COMBINATORICA 25 (3) (2005) 367-377

COMBINATORICA

Bolyai Society — Springer-Verlag

MAXIMAL TOTAL LENGTH OF k DISJOINT CYCLES
IN BIPARTITE GRAPHS

HONG WANG

Received January 31, 2002

Let k, s and n be three integers with s >k>2, n>2k+1. Let G=(V1,Va; E) be a bipartite
graph with |Vi|=|V2|=n. If the minimum degree of G is at least s+1, then G contains k
vertex-disjoint cycles covering at least min(2n,4s) vertices of G.

1. Introduction

We discuss only finite simple graphs and use standard terminology and no-
tation from [1] except as indicated. Let k be an integer with k >2. Let G
be a graph of order n > 3. P. Erdds and T. Gallai [5] showed that if G is
2-connected and every vertex of G with at most one exception has degree at
least k, then G contains a cycle of length at least min(2k,n). Corradi and
Hajnal [2] investigated the maximum number of vertex-disjoint cycles in a
graph. They proved that if G is a graph of order at least 3k with minimum
degree at least 2k, then G contains k vertex-disjoint cycles. In particular,
when the order of G is exactly 3k, then G contains k vertex-disjoint trian-
gles. Motivated by these results, we conjectured [12] that if ¢, £ and n are
three integers with k>2, t >2k and n >3k, and G is a graph of order n with
minimum degree at least ¢, then G contains k vertex-disjoint cycles cover-
ing at least min(2t,n) vertices of G. This conjecture was verified for k=2
in [12]. Yoshimi Egawa, Kenichi Kawarabayashi and Hong Wang provided a
complete proof of this conjecture in [13]. The result is as follows:
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Theorem A ([13]). If t, k and n are three integers with k > 3, t > 2k
and n >3k, and G is a graph of order n such that d(z,G)+d(y,G) > 2t for
each pair of non-adjacent vertices x and y, then G contains k vertex-disjoint
cycles covering at least min(2t,n) vertices of G.

In [10], we showed that if G=(V},V5; F) is a 2-connected bipartite graph
with minimum degree larger than (k+1)/2, then G contains a cycle of length
at least min(2a,2k) where a = min(|V;|,|V2]). We also showed [11] that if
|V1| = |Va| > 2k and the minimum degree is at least k+ 1, then G contains
k vertex-disjoint cycles. In this paper, we prove an analogous result (with
Theorem A) for bipartite graphs. We will show:

Theorem B. Let k, s and n be three integers with s > k> 2, n>2k+1.
Let G=(V1,Va; E) be a bipartite graph with |V1|=|Va|=n. If the minimum
degree of G is at least s+1, then G contains k vertex-disjoint cycles covering
at least min(2n,4s) vertices of G.

To demonstrate the sharpness of the minimum degree condition in The-
orem B, we construct the bipartite graphs Hy ,, for positive integers s and
m with m > s+ 1 as follows. Let H; = (A,B;E;) and Hy = (X,Y; Es)
be two vertex-disjoint complete bipartite graphs with |[A] = |[Y| = s—1
and |B| = |X| = m. Let b be a fixed vertex of B and z a fixed vertex
of X. Then H,,, consists of H; and Hy such that b is adjacent to every
vertex of X —{z} and z is adjacent to every vertex of B — {b}. Clearly,
d(Hsm)=s. It is easy to see that any k vertex-disjoint cycles of H,, con-
tains no more than 4s vertices of Hy,,. When s = k, the examples G,
in [11] shows that §(Gy,,) = k but it does not have k vertex-disjoint cy-
cles. When s >k, we do not have appropriate bipartite graphs G such that
d(G)=s but any k vertex-disjoint cycles of G' contains no more than 4s—1
vertices.

We shall use the following terminology and notation. Let G be a graph.
For a vertex u € V(G) and a subgraph H of G, N (u, H) is the set of neighbors
of u contained in H, i.e., N(u,H)=N(u)NV(H). We let d(u, H)=|N (u, H)|.
Thus d(u,G) is the degree of u in G. Similarly, we define N(u,X) and
d(u,X) for a subset X of V(G). For a subset U of V(G), G[U] denotes
the subgraph of G induced by U. Let C be a cycle of G. If u is a ver-
tex of C' and w is a vertex of G —V(C) such that C'—u+ w is hamil-
tonian, we say that w is replaceable by w (in C). We use e(G) to de-
note the number of edges of G. If A and B are two disjoint subsets of
V(G), we use e(A,B) to denote the number of edges of G between A
and B.
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2. Lemmas
Let G=(V1,Va; E) be a bipartite graph in the following.

Lemma 2.1. Let C' be a cycle of order 2m in G. Let P be a path of even
order in G—V(C). Let x and y be the two endvertices of P. If d(z,C)+
d(y,C) > m, then G[V(CUP)] is hamiltonian unless either d(x,C') =0 or
d(y,C)=0.

Proof. Let A = N(u,C) and B = {vjuv € E(C) and u € A}. Clearly, if
N(y,C)N B # () then G[V(C U P)] is hamiltonian. It is also clear that if
A#0D and |A| #m then |B|>|A|. If G[V(C'UP)] is not hamiltonian, then
d(z,C)+d(y,C) < |A| +m — |B|. Furthermore, we see that either A = ()
or |A| =m since d(z,C)+d(y,C) > m, and therefore either d(z,C) =0 or

Lemma 2.2. Let C be a cycle of order 2m in G and let x and y be two
vertices in G —V(C) such that x € Vi and y € Va. Suppose that d(z,C) +
d(y,C)>m+1 and G[V(C)U{z,y}] is not hamiltonian. Then there exist
a labeling C' =ajbiaghy . ..ambnar and an integer r € {1,2,...,m} such that
N(z,C) = {b1,ba,...,b.} and N(y,C)={a1,ar41,ar+2,...,am}. Moreover,
a;bj€E for allie{2,...,r} and je{r+1,...,m}.

Proof. Let C'=abjagbs...ambnar. Then d(z, CHd(y,C)=>"1" (d(z,a;b;)+
d(y,a;b;)) > m+1. This implies that there exists i € {1,2,...,m}, say i =
1, such that d(x,a1b1)+ d(y,a1b1) = 2. Say {zbi,ya;} C E. Then we see
that {xb;,ya;} Z E for all i € {2,3,...,m} for otherwise G[V(C)U{z,y}] is
hamiltonian. It follows that d(x,a;b;)+d(y,a;b;)=1 for all i€{2,3,...,m}.
Let r be the largest number in {1,2,...,m} such that {b1,bs,...,b.} C
N(z,C). If r = m, the lemma holds. We assume r<m. Then ya,+1 € E
as xzb,+1 € E. Let s be the largest number in {r+ 1,7 +2,...m} such that
{ar4+1,ar42,...,a5} € N(y,C). We claim that s=m. If it is not true, then
xbst1 € E as yas11 € E, and we let ¢t be the largest number in {s+1,s+
2,...,m} such that {bsy1,bs42,...,b:} CN(z,C). If t<m, then ya; 1 € E as
xbi1 € B If t=m, we let a;11 =a1 and so we still have yas 1 € E. Thus

xbrapby_1 ... agbraibpa, .. ber1ai 1Ybri1Qr 41 - arbi

is a hamiltonian cycle of G[V(C)U{x,y}], a contradiction. Hence s=m. If
there exist 1€{2,3,...,r} and je{r+1,r+2,...,m} such that a;b; € E, then

aibjajbj_laj_l . br+1ar+1yaj+1bj+1 . ambmalbl .
N aiflbifll‘brarbrflarfl e biai
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is a hamiltonian cycle of G[V (C)U{z,y}], a contradiction. Therefore a;b; ¢ E
for all i€{2,3,...,r} and je{r+1,r+2,...,m}. This proves the lemma. [

Lemma 2.3. Let C be a cycle of order 2m in G and P a path of order 2t in
G-V (C). Let uw and w be the two endvertices of P. Suppose that G[V (CUP)]
does not contain a cycle longer than C. If d(u,C) >0 and d(w,C) >0, then
m>2t—1+d(u,C)+d(w,C).

Proof. Let C'=ayb;y...ambpa; and P=x1y; ... 21y with {aj,21} CV;. We
may assume that y,a; € E and x1b; € E for some j € {1,...,m} such that
d(x1,{b1,...,bj—1}) =0 and d(y,{az,...,a;})=0. As G[V(CUP)| does not
contain a cycle longer than C', we see that j >t+ 1. Let p be the largest
number in {1,...,m} such that x,b, € E. For the same reason, we see that
m—p>tand d(y, {apt1,...,ap4t})=0. Thus m—p>t+d(ys, {apt1,...,am}).
Clearly, d(z1,a:b;) 4+ d(ys,a;b;) <1 for each i € {j+1,...,p}. Thus p—j >
d(x1,{bjs1,-.-,bp}) +d(ye, {ajs1,...,ap}). As j >t +1, it follows that m >
2t —1+d(z1,C)+d(y:, C). 1

Lemma 2.4. Let C' be a cycle of order 2m in G and P a path of order
2t—1 (t>2) in G=V(C). Let u and w be the two endvertices of P. Suppose
that G[V(C U P)] does not contain a cycle longer than C. If d(u,C) > 0,
d(w,C)>0 and |N(u,C)UN (w,C)|>2, then m>2(t—2)+d(u,C)+d(w,C).

Proof. Let C' = aiby...ambra; and P = z1y1... 2 1ys—12¢. W.lo.g., say
{a1,21} € V1. We may assume that z1b; € E and z:b; € E for some j €
{2,...,m} such that d(x1,{b2,...,bj—1})=0 and d(z¢,{b2,...,bj—1})=0. As
G[V(CUP)] does not contain a cycle longer than C, we see that j>t¢+1.
Let p be the largest number in {1,...,m} such that x;b, € E. For the same
reason, we see that m —p >t —1 and d(z1,{bpt1,...,bp4¢—1}) = 0. Thus
m—p>t—14+d(z1,{bp+1,...,bm}). Clearly, for each i€ {1,...,m}, if z;b; € E
then z1b;,_1 ¢ E and z1b;+1 ¢ E since G[V(C'U P)] does not contain a cycle
longer than C, where the subscripts are taken modulo m in {1,...,m}. This
implies that p—j>d(x1,{bj+1,...,0p}) +d(xs, {bj41,...,bp}). As j>t+1, it
follows that m > 2t+d(x1,{bjt+1,...,bm })H+d(x,{bj11,...,bpn}). Consequently,
m>2(t—2)+d(z1,C)+d(x,C). |

3. Proof of Theorem B
Let k and s be two integers with s >k >2. Let G=(V1,V5; E) be a bipartite

graph with |Vi| = |Va] =n > 2k and 6(G) > s+ 1. Suppose, for a contra-
diction, that G does not contain k vertex-disjoint cycles covering at least
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min(2n,4s) vertices. By the result of [11] mentioned in the above introduc-
tion, GG has k vertex-disjoint cycles. Hence s> k. We choose k vertex-disjoint
cycles C,...,C} such that

k
(1) Z |V (C)| is maximum.
i=1

Subject to (1), we choose C1,...,C} such that

(2)  The length of a longest path of G — V(UF_,C;) is maximum.
Subject to (1) and (2), we choose C1,...,C) such that

(3) The number of quadrilaterals in {C1,...,Ck} is maximum.

Subject to (1), (2) and (3), we finally choose C1,...,C) such that

(4) e(G[V(C})]) is maximum.
i=1

Let H=U_,C; and D=G —V(H). Let P be a longest path of D. Say
\V(Cy)| =2m; for each ie{1,...,k} and let m=Y"%_,m;. Then m<2s. We
divide our proof into the following two cases.

Case I. The order of P is one, i.e., e(D)=0.

Let x € V(D)NV; and y € V(D) NV, Then d(x,H)+d(y,H) > 2s+2.
By Lemma 2.2, d(z,C;) 4+ d(y,C;) < m;+ 1 for each i € {1,...,k}. As
m < 2s, we see that there exist C}, and C; in H with p # ¢ such that
d(z,Cp) +d(y,Cp) = myp+1 and d(z,Cy) +d(y,Cy) = mg+ 1. For the sake
of convenience, say {p,q} = {1,2}. By Lemma 2.2, there exist a label-
ing of C1 = a1by...amybm,a1 and r € {1,...,m1} such that N(z,C;) =
{b1,...,b;} and N(y,C1) = {ai,ar41,...,am, }. Furthermore, we have that
e({az,...,ar},{bry1,...,bm, }) = 0. Clearly, a; is replaceable by x and b;
is replaceable by y for each i € {2,...,r} and j € {r+1,...my}. Thus by
(4), d(a;,C1) > d(x,C1) and d(bj,Cy) > d(y,Ch) for each i€ {2,...,r} and
je{r+1,...,mi}. It follows that if Gy =G[{as,...,a,} U{b1,...,b,_1}] and
Go=G[{ar41,-..,am, }U{brs1,...,bm, }], then G; and G2 are two complete
bipartite graphs. Clearly, m; >3 for otherwise G[V (C1)U{z,y}] contains a
quadrilateral and a path of order 2 such that they are vertex-disjoint, con-
tradicting (2). Since G[V (C2)U{x,y}] has a hamiltonian path from x to v,
we readily see that G[V(C1UC2)U{z,y} —V(G;)] is hamiltonian for each
i€{1,2}. Hence G and G must be of order 2 for otherwise (1) is violated.
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Therefore Cy is of order 6 and r=2. Thus d(a,D)=0 and d(bs, D) =0 for
otherwise G[V (C1UD)] contains a cycle of order 6 and a path of order 2 such
that they are vertex-disjoint. Let Q = zbjasbox, Cf =yaibsagy and m) =2.
Set C!=C; and m} =m, for each i € {2,...,k}. Say m’' = Y% m!. Clearly,
m' =m —1<2s—2. Similarly, we have my=3. By (1) and Lemma 2.1, we
have

(5) d(u,Cl)+d(w,C}) <m} for each i€ {1,...,k} and uw € E(Q).

As m/<2s—2, see that d(u,QUD)+d(w,QUD)>4 for each uw € E(Q).
First, let us assume that N(by,D) = N(by,D) = {z}. Then equality must
hold in (5). By Lemma 2.1, d(u,C;) =0 or d(w,C;)=0 for each i€{1,...,k}
and uw € F(Q). Then it is easy to see that G[V (C5UQ)] contains a cycle C¥
of order 8. Replacing C; and Cs by C] and C¥ in the set {Cy,...,Cy}, we
see that (3) is violated while (1) and (2) are maintained.

Therefore, we must have that either d(by,D)>2 or d(be, D) >2. W.lo.g.,
say the latter holds. Let P’ = xbjagbyz where z € V(D) and z # z. By (1)
and Lemma 2.4, we have

(6) d(x,C}) +d(z,C}) <mj foreach i€ {1,...,k}.

Since m' <2s—2, d(x,D) =0 and d(z,D) = 0, equality must hold in (6).
Moreover, d(z,Q)=2. We claim that for each i€ {1,...,k}, either d(z,C})=0
or d(z,C!) = 0. If this is false, say d(z,C}) >0 and d(z,C}) > 0 for some
ie€{l,...,k}. By (1) and Lemma 2.4, N(z,C}) = N(z,C!) = {v} for some
v € V(CY). Since equality holds in (6), we obtain that m] = 2. Clearly,
GV (P'UCY)] contains a cycle of order 6 and a path of order 3. This would
violate (2) while (1) is maintained. Hence the claim holds. As P"” =xbizbsas
and P = asbixbyz are two paths of G[V(P’)] and d(a2,D) = 0, we may
repeat this argument with P’ replaced by either of P” and P"”’. Then equality
in (6) must hold when z or z is replaced by ag, and similar claims follow,
too. Clearly, d(u,Uf_ C!)>s—1 for each u € {x,as,2}. It follows that m’>
3(s—1)>2s, a contradiction.

Case II. The order of P is at least 2.

In this case, if v and w are the two endvertices of P, we define r(P) =
d(u, P)+d(w,P). We choose a longest path P of D with r(P) as large as
possible. When P is of even order, let P=x1y;...xy with z1 € V4. When
P is of odd order, let P=x1y;...x4—1y;—12¢ with zq € V4. Set r1 =d(z1, P)
and ry =d(w, P) where w is the other endvertex of P. Thus r(P)=r1+ 7.



MAXIMAL TOTAL LENGTH OF k DISJOINT CYCLES IN GRAPHS 373

We may assume 71 > ry. Clearly, 71 < s—1 for otherwise D has a cycle of
order at least 2s, and then by (1), m>mj+mg>2s. Thus

(7) dlzi,H)>s+1—-—rm>2and d(w,H) > s+1—ry>2.
We now break into the following two subcases.

Case 2.1. The order of P is even.

In this subcase, P = z1y1,...,2y;, w = y and ¢ > r1. By (1) and
Lemma 2.1, we see that d(z1,C;) +d(y,C;) < m; for all i € {1,...,k}. It
follows that r1 >2 as m <2s—1. Thus D has a cycle of order at least 2ry.
Therefore kr; < 2s, i.e., 11 < 2s/k. Let us assume that there exists C; in
H, say C; =C}, such that d(z1,C1) >0 and d(y,C1) > 0. By Lemma 2.3,
my>2t—14d(z1,C1)+d(y:,C1). Then

m>2t—1+d(x,H)+d(y, H) > 2t —1+2(s+1) — (r; +r2) > 2s + 1,

a contradiction. Therefore, for each i € {1,...,k}, either d(x1,C;) = 0 or
d(y:,C;) =0. Let p be the largest number in {1,...,¢} such that z;y, € E.
Set

/ /!
P =zpyp—1 ... 221 T1YpTpr1Yp+1 - - - Ty and P7 = 219122 ... Yp—1Tp.

Then P’ is a longest path of D, too. By the maximality of r(P), we see that
d(zp, P) <ry <p. As in (7), we must have that d(z,,H) > s+1—r3 > 2.
Similarly, it also holds that for each i € {1,...,k}, either d(z,,C;) =0 or
d(yt,C;)=0. Let us consider the relation between P” and each C;. Suppose
that there exists C; in H, say C;=C1, such that d(z1,C1)>0, d(zp,C1)>0
and |N(z1,C1)UN(zp,C1)| > 2. By Lemma 2.4, m; >2(p—2) +d(z1,P) +
d(zp,C1). Then

>3(s+1)—2ry —ro+2(p—2) > 2s,

a contradiction. Therefore for each ¢ € {1,...,k}, if d(x1,C;) > 0 and
d(zp,C;) >0 then N(z1,C;)=N(zp,C;)={a;} for some a; €V (C;). Let

A = {ild(z1,C;) > 0 or d(zp, C;) > 0;1 < i < k}.

Set B={1,...,k} —A. Since d(z1,H) >2, d(xp,H)>2 and d(y;, H) > 2, we
conclude that |A|>2 and |B|>1. Thus

(8) ZmiZd(xl,H)—i—d(xp,H) >2(s+1) — 2ry;
€A
(9) ZmiZd(yt,H)Zs—l—l—rQ.

i€B
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We claim that ro > 3. If this is false, then (8) and (9) imply that r; >
(s+1)/2 since m < 2s—1. Since D has a cycle of order at least 2rj, it
follows that m > |A|(s+1)/24 (s+1—r2) > 2s, a contradiction. Therefore
r9 > 3. Let ¢ be the smallest number in {1,...,¢ —1} such that y,z4 € E.
Set PG) = TIYL - TqYtTeYe—1 - - - Tg+1Yq and pW = YqTg+1--- T4yt Repeating
the above argument with P®) and P® playing the role of P/ and P” , we
can readily show that for each C; in H, either d(z1,C;) =0 or d(y,,C;) =
0. Furthermore, for each C; in H, if d(y,,C;) > 0 and d(y;,C;) > 0, then
N(yq,Ci) = N(yi,C;) = {b;} for some b; € V(C;). Assume that ¢>p. Then
TpYp—1 -+ -Y1L1YpTpt1 - - TqltTe—1 ... Lg41Yq is a hamiltonian path of G[V (P)].
Again, we can show, as above, that for each C; in H, either d(z,,C;) =0
or d(yq,C;) = 0. Thus d(y,,C;) =0 for all i€ A. As d(y;,H) > 2, it follows
that |B|>2. Hence k>4, and consequently, r; <s/2. But then

mZZmﬁZmi

icA i€eB
> Z du, H) > 4(s+ 1) — 2r; — 2rg > 2s
ueER

where R = {x1,2p,yq,yt}, a contradiction. Hence ¢ <p. Clearly, the above
calculation is still valid if for each i € {1,...,k}, we still have that either
d(zp,C;) =0 or d(yq,C;) =0. Therefore we may assume that there exists C;
in H, say C;=C, such that d(z,,C1) >0 and d(y,,C1)>0. By Lemma 2.3,
my >2[(p+1)/2] —1+d(xp,C1)+d(yy,Ch) since D has a path of order at
least 2[(p+1)/2] from x, to y,. Then

m>2[(p+1)/2] =1+ > _ d(u, H)
ueR
>4(s+1)+p—2r1 —2ry >4s+4 — 3rq.

As k > |A| 4 |B| > 3, we have that 3r; < 2s. It follows that m > 2s, a
contradiction.

Case 2.2. The order of P is odd.

In this case, P=x1y1...T¢_1Yy+—12T¢, w=1x and t >ry+ 1. Suppose that
there exits C; in H such that d(z1,C;) >0, d(z¢,C;) >0 and |N(z1,C;)U
N(z,C;)|>2. By Lemma 2.4, we get

m>2(t—2)+d(xy,H)+d(x, H) >2(t —2)+2(s+ 1) —ry — 19 > 28,

a contradiction.
Therefore for each i € {1,...,k}, either d(x1,C;) =0, or d(x,C;) =0,
or N(z1,C;) = N(z,C;) = {a;} for some a; € V(C;). Furthermore, for i €
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{1,...,k}, if N(21,C;) = N(2+,C;) = {a;} then a;Pa; is a cycle of G and
therefore m; >t by (1). Since 2s—1>m>d(xz1,H)+d(z, H) by Lemma 2.4
and therefore 2s—1>2(s+1)—r; —rg, we see that 71 >2 and therefore ¢ > 3.
Let p be the largest number in {1,...,¢ — 1} such that z;y, € E. Clearly,
p >, and G[V(P)] has a hamiltonian path from x, to x;. Thus for each
i€{l,...,k}, either d(z,,C;)=0, or d(x,C;) =0, or N(x},C;)=N(z¢,C;)=
{b;} for some b; € V(C;). By Lemma 2.4 and the above argument, it follows
that m > d(z1,H) + d(zp, H) + d(z¢, H). If there exists C; in H such that
d(z1,C;) >0, d(zp,C;) >0 and |N(x1,C;) UN(xp,C;)| > 2, then by (7) and

Lemma 2.4, we further obtain
m>2(p—2)+d(z,H) +d(xp, H) + d(x¢, H)
>2p—2)+2(s+1—r))+(s+1)—ry > 2s,

a contradiction. Therefore for each i € {1,... k}, either d(z1,C;) = 0, or
d(zp,C;)=0, or N(z1,C;)=N(zp,C;)={c;} for some ¢; € V(C;).

If k=2, then from the above, we see that d(z1,C;) =d(zp,C;) =d(z¢,C;) =
1 for each i€ {1,2}. Furthermore, a; Pa; and agPas are two cycles of order
2t in G. Ast—1>r;>s+1—-2=s—1, we obtain that m>2t>2s by (1), a
contradiction.

Therefore k> 3. We claim that r5 > 3. On the contrary, say ro <2. Then
d(z¢, H)>s+1—ry>s—1. Since 2s—1>m>d(x1, H)+d(xp, H)+d(xy, H) >
2(s+1—ry)+s—1, we get that r1 > (s+2)/2. Since m; >ry foreach i€{1,...,k},
we see that k=3 as m <2s—1. As m1+mgy > s+2, we see that d(xy, C1UC3) >0
for otherwise m > s+2+d(xy, H) >2s+1. Say w.l.o.g. d(z¢,C1) >0. Similarly,
we have that d(z;,CoUC3) >0, say d(z,C2) >0. As 3(s—1) >2s, we must
have that r; < s—2 for otherwise m > 3r; > 2s. Thus d(u, H) > 3 for each
u€ {z1,xp,2}. It follows from the above argument that d(u,C;)=1 for all
u € {z1,2p,2¢} and i € {1,2,3}. Therefore r; =ry =s—2. Since a;Pa; is a
cycle of G for each i € {1,2,3}, we see, by (1), that m; >t >s—1 for each
i €{1,2,3}, and therefore m > 3(s — 1) > 2s, a contradiction. This proves
that ro > 3.

As 1 >1r9 >3, we see t > 4. Let ¢ be an integer in {1,2,...,t—2} such
that z,y, € . We first suppose that ¢>p. In this situation, it is clear that
G[V(P)] has a hamiltonian path from z to z,4; for each x € {x1,z,}. As
argued in the above, we see that for each i € {1,...,k} and x € {z1,2,},
either d(z,C;) = 0, or d(x44+1,C;) = 0, or d(z,C;) = d(zq41,C;) = 1 with
N(z,C;)=N(z¢11,C;). As t>4 and by Lemma 2.4, we readily see

2s—1>m > d(x1, H)+d(xp, H)+d(zgr1, H)+d(xy, H) > 4(s+1)—2r1 —2rs.

This implies that m > s/2 4+ 1, and thus & = 3. By Lemma 2.4,
mg > d(zq41,C1) + d(z,C1). Since my + mg > 2ry, we must have that
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d(zg11,C3) +d(x¢,C3) < 2(s—r1). Thus d(xg41,C1UC) +d(z,Cr UC) >
2(s+1—ry)—2(s—r1) > 0. W.lo.g., say d(xg+1,C1)+d(zs,Cp) > 0. Sim-
ilarly, we can show that d(zg41,C2 U C3) + d(z,Co U C3) > 0. W.lo.g.,
say d(xg+1,C2) + d(x¢,C2) > 0. As 3r; < 2s, we have that r < s — 2.
Thus d(x,H) > 3 for each =z € {z1,2p,2q41,2¢}. In summation of the
above argument, we conclude that d(z,C;) = 1 for all i € {1,2,3} and
x € {x1,xp,xg41,2¢}. It follows that r = rp = s —2. Since a;Pa; is a cy-
cle of G for each i € {1,2,3}, we must have that m; >t > s—1 for each
i€{1,2,3}, and consequently, m>3(s—1)>2s, a contradiction.

Therefore zy; ¢ E for all i € {p,...,t —1}. We may now choose ¢q to be
the smallest integer in {1,...,t —1} with 2y, € E. As rs >3, ¢ <p—2.
Then G[V (P)] still has a hamiltonian path from x; to zg4. If it is still
the case that for each i € {1,...,k}, either d(z),C;) =0, or d(zq+1,C;) =0,
or d(zp,Ci) =d(xg+1,C;) =1 with N(zp,C;) = N(x4+1,C;), then the above
argument still prevails and it follows that m >3(s—1)>2s. Therefore, there
must exist C; in H, say C1, such that d(z),,C1) >0, d(z4+1,C1) > 0 and
|N(zp,C1)UN (z441,C1)] >2. Clearly, G[V(P)] has a path of order at least
2[(p+1)/2] =1 from z, to xgy1. By Lemma 2.4, m; >2([(p+1)/2] —2)+
d(zp,C1)+d(zq41,C1). By Lemma 2.4, it follows

m > 2([(p+1)/2] = 2) +d(ar, H) + d{zy, H) + gy, H) + d(zi, H)
>p—3+4(s+1)—2r; —2r9
>4s+1—3r.

Since 3r; <2s by (1), it follows that m >4s+1—3r1 >2s+2, a contradiction.
This proves the theorem.
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