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The seminal paper of Leighton and Rao (1988) and subsequent papers presented approx-
imate min-max theorems relating multicommodity flow values and cut capacities in undi-
rected networks, developed the divide-and-conquer method for designing approximation
algorithms, and generated novel tools for utilizing linear programming relaxations. Yet,
despite persistent research efforts, these achievements could not be extended to directed
networks, excluding a few cases that are “symmetric” and therefore similar to undirected
networks. This paper is an attempt to remedy the situation. We consider the problem of
finding a minimum multicut in a directed multicommodity flow network, and give the first
nontrivial upper bounds on the max flow-to-min multicut ratio. Our results are algorith-
mic, demonstrating nontrivial approximation guarantees.

1. Introduction

A network is a graph G=(V,E), directed or undirected, with positive edge
capacities c : E → R

+, together with a list of source-sink pairs of vertices
(s1, t1),(s2, t2), . . . ,(sk, tk), sometimes called commodities. Usually we use k
to denote the number of commodities. A multicut is a set M of edges whose
removal disconnects all commodities (that is, G−M = (V,E −M) has no
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si → ti path for any i in {1,2, . . . ,k}), and its capacity is the sum of the
capacities of the edges in M . The problem of finding a multicut of mini-
mum capacity may be formulated as a simple and elegant integer program,
and dropping the integrality constraints gives a linear programming (LP)
relaxation. The optimal value of this LP relaxation (which is a lower bound
on the minimum capacity of a multicut) equals the maximum value of a
multicommodity flow (see Section 2 for details). In the single-commodity
(k=1) case, the celebrated max flow-min cut theorem of Ford and Fulker-
son [7] states that the minimum capacity of a multicut equals the maximum
value of a flow. This is one of the key results in combinatorial optimization,
and it has numerous important applications, both in theory and in practice.
Unfortunately, this theorem does not generalize to multiple commodities,
and moreover, the general problem of finding a minimum-capacity multicut
is NP-hard (for k ≥ 3 commodities for undirected networks, and for k ≥ 2
commodities for directed networks). See [14] for more discussion on multi-
commodity flows.

Based on ground-breaking work by Leighton and Rao [15], and improving
on earlier results due to Klein et al. [11], Garg, Vazirani, and Yannakakis [8]
proved an approximate minmax theorem for undirected networks: the min-
imum capacity of a multicut is O(logk) times the maximum value of a
multicommodity flow; moreover, their proof is constructive and gives an
O(logk)-approximation algorithm (the algorithm runs in polynomial time
and returns a multicut whose capacity is at most O(logk) times the max-
imum value of a multicommodity flow). Despite persistent research efforts,
these results could not be extended to directed networks, excluding a few
cases that are “symmetric” and therefore similar to undirected networks.

In this paper, we consider the problem of finding a minimum-capacity
multicut in networks (without any symmetry assumptions), “network” with-
out “undirected” meaning “directed network” from now on, and provide the
first nontrivial upper bounds relating multicut capacities to multiflow values.
For a network G, we denote by C(G) the minimum capacity of a multicut,
and, by F (G), the maximum value of a multicommodity flow. (For undi-
rected networks G′, we denote the corresponding quantities by C ′(G′) and
F ′(G′).) We prove four related theorems. Each of these theorems gives a
bound on C(G) in terms of F (G) and other parameters of the network G.
Moreover, each proof gives an efficient algorithm for finding a multicut whose
capacity is at most the bound on C(G). The bounds given by the first three
theorems are mutually incomparable in the sense that for each of the three
bounds, there exist networks in which that bound is better than the other
bounds.
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Theorem 1. There is a polynomial-time algorithm that takes a network G
satisfying c(e)≥ 1 for all arcs e and finds a multicut M satisfying c(M)≤
108F (G)3.

We prove that without the “c(e) ≥ 1 for all e” condition, no result of
the form “C(G)≤g(F (G)) for all G” is possible. (For undirected networks,
Yannakakis [24] shows, via a variant of the region-growing procedure of [8],
that C(G)=O(F (G) logF (G)), if all capacities are at least 1.)

Theorem 2. There is a polynomial-time algorithm that takes a k-
commodity network G satisfying c(e)≥1 for all arcs e and finds a multicut
M satisfying c(M)≤39ln(k+1)F (G)2.

Again, the “c(e)≥1 for all e” condition is necessary.

Theorem 3. There is a polynomial-time algorithm that takes an n-vertex,
k-commodity network G and finds a multicut M satisfying

c(M) ≤
(
45
√
n ln(k + 1)

)
F (G) ≤

(
45
√

2n lnn
)
F (G).

We give a better approximation guarantee for some instances in planar
digraphs.

Theorem 4. For every ∆, there is a constant γ such that there is a
polynomial-time algorithm that takes an n-vertex, k-commodity (k ≥ 2)
network G with uniform capacities, whose underlying undirected graph is
planar, and in which the total degree of every vertex is at most ∆, and finds
a multicut M satisfying c(M)≤(γ

√
lgk)n1/4F (G).

Tardos and Vazirani [23] use the methods of Klein, Plotkin, and Rao [12]
to prove a constant ratio for undirected planar networks.

Theorem 1 is our basic result. The other three theorems are based on it,
and derived using techniques such as region growing (Theorem 2), a trade-
off via LP rounding (Theorem 3), and a trade-off via the planar separator
theorem (Theorem 4).

In recent work, Saks, Samorodnitsky, and Zosin [20] construct a family
of k-commodity networks, for all k and ε>0, where the minimum multicut-
to-maximum k-commodity flow ratio is no less than k− ε, in contrast with
the O(logk) upper bound in the undirected case. (An upper bound of k is
a trivial consequence of the Ford and Fulkerson theorem.) We note that in
their graphs, |V | is exponential in k, so an upper bound of O(log |V |), for
example, is still possible. In fact, the networks in [20] have special structure.
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Each is obtained by adding 2k distinct new vertices s1, t1, . . . ,sk, tk to an
undirected graph H, together with arcs from the si’s to some vertices in H
and from some vertices in H to the ti’s, replacing each undirected edge by
a pair of antiparallel arcs, and assigning positive capacities to the vertices.
Each terminal gets infinite capacity. We show in Section 4 that any network
G of such special structure with C(G)≥ (k/2)F (G) must, like the example
of [20], have a number of vertices which is exponential in k. Indeed, the same
result holds if capacities are instead assigned to arcs, provided that the arcs
incident from the sources have infinite capacity, and so do the arcs incident
to the sinks.

The best inapproximability result known for directed multicut is that the
problem is MAX SNP-hard. This is also the strongest hardness result known
for the undirected case [3].

The rest of this introduction gives our perspective on the previous work
in this area, and is not essential for studying the new results in this paper.

In a seminal paper, Leighton and Rao [15] proved that for uniform multi-
commodity flow instances the sparsest cut-to-maximum concurrent flow ra-
tio in undirected networks is at most logarithmic in the number of vertices.1

They exhibited several applications of this result, mostly in the design and
analysis of approximation algorithms for NP-hard optimization problems.
Their paper inspired a significant research effort in the past decade. The re-
sults of this effort include the emergence of the divide-and-conquer method
in approximation algorithms (see [22]), applications of their region-growing
technique to other problems [2,8,11,21], and the development of alterna-
tive proofs for their basic result and its generalizations [1,5,16]. In par-
ticular, Garg, Vazirani, and Yannakakis [8] gave an elegant analysis of the
region-growing technique, and used it to derive asymptotically tight O(logk)
bounds on the minimum multicut-to-maximum flow ratio in k-commodity
undirected networks.

Most of the previous research on approximation algorithms for problems
related to multicuts in directed networks exploits some sort of “symmetry”
property that renders the problems similar to the undirected case; for exam-
ple, the commodities occur in symmetric pairs (si, ti), (ti,si) [4–6,13,15,18,
21]. In particular, for such symmetric instances, Even, Naor, Schieber, and
Sudan [6], improving upon a result of Klein, Plotkin, Rao, and Tardos [13],
gave an O((logk) log logk) bound, and they gave efficient algorithms to find
a “symmetric multicut” whose capacity is within the same factor of the opti-

1 The sparsity of a cut is the ratio between the cut capacity and the number of source-
sink pairs that are disconnected. A concurrent flow delivers the same amount of flow of
each commodity.



APPROXIMATING DIRECTED MULTICUTS 255

mum. (A symmetric multicut means a set of arcs whose removal disconnects
either si from ti or ti from si, for every symmetric pair of commodities.)
These papers use region-growing techniques, though the bounds that are
proved are usually weaker than those that can be proved in the undirected
case.

Unfortunately, the literature cited in the previous paragraph has almost
no relevance for (asymmetric) directed multicuts because there is no rela-
tion between a (directed) multicut and a symmetric multicut. For exam-
ple, consider a directed graph on two vertices p,q with two arcs (p,q) and
(q,p) having capacities 1 and 1000, respectively. There are two commodities
(s1, t1)= (p,q) and (s2, t2) = (q,p). The unique multicut has capacity 1001,
whereas there is a symmetric multicut of capacity one. Another way to see
the contrast is to compare the integrality ratios of the linear programming
relaxations: it is O((logk) log logk) for symmetric multicuts [6] but the con-
struction due to Saks et al. shows that it is k for directed multicuts [20].

2. Preliminaries

A network G is a directed graph (V,E), without parallel arcs or self-loops,
with an assignment of positive capacities to the arcs c :E→R

+, together with
a positive integer k and a set of k distinct ordered pairs (si, ti) of vertices,
si 	= ti for all i. Let T = {s1, t1,s2, t2, . . . ,sk, tk} be the set of terminals.
For any set of arcs E′, we use c(E′) to denote

∑
e∈E′ c(e). A multicut M

in G is a subset M ⊆ E such that the digraph (V,E −M) has no si → ti
path, for each i ∈ {1,2, . . . ,k}. (All paths are simple in this paper.) The
capacity of a multicut M is c(M). Directed Multicut is the problem
of finding a minimum-capacity multicut in a specified network G. Let us
denote the minimum capacity of a multicut in G by C =C(G). (When we
work with undirected networks, the underlying graph G′ is undirected and
the minimum capacity of a multicut is denoted C ′=C ′(G′).)

The problem of finding a minimum-capacity multicut in G is precisely
the following integer program: Find x(e) for all e∈E, x(e) integral, x(e)≥0,
so as to minimize

∑
e∈E c(e)x(e), such that for every i = 1,2,3, . . . ,k, and

for every si→ ti path P in G,
∑

e∈P x(e)≥1. An optimal solution will have
x(e)≤1 for all e∈E.

Dropping the “x(e) integral” condition gives a linear programming re-
laxation of Directed Multicut: Find a nonnegative real length x(e) for
each arc e such that for each i=1, . . . ,k, the distance from si to ti, relative
to these lengths, is at least 1, so as to minimize

∑
c(e)x(e). Its linear pro-

gramming dual is easily seen to be equivalent to Multicommodity Flow,
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which is this problem: Given a network G, find a sequence (f1,f2, . . . ,fk)
such that fi is a single-source flow (of commodity i) in G from source si to
sink ti, such that (f1,f2, . . . ,fk) satisfies

∑
1≤i≤k fi(e)≤c(e) for all e∈E, and

in which the sum over i of the value of fi is maximized. Let F =F (G) denote
the optimal value of the multicommodity flow in G. It is easy to see that
C(G)≥F (G) for all G. (In an undirected network G′, the optimal flow value
is denoted F ′=F ′(G′).) Since Multicommodity Flow can be written as
a linear program of polynomial size, it can be solved in polynomial time.

We are interested in the relation between C(G) and F (G) in an arbitrary
network G. Can C(G) be bounded as a function of F (G) for all G? More
formally, is there a function g :R→R such that for all G, regardless of the
number of vertices and commodities, C(G)≤ g(F (G))? We will (easily) see
below that if the capacities can be arbitrarily small, then the answer is no.
However, if we insist that c(e)≥ 1 for all e∈E, then it is a nontrivial fact
that F (G)≤1 implies C(G)≤1.

Note that Directed Multicut is not a generalization of Undirected

Multicut obtained by replacing each undirected edge by a pair of antipar-
allel arcs and by replacing each commodity {si, ti} by a pair of “antiparallel”
commodities (si, ti),(ti,si). For example, consider a four-vertex undirected
tree with root r and leaves l1, l2, l3. Let us define three commodities, one for
each pair of leaves, and make all capacities one. Let G′ denote the network.
Then, we have C ′(G′)=2>F ′(G′)=1.5 (any two edges {r, li}, {r, lj} form a
multicut, and an optimal flow assigns the value 1/2 to each of the three undi-
rected si−ti paths). However, if we now replace each edge by two antiparallel
arcs (each of unit capacity) and define six commodities, one for each ordered
pair of leaves, then the directed network G has C(G)=3=F (G) (the three
arcs entering the root r form a multicut, and an optimal flow assigns the
value 1/2 to each of the six directed si− ti paths).

3. Algorithms and bounds for multicut

3.1. Multicut is bounded by a function of flow

In this section we prove Theorem 1, that C(G)≤ 108F (G)3, provided that
c(e)≥ 1 for all arcs e. But first we prove that such a result is not possible
without the “c(e)≥1 for all e” assumption. Garg, Vazirani, and Yannakakis
[8] show that there exists γ>0 such that for all sufficiently large n, there is
an n-vertex, undirected, unit-capacity network G′

n (on an expander), having
C ′(G′

n)/F ′(G′
n)≥γ lgn. Create a (directed) network Gn from G′

n by replac-
ing each edge by a pair of antiparallel, unit-capacity arcs. We have F (Gn)≤
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F ′(2G′
n)=2F ′(G′

n) (because any flow in Gn is feasible in 2G′
n, which is G′

n

with its capacities doubled) and C(Gn)≥C ′(G′
n) (because ifM is a minimum

multicut in Gn, then M ′={{u,v}| (u,v)∈M or (v,u)∈M} is a multicut in
G′

n and |M ′|≤ |M |). Hence C(Gn)/F (Gn)≥C ′(G′
n)/(2F

′(G′
n))≥ (γ/2)lgn.

Now suppose that C(G) ≤ g(F (G)) for all directed networks G. Choose a
large enough n and set λ=F (Gn). Let Hn =Gn/λ (i.e., scale all capacities
down by λ). We have (using (γ

2 lgn)F (Gn)≤C(Gn))

γ

2
lg n =

1
λ

(
γ

2
lg n

)
F (Gn) ≤

1
λ
C(Gn) = C(Hn)

≤ g(F (Hn)) = g

(
1
λ
F (Gn)

)
= g(1),

which is a contradiction.
Now we prove Theorem 1, which is restated here for convenience.

Theorem 1. There is a polynomial-time algorithm that takes a network G
satisfying c(e)≥ 1 for all arcs e and finds a multicut M satisfying c(M)≤
108F (G)3.

Proof. We give a polynomial-time algorithm to construct a multicut of ca-
pacity at most 108F 3 in a network G on digraph (V,E) satisfying c(e)≥ 1
for all e, where F = F (G). First, find a nonnegative, rational length func-
tion x satisfying

∑
e c(e)x(e)=F and

∑
e∈P x(e)≥ 1 for all si → ti paths P ,

for all i. (Such an x is given by an optimal solution to the linear program-
ming relaxation of Directed Multicut in Section 2; the optimal value∑

e∈E c(e)x(e) equals F = F (G) by the duality theorem of linear program-
ming.) Define f=

∑
ex(e)≤

∑
e c(e)x(e)=F . For a technical reason, we need

x(e)≤1/6 for all e. Replace any arc e with x(e)>1/6 by a path of �6x(e)
new arcs of length at most 1/6 each, whose lengths add to x(e), all of whose
capacities are c(e).

We need some more definitions. Let E′⊆E. Given any vertex s and real ρ,
let BE′(s,ρ)={u∈V | there is an s→u path in (V,E′) of length at most ρ}.
Define δE′(s,ρ)= {(a,b)∈E′ | a∈BE′(s,ρ), b 	∈BE′(s,ρ)}. Informally speak-
ing, BE′(s,ρ) denotes the ball with radius ρ and center s in the digraph
(V,E′), and δE′(s,ρ) denotes the set of arcs of (V,E′) that leave this ball.

For our purposes, the prefix of path P =< u0,u1,u2, . . . ,uz > (whose
length may exceed 1) is the path P ′=<u0,u1,u2, . . . ,ui> where i is minimal
such that the length of P ′ (relative to x) is at least 1/6, and the suffix of
path P =<u0,u1,u2, . . . ,uz > is the path P ′ =<ui,ui+1, . . . ,uz > where i is
maximal such that the length of P ′ is at least 1/6.

Here is the algorithm. The embedded comments are needed for the anal-
ysis.
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/* Let count(e)=0 for all e∈E. */
Let E′=E.
As long as there is a pair (si, ti) such that some si → ti path exists in
G′=(V,E′), repeat:

1. Choose any such i.
/* Find a shortest si→ ti path Pi in G′ with respect to x. */

2. Find a real number ρi which minimizes c(δE′(si,ρ)) among those ρ in the
interval (1/3,2/3).
/* Let Bi=BE′(si,ρi). */
/* Increment count(e) for all arcs e in the prefix of Pi. */

3. Remove from E′ all arcs in δE′(si,ρi).

Output M=E−E′.
End.

Obviously this process terminates and provides a multicut. We claim that
the capacity of the multicut is at most 108f2F ≤108F 3.

We need the following lemma, which is implicit in [8]. See also [22, p.204].

Lemma 5. Let G= (V,E) be a digraph and let s∈ V . Let x :E→R
+ be

a length function, c :E→R
+ be a positive capacity function, and E′ ⊆E.

Then there is a ρ ∈ (1/3,2/3) such that c(δE′(s,ρ)) ≤ 3F ′, where F ′ =∑
e∈E′ c(e)x(e)≤F .

The lemma implies that in a given iteration we cut arcs of capacity at
most 3F .

Call the process of incrementing count(e) charging e. In each iteration,
we charge a set of arcs of total length at least 1/6, all endpoints of which
are in BE′(si,1/3) ⊆BE′(si,ρi) =Bi, because each arc has length at most
1/6 and because ρi > 1/3. Since the total capacity added to E−E′ in an
iteration is at most 3F ,

c(E − E′) ≤ 18F
∑
e∈E

x(e) count(e)

is an invariant. We prove next that count(e) never exceeds 6f , and hence

c(E − E′) ≤ (18F )(6f)
∑
e∈E

x(e) = 108f2F.

Choose any arc e=(u,v) in the original G and relabel the commodities
so that we charge e in the iterations for commodities 1,2, . . . , b, in that order
(and no others); these need not be consecutive iterations, of course. We
claim, for i=1,2, . . . , b, that:
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Figure 1. An illustration of the proof of Theorem 1. The dashed lines indicate the
“balls” B� and Bi.

(1) None of the vertices on the suffix of Pi are in Bi.
(2) All the vertices in the suffix of Pi are in B1∩B2∩B3∩·· ·∩Bi−1.

Now (1) is trivial, because we chose a ρi which is less than 2/3, and each
arc’s length is at most 1/6; hence the endpoints of the suffix are not in Bi.

Proving (2) is not much harder. See Figure 1. Since the iteration for
commodity i charges e, Pi must contain e. The head v of e=(u,v) must be
in P1,P2, . . . ,Pb, and moreover, v must be in B1,B2, . . . ,Bb (in the iteration
for commodity ), all endpoints of arcs we charge are in B�). Consider now
the subpath Q of Pi starting at v and ending at the last vertex of Pi (clearly,
Q contains the suffix of Pi). For each )< i, we claim that B� contains each
vertex of Q. The reason is that we removed all arcs leaving B� (i.e., all arcs
with tails in B� and heads in V−B�) at the end of the iteration for commodity
). Hence, in the iteration for commodity i, any path in the current digraph
that starts with a vertex in B� must have all its vertices in B� (the path
cannot leave B�). Since the start vertex v of Q is in B�, every vertex of Q is
in B�. This proves (2).

We conclude that if )<i, then the suffix of P� is disjoint from the suffix
of Pi, because each vertex of the suffix of P� is not in B� and each vertex of
the suffix of Pi is in B�. Therefore, the sum of the lengths of arcs in G is at
least (1/6)b (since there are b disjoint suffixes, each of length at least 1/6),
and hence (1/6)b≤f , or b≤6f .
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3.2. The region-growing technique

Recall that the digraph is denoted G=(V,E), each arc e has a positive ca-
pacity c(e), and there are k commodities, each specified by a source-sink pair
(si, ti). Let each arc e have a nonnegative length x(e). (The intention is that
x is a feasible solution to the linear programming relaxation of Directed

Multicut in Section 2.) Let dx(v,w) denote the shortest-path distance from
vertex v to vertex w with respect to arc lengths x.

For a vertex set S⊆V , let (S,V −S) denote the set {(v,w) | v∈S,w∈V −
S} of arcs leaving S, and for E′⊆E, let cE′(S,V−S) denote c(E′∩(S,V−S)).
Let volE(S) denote the sum of x(e)c(e) over all arcs e∈E that have at least
one end vertex (either tail or head) in S.

Recall that F (G) denotes the optimal value of the linear program

min
{∑

e

c(e)x(e) : dx(si, ti) ≥ 1 (i = 1, . . . , k); x ≥ 0
}

and that volE(V )=F (G) if the length function x is optimal for the LP.
The next lemma extends Lemma 4.1 (on region growing) of Garg, Vazi-

rani and Yannakakis [8] to directed networks, and has been previously ap-
plied by Klein et al. [13].

Lemma 6 ([8,13]). Let G, c, x, and the k commodities be as above. Let
r be any positive real and let q be any vertex of G. Then there exists a real
number ρ, 0<ρ≤ ln(k+1)/r, such that

cE(B,V −B) ≤ r · (volE(B) + volE(V )/k),

where B denotes BG(q,ρ) (i.e., the set of vertices v such that G has a q→v
path of length at most ρ). Moreover, there is an efficient algorithm to find
ρ and BG(q,ρ).

3.3. An algorithm for and proof of Theorem 2

Before describing the algorithm, we restate Theorem 2, for convenience.

Theorem 2. There is a polynomial-time algorithm that takes a k-
commodity network G satisfying c(e) ≥ 1 for all arcs e and and finds a
multicut M satisfying c(M)≤39ln(k+1)F (G)2.
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Proof of Theorem 2. Here is the algorithm:

Let E′=E, let M=∅, and for each i∈{1, . . . ,k}, let Bi =∅.
While there is a commodity i∈{1, . . . ,k} such that G′ =(V,E′) has an
si→ ti path do

Choose such an i.
Let Gi = (Vi,Ei) be the subgraph of G′ obtained by keeping exactly
those vertices and arcs that belong to some si→ ti path in G′.
Apply Lemma 6 (the GVY procedure) to Gi with start vertex q= si

and r=3ln(k+1), and let Bi be the vertex set given by the lemma,
i.e., Bi =BGi(si,ρ), where ρ≤ ln(k+1)

r = 1
3 .

Add to M all the arcs of Ei in the cut (Bi,Vi−Bi) in Gi.
Replace E′ by E′−M=E−M .

End While
Output the multicut M and stop.

For the analysis, it is convenient to have x(e)≤ 1/6 for all arcs e. As in
the proof of Theorem 1, we replace each arc e with x(e)>1/6 by a path of
�6x(e) new arcs of length at most 1/6 each, whose lengths add to x(e), all
of whose capacities are c(e).

For each i∈{1, . . . ,k} such that Bi is nonempty and for each vertex v in
Bi, we assign a path of Gi, denoted σ(i,v), and called the suffix of v with
respect to commodity i. To define σ(i,v), take any si→ ti path P of Gi that
contains v, and let σ(i,v) be the suffix of P of length at least 1/6 and with
the fewest vertices. Note that P exists (by our choice of Gi and the fact
that v ∈Bi) and has length at least 1 (since dx(si, ti)≥ 1). Clearly, σ(i,v)
has length less than 1/3 (since x(e)≤ 1/6, ∀e∈E). Note that every vertex
w in σ(i,v) has dx(w,ti)<1/3, and every vertex u in Bi has dx(si,u)≤1/3;
hence, σ(i,v) is disjoint from Bi.

We need a claim.

Claim. Every vertex w of G is in at most 6F (G) sets Bi, i∈{1, . . . ,k}.

Proof of Claim. Focus on any vertex w and suppose that there are two
commodities i and j such that w is in Bi and Bj. Assume without loss of
generality that the algorithm processed i before j. See Figure 2.

Suppose that σ(i,w) and σ(j,w) have a vertex y in common. Then Gj

contains a w→y path called, say, Pj . Focus on G′ at the start of the iteration
for commodity i and call this digraph G∗. Clearly, G∗ has an si →w path
that is contained in Bi (since w∈Bi), G∗ contains the w→y path Pj (since i
is processed before j), and G∗ has a y→ ti path that is a subpath of σ(i,w).
By concatenating these three paths, we see that G∗ has an si → ti walk W
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Figure 2. An illustration of the proof of Theorem 2. The solid lines indicate the suffixes
σ(i,w) (horizontal) and σ(j,w) (vertical). Pj is a subpath of the sj → tj path indicated

by dashed and solid lines.

(allowing repeated vertices) that contains some arcs of Pj . Moreover, every
arc of W that is in the cut (Bi,Vi−Bi) in G∗ is an arc of the middle path
Pj, because the first of the three paths forming W has all its vertices inside
Bi and the last of the three paths forming W has all its vertices outside Bi.
Shortcut the si → ti walk W to get an si → ti path P in G∗. Then every
vertex of P and arc of P is present in Gi. Moreover, in Gi, every arc of P in
the cut (Bi,Vi−Bi) is an arc of Pj , and there is at least one such arc. Hence,
at least one arc of Pj is removed from E′ by the iteration for commodity i.
This is a contradiction, since Pj is supposed to be a path of Gj . Hence,
σ(i,w) and σ(j,w) must be vertex-disjoint.

This proves the claim, since the suffixes σ(i,w), where i is such that
w ∈ Bi, are pairwise disjoint, and the number of suffixes is at most∑

ex(e)/(1/6)≤ 6
∑

e c(e)x(e)≤ 6F (G), since each suffix has length at least
1/6 and c(e)≥1 for all e∈E.

Clearly, the theorem holds if k=0 or if F (G)=0, since C(G)=0 in these
cases (the algorithm returns M =∅). If F (G) 	=0, then note that F (G)≥1,
by the assumption on the capacities. The rest of the proof follows from
Lemma 6 and the claim, since

c(M) =
k∑

i=1

cEi(Bi, Vi −Bi)

≤
k∑

i=1

3 ln(k + 1)(volEi(Vi)/k + volEi(Bi))

≤ 3 ln(k + 1)
(
F (G) +

k∑
i=1

volEi(Bi)
)
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≤ 3 ln(k + 1)
(
F (G) + 12F (G)2

)
≤ 39 ln(k + 1)F (G)2,

where the inequality
∑k

i=1 volEi(Bi)≤12F (G)2 holds because

k∑
i=1

volEi(Bi) =
k∑

i=1

∑
{c(u, v)x(u, v) : (u, v)∈Ei and (u∈Bi or v∈Bi)}

≤
∑

(u,v)∈E

c(u, v)x(u, v)(κ(u) + κ(v))

≤
∑

(u,v)∈E

c(u, v)x(u, v)(12F (G)) ≤ 12F (G)2,

where κ(v) denotes the number of commodities i∈{1, . . . ,k} such that vertex
v is in Bi, and we have κ(v)≤6F (G) by the claim above.

Remark. The assumption “c(e) ≥ 1 ∀e ∈ E” is used to get the bound
“κ(v)≤ 6F (G)∀v ∈V ,” and it also implies F (G)≤F (G)2. The next result,
Theorem 3, uses a variant of this proof that avoids this assumption.

3.4. The proof of Theorem 3

We restate Theorem 3, for convenience.

Theorem 3. There is a polynomial-time algorithm that takes an n-vertex,
k-commodity network G and finds a multicut M satisfying

c(M) ≤
(
45
√
n ln(k + 1)

)
F (G).

Proof of Theorem 3. The algorithm for Theorem 3 consists of two stages.
Let α>0 be a parameter (later, we will fix α=1/

√
n ln(k+1) ).

In the first stage, we take M1 to be the set of all arcs e ∈E such that
x(e)≥α, and we take E′ =E−M1. M1 is the subset of the multicut found
by the first stage, and E′ is the arc set of the current digraph after the first
stage. (Informally, we “cut” all the arcs in M1 by “rounding up” the LP
solution x, and these arcs are ignored by the second stage.)

The second stage applies the algorithm of Theorem 2 to G′=(V,E′). Let
M2 be the multicut found by the second stage. The final multicut obtained
by the algorithm is M=M1∪M2.

Consider the capacity c(M) of M . First, c(M1) =
∑

e∈M1
c(e) ≤∑

e∈M1
c(e)x(e)/α ≤∑e∈E c(e)x(e)/α =F (G)/α, where the first inequality

holds since the arcs e in M1 have been “rounded up” from x(e)≥α to 1.
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We estimate c(M2) by modifying the analysis in the proof of Theorem 2
to exploit the fact that x(e) < α for all arcs e in the input. Choose any
i∈{1, . . . ,k} such that Bi is nonempty, let v be any vertex in Bi, and focus
on the suffix σ(i,v). Since σ(i,v) has length at least 1/6 and each arc e (in
Stage 2) has x(e)<α, there must be at least (1/6)/α vertices in σ(i,v). By
the claim in the proof of Theorem 2, any two distinct suffixes σ(i,v) and
σ(j,v), i 	=j, are vertex-disjoint. Consequently, for any vertex v, the number
of distinct suffixes σ(i,v), i∈ {1, . . . ,k}, is at most n/(1/(6α)) = 6αn (note
that we did not use any assumption on the arc capacities). In other words,
each vertex is in at most 6αn distinct sets Bi, i ∈ {1, . . . ,k}. An argument
similar to that of the proof of Theorem 2 (but without the assumption
“c(e)≥1 ∀e∈E”) implies c(M2) is at most 3ln(k+1)(1+12αn)F (G).

Then c(M) = c(M1) + c(M2) ≤
F (G)
α

+3ln(k+1)(1 + 12αn)F (G). We

balance the contribution of the two terms by choosing α=
1√

n ln(k+1)
to get

c(M)≤3F (G)
(√

n ln(k+1)+14
√
n ln(k+1)

)
=
(
45
√
n ln(k+1)

)
F (G).

Remarks. (1) Theorem 3 imposes no restrictions on the arc capacities.
(2) Theorem 3 implies that the integrality ratio of the linear program is at
most 45

√
n ln(k+1), and hence any network with integrality ratio at least

k/2 must have n≥k2/(902 ln(k+1)).

3.5. Bounded-degree planar digraphs

In this section we prove Theorem 4, which is restated here for convenience.

Theorem 4. For every ∆, there is a constant γ such that there is a
polynomial-time algorithm that takes an n-vertex, k-commodity (k ≥ 2)
network G with uniform capacities, whose underlying undirected graph is
planar, and in which the total degree of every vertex is at most ∆, and finds
a multicut M satisfying c(M)≤(γ

√
lgk)n1/4F (G).

The following planar separator lemma is implicit in Lipton and Tar-
jan [17]:

Lemma 7 ([17]). For every integer ∆ > 0 there exists a constant α =
α(∆) ≥ 1 such that for every (undirected) planar multigraph G = (V,E)
with maximum degree at most ∆, there are disjoint subsets L,R⊆V of size
�|V |/2� each, and a set Z of edges of size at most α

√
|V |, such that every

edge not in Z either has both endpoints in L or both in R. Furthermore,
there is a polynomial-time algorithm that finds such a set of edges.
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Proof of Theorem 4. By Theorem 2, there is a universal constant β
such that the multicut size in a uniform-capacity network G is at most
(β lgk)F (G)2, if k≥2.

Fix ∆. We prove the assertion in Theorem 4 with the constant γ =
max{ α

1−2−1/4 ,β}. The proof can easily be converted into a polynomial-time
algorithm.

Our proof proceeds by induction on n. The basis of the induction (n=1) is
trivial. Consider an n-vertex instance G, n≥2. If F (G)≤n1/4/

√
lgk, then by

Theorem 2, the minimum multicut is of size at most (β lgk)F (G)2≤β
√

lgk·
F (G)n1/4≤γ

√
lgk ·F (G)n1/4. So, we may assume that F (G)>n1/4/

√
lgk.

By Lemma 7, we can find a set of at most α
√
n arcs whose removal

partitions G into two subgraphs of order �n/2� each (with perhaps one
isolated vertex left over). Clearly, every commodity with terminals in two
different components is cut by removing the at-most-α

√
n arcs. Let f1,f2 be

the maximum flows for the remaining commodities in the two components.
By the inductive assertion, for i = 1,2 one can find a multicut of size at
most (γ

√
lgk)fi�n/2�1/4 in the ith component. (This holds even if either

component has 0 or 1 commodity, though this case isn’t covered by the
inductive assertion.) The union of these multicuts and the separator is a
multicut for the entire instance. Its size is at most

α
√
n+ γ

√
lg k ·

2∑
i=1

fi�n/2�1/4 ≤ α
√
n+ γ

√
lg k · (f1 + f2)(n/2)1/4

≤ (α+ γ/21/4)
√

lg k · F (G)n1/4

≤ γ
√

lg k · F (G)n1/4,

as f1+f2≤F (G), F (G)>n1/4/
√

lgk, and γ≥α+ γ
21/4 .

4. Some simple constructions must be large

In this section we prove that k-commodity arc-capacitated or vertex-
capacitated networks with a particular structure and integrality ratio at
least k/2 must have exponentially many vertices. The networks constructed
by Saks et al. [20] have the structure described in Theorem 10, and so this
theorem explains why the number of vertices in these networks is exponen-
tial in k.

Theorem 8. Let H ′ =(V ′,E′) be an undirected graph in which each edge
has some capacity c(e)>0. Replace each edge e by a pair of antiparallel arcs
each of capacity c(e) and call the resulting digraph H=(V ′,E). Add 2k dis-
tinct new vertices s1, t1, . . . ,sk, tk, getting vertex set V =V ′∪{s1, t1, . . . ,sk, tk}.
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Choose subsets Si⊆V ′,Ti ⊆V ′, Si∩Ti =∅ for all i=1,2, . . . ,k and add arcs
(si,v) for all v ∈ Si and (u,ti) for all u ∈ Ti, all of infinite (or very large)
capacity. Where G is the resulting network,

C(G) ≤ (4γ lg n)F (G),

where γ is a universal constant and n= |V ′|.

Before giving the proof, we give an application of the theorem.

Corollary 9. Using the notation of Theorem 8, if G has integrality ratio
at least k/2, then n≥2k/(8γ).

Informally, the theorem implies that if there exists an n-vertex network
with integrality ratio at least nε (for a fixed ε>0), then it must exploit the
asymmetry (or, directedness) more than the example of Saks et al.

Proof of Theorem 8. Starting with digraph H, define a network on V ′

by constructing one commodity for each pair (u,v) with u∈Si and v∈Ti for
some i, having source u and sink v; call this network H also. The key point
is that F (H)=F (G) and C(H)=C(G).

We now construct an undirected version of H and apply the result of [8]
on integrality ratios of undirected networks. Build an undirected network
called H ′ by starting from undirected graph H ′ and defining a commodity
for every unordered pair {u,v} such that u∈Si,v∈Ti for some i. We have
C(H) ≤ 2C ′(H ′) and F (H) ≥ F ′(H ′). Apply [8] to infer that there is a
universal constant γ such that

C ′(H ′) ≤
(
γ lg

(
n

2

))
F ′(H ′) ≤ (2γ lg n)F ′(H ′)

and then conclude that

C(G) = C(H) ≤ 2C ′(H ′) ≤ (4γ lg n)F ′(H ′)
≤ (4γ lg n)F (H) = (4γ lg n)F (G).

Now we state a vertex-capacitated version. A vertex multicut in a vertex-
capacitated digraph G is a subset of vertices containing at least one vertex
on every si → ti path, for all i. However, to discourage deletion of termi-
nals, we insist that all terminals have infinite capacity. Similarly, a vertex
multicut in a vertex-capacitated undirected graph G′ is a subset of vertices
containing at least one vertex on every si−ti path, for all i. Again we insist
that all terminals have infinite capacity. Let NC(G), NC ′(G′) denote the
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minimum capacity of a vertex multicut in digraph G or undirected graph
G′, respectively.

There is an obvious LP relaxation with nonnegative variables x(v) for all
v∈V , constrained so that for all i, all si→ ti paths P satisfy

∑
v∈P x(v)≥1,

whose objective is the minimization of
∑
c(v)x(v); for undirected graphs,

we have the same problem, except involving undirected si − ti paths. The
corresponding duals are flow problems: Find a nonnegative value for each
si→ ti (or si−ti) path, for all i, such that the sum of the values on all paths
containing vertex v is at most c(v), and maximize the sum of all variables.
LetNF (G), NF ′(G′) be the maximum flow value in digraphG or undirected
graph G′, respectively.

Garg, Vazirani, and Yannakakis [9] prove a vertex analogue to their arc
result: There is a universal constant γ such that NC ′(G′)≤(γ lgk)NF ′(G′)
for all G′ with k≥2 commodities.

Theorem 10. Let H ′=(V ′,E′) be an undirected graph in which each ver-
tex v has some capacity c(v)>0 (and edges are uncapacitated). Replace each
edge e by a pair of antiparallel arcs and call the resulting digraphH=(V ′,E).
Add 2k distinct new vertices s1, t1, . . . ,sk, tk having infinite capacities, get-
ting vertex set V = V ′∪{s1, t1, . . . ,sk, tk}. Choose subsets Si ⊆ V ′,Ti ⊆ V ′,
Si∩Ti=∅ for all i=1,2, . . . ,k and add arcs (si,v) for all v∈Si and (u,ti) for
all u∈Ti. Where G is the result,

NC(G) ≤ (4γ lg n)NF (G),

where γ is a universal constant and n= |V ′|.

Corollary 11. Using the notation of Theorem 10, if G has integrality ratio
at least k/2, then n≥2k/(8γ).

The proof of Theorem 10 is similar to that of Theorem 8, so we omit
it, except to note that we make the terminals of H and H ′ new vertices
(of infinite capacity) outside of V ′, since effectively we cannot delete any
terminal.

5. Further remarks

Anupam Gupta (personal communication, June 2001) has obtained the fol-
lowing improvements, based on a preliminary version of our results.
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Theorem 1′. There is a constant γ such that there is a polynomial-time
algorithm that takes a network G satisfying c(e)≥1 for all arcs e and finds
a multicut M satisfying c(M)≤γF (G)2.

This implies the following improvement of Theorem 3, and also implies
an improvement of Theorem 4 (the factor of

√
logk can be omitted).

Theorem 3′. There is a constant γ ′ such that there is a polynomial-time
algorithm that takes an n-vertex network G and finds a multicut M satis-
fying c(M)≤(γ ′√n)F (G).
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[13] P. Klein, S. Plotkin, S. Rao and É. Tardos: Approximation algorithms for
Steiner and directed multicuts, Journal of Algorithms 22 (1997), 241–269.
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