,C1) since D has a path of order at
least 2
(p+1)/2� from xp to yq. Then

m ≥ 2
(p + 1)/2� − 1 +
∑

u∈R

d(u,H)

≥ 4(s + 1) + p− 2r1 − 2r2 ≥ 4s + 4− 3r1.

As k ≥ |A|+ |B| ≥ 3, we have that 3r1 < 2s. It follows that m > 2s, a
contradiction.

Case 2.2. The order of P is odd.
In this case, P =x1y1 . . .xt−1yt−1xt, w=xt and t≥ r1+1. Suppose that

there exits Ci in H such that d(x1,Ci) > 0, d(xt,Ci) > 0 and |N(x1,Ci)∪
N(xt,Ci)|≥2. By Lemma 2.4, we get

m ≥ 2(t− 2) + d(x1,H) + d(xt,H) ≥ 2(t− 2) + 2(s+ 1)− r1 − r2 ≥ 2s,

a contradiction.
Therefore for each i ∈ {1, . . . ,k}, either d(x1,Ci) = 0, or d(xt,Ci) = 0,

or N(x1,Ci) = N(xt,Ci) = {ai} for some ai ∈ V (Ci). Furthermore, for i ∈
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{1, . . . ,k}, if N(x1,Ci) = N(xt,Ci) = {ai} then aiPai is a cycle of G and
therefore mi≥ t by (1). Since 2s−1≥m≥d(x1,H)+d(xt,H) by Lemma 2.4
and therefore 2s−1≥2(s+1)−r1−r2, we see that r1≥2 and therefore t≥3.
Let p be the largest number in {1, . . . , t− 1} such that x1yp ∈ E. Clearly,
p ≥ r1 and G[V (P )] has a hamiltonian path from xp to xt. Thus for each
i∈{1, . . . ,k}, either d(xp,Ci)=0, or d(xt,Ci)=0, or N(xp,Ci)=N(xt,Ci)=
{bi} for some bi∈V (Ci). By Lemma 2.4 and the above argument, it follows
that m ≥ d(x1,H)+ d(xp,H)+ d(xt,H). If there exists Ci in H such that
d(x1,Ci)> 0, d(xp,Ci)> 0 and |N(x1,Ci)∪N(xp,Ci)| ≥ 2, then by (7) and
Lemma 2.4, we further obtain

m ≥ 2(p − 2) + d(x1,H) + d(xp,H) + d(xt,H)
≥ 2(p − 2) + 2(s+ 1− r1) + (s+ 1)− r2 ≥ 2s,

a contradiction. Therefore for each i ∈ {1, . . . ,k}, either d(x1,Ci) = 0, or
d(xp,Ci)=0, or N(x1,Ci)=N(xp,Ci)={ci} for some ci∈V (Ci).

If k=2, then from the above, we see that d(x1,Ci)=d(xp,Ci)=d(xt,Ci)=
1 for each i∈{1,2}. Furthermore, a1Pa1 and a2Pa2 are two cycles of order
2t in G. As t−1≥r1≥s+1−2=s−1, we obtain that m≥2t≥2s by (1), a
contradiction.

Therefore k≥3. We claim that r2≥3. On the contrary, say r2≤2. Then
d(xt,H)≥s+1−r2≥s−1. Since 2s−1≥m≥d(x1,H)+d(xp,H)+d(xt,H)≥
2(s+1−r1)+s−1, we get that r1≥(s+2)/2. Sincemi≥r1 for each i∈{1, . . . ,k},
we see that k=3 asm≤2s−1. Asm1+m2≥s+2, we see that d(xt,C1∪C2)>0
for otherwise m≥s+2+d(xt,H)≥2s+1. Say w.l.o.g. d(xt,C1)>0. Similarly,
we have that d(xt,C2∪C3)> 0, say d(xt,C2)> 0. As 3(s−1)≥ 2s, we must
have that r1 ≤ s− 2 for otherwise m≥ 3r1 ≥ 2s. Thus d(u,H)≥ 3 for each
u∈{x1,xp,xt}. It follows from the above argument that d(u,Ci)= 1 for all
u ∈ {x1,xp,xt} and i ∈ {1,2,3}. Therefore r1 = r2 = s− 2. Since aiPai is a
cycle of G for each i∈ {1,2,3}, we see, by (1), that mi ≥ t≥ s−1 for each
i ∈ {1,2,3}, and therefore m ≥ 3(s− 1) ≥ 2s, a contradiction. This proves
that r2≥3.

As r1 ≥ r2 ≥ 3, we see t≥ 4. Let q be an integer in {1,2, . . . , t−2} such
that xtyq ∈E. We first suppose that q≥p. In this situation, it is clear that
G[V (P )] has a hamiltonian path from x to xq+1 for each x ∈ {x1,xp}. As
argued in the above, we see that for each i ∈ {1, . . . ,k} and x ∈ {x1,xp},
either d(x,Ci) = 0, or d(xq+1,Ci) = 0, or d(x,Ci) = d(xq+1,Ci) = 1 with
N(x,Ci)=N(xq+1,Ci). As t≥4 and by Lemma 2.4, we readily see
2s−1 ≥ m ≥ d(x1,H)+d(xp,H)+d(xq+1,H)+d(xt,H) ≥ 4(s+1)−2r1−2r2.

This implies that r1 > s/2 + 1, and thus k = 3. By Lemma 2.4,
m3 ≥ d(xq+1,C1) + d(xt,C1). Since m1 +m2 ≥ 2r1, we must have that
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d(xq+1,C3)+ d(xt,C3) < 2(s− r1). Thus d(xq+1,C1 ∪C2)+ d(xt,C1 ∪C2) >
2(s+1− r2)− 2(s− r1) > 0. W.l.o.g., say d(xq+1,C1)+ d(xt,C1) > 0. Sim-
ilarly, we can show that d(xq+1,C2 ∪ C3) + d(xt,C2 ∪ C3) > 0. W.l.o.g.,
say d(xq+1,C2) + d(xt,C2) > 0. As 3r1 < 2s, we have that r1 ≤ s − 2.
Thus d(x,H) ≥ 3 for each x ∈ {x1,xp,xq+1,xt}. In summation of the
above argument, we conclude that d(x,Ci) = 1 for all i ∈ {1,2,3} and
x ∈ {x1,xp,xq+1,xt}. It follows that r1 = r2 = s− 2. Since aiPai is a cy-
cle of G for each i ∈ {1,2,3}, we must have that mi ≥ t ≥ s− 1 for each
i∈{1,2,3}, and consequently, m≥3(s−1)≥2s, a contradiction.

Therefore xtyi 	∈E for all i∈ {p, . . . , t−1}. We may now choose q to be
the smallest integer in {1, . . . , t− 1} with xtyq ∈ E. As r2 ≥ 3, q ≤ p− 2.
Then G[V (P )] still has a hamiltonian path from x1 to xq+1. If it is still
the case that for each i∈ {1, . . . ,k}, either d(xp,Ci) = 0, or d(xq+1,Ci) = 0,
or d(xp,Ci) = d(xq+1,Ci) = 1 with N(xp,Ci) =N(xq+1,Ci), then the above
argument still prevails and it follows that m≥3(s−1)≥2s. Therefore, there
must exist Ci in H, say C1, such that d(xp,C1) > 0, d(xq+1,C1) > 0 and
|N(xp,C1)∪N(xq+1,C1)|≥2. Clearly, G[V (P )] has a path of order at least
2
(p+1)/2�−1 from xp to xq+1. By Lemma 2.4, m1 ≥ 2(
(p+1)/2�−2)+
d(xp,C1)+d(xq+1,C1). By Lemma 2.4, it follows

m ≥ 2(
(p + 1)/2� − 2) + d(x1,H) + d(xp,H) + dq+1,H) + d(xt,H)
≥ p− 3 + 4(s + 1)− 2r1 − 2r2

≥ 4s+ 1− 3r1.

Since 3r1<2s by (1), it follows that m≥4s+1−3r1≥2s+2, a contradiction.
This proves the theorem.
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[2] K. Corrádi and A. Hajnal: On the maximal number of independent circuits in a
graph, Acta Math. Acad. Sci. Hungar. 14 (1963), 423–439.

[3] G. A. Dirac: Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952),
69–81.

[4] M. H. El-Zahar: On circuits in graphs, Discrete Math. 50 (1984), 227–230.
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