
COMBINATORICA
Bolyai Society – Springer-Verlag

0209–9683/104/$6.00 c©2004 János Bolyai Mathematical Society

Combinatorica 24 (4) (2004) 585–603

NEAR OPTIMAL SEPARATION OF TREE-LIKE AND GENERAL
RESOLUTION

ELI BEN-SASSON*, RUSSELL IMPAGLIAZZO†, AVI WIGDERSON‡

Received January 17, 2000

We present the best known separation between tree-like and general resolution, improving
on the recent exp(nε) separation of [2]. This is done by constructing a natural family of con-
tradictions, of size n, that have O(n)-size resolution refutations, but only exp(Ω(n/ logn))-
size tree-like refutations. This result implies that the most commonly used automated
theorem procedures, which produce tree-like resolution refutations, will perform badly on
some inputs, while other simple procedures, that produce general resolution refutations,
will have polynomial run-time on these very same inputs. We show, furthermore that the
gap we present is nearly optimal. Specifically, if S (ST) is the minimal size of a (tree-like)
refutation, we prove that ST =exp(O(S log logS/ logS)).

1. Introduction and Main Results

The resolution refutation system is one of the oldest and most commonly
methods for proving the unsatisfiability of CNF formulas, and is interesting
from a theoretical as well as practical point of view. From the theoretical
point of view, this system is fairly simple, as it has a single derivation rule,
and all proof-lines are clauses. Still, in spite of its simplicity, we do not
understand it fully, and there remain several interesting and important open

Mathematics Subject Classification (2000): 03F20; 68Q17
* This research was supported by Clore Foundation Doctoral Scholarship.
† Research supported by NSF Award CCR-0098197 and USA–Israel BSF Grant 97-
00188.

‡ This research was supported by grant number 69/96 of the Israel Science Foundation,
founded by the Israel Academy for Sciences and Humanities.

586 ELI BEN-SASSON, RUSSELL IMPAGLIAZZO, AVI WIGDERSON

problems regarding this system. One such natural question, solved in this
paper, is the following:

Question: What is the largest possible gap between the minimal number of
lines (=clauses) in a refutation, versus the minimal number of lines in a
tree-like refutation?

“Tree-like” means that each non-axiom line is a premise for at most one
other line in the refutation.

In order to understand the appeal of resolution to automated theorem
proving (ATP) let us recall the ATP problem: Given a contradiction T , try
to find a refutation of T in the most efficient way, in terms of time and space.
Let us look at the following couple of natural methods for finding such a
refutation.

Recursion: pick a variable x, and recursively try to refute T0 and T1, which
are the restrictions of T to x=0, (x=1 resp.). Such methods are called
DLL-Procedures.

Dynamic Programming (also known as Davis–Putnam): Start from the ax-
ioms T , arbitrarily derive new clauses T ′, using the resolution rule, and
set T ←T ∪T ′. Repeat this procedure until the empty clause is derived.
If one picks a variable x and performs all possible resolutions on it, the
method is called a DP-procedure.

Let us briefly describe the pros and cons of these methods, and their nat-
ural connection to resolution. The recursive procedure has recursion depth
that is bounded by the number of variables, thus it is extremely space-
efficient – the space required is at most linear in the input size. Its main
flaw is that it corresponds to a decision-tree for the problem of finding a
clause falsified by an assignment to the variables. It turns out that such a
decision-tree is a tree-like resolution refutation of T (see lemma 7). Thus,
the recursive method will be time-costly on inputs that do not have short
tree-like resolution refutations.

The dynamic programming method, on the other hand, produces general
resolution refutations. Thus, if T has a short refutation, one might hope to
find such a refutation by using such a method. Indeed, we shall see that for
certain contradictions, there exist dynamic programming proof search meth-
ods that are extremely efficient (polynomial time). The main disadvantage
of the method is the large space it might use. If we wish to save all possible
resolution consequences we might require space that is exponential in n.

We conclude that understanding the relation between (minimal) general
and tree-like refutation size will help us understand the relative efficiency
of these two proof search methods. Formally, for a fixed contradiction T let

NEAR OPTIMAL SEPARATION OF TREE-LIKE AND RESOLUTION 587

S(T) (ST (T) resp.) be the number of lines in a minimal general (tree-like
resp.) refutation of T , and let w(T �0) be the size of the largest clause in a
refutation of T . We are interested in measuring the gap between S and ST ,
and in this paper deliver the following couple of messages. The first message
is that the gap can be very large. Let |T | be the number of clauses in T .

Theorem 1 (Lower Bound). There exists an infinite family of explic-
itly constructible contradictions {Tn} such that |Tn|=O(n), S(Tn) =O(n),
w(Tn�0)=O(1) and ST (T)=exp(Ω(n

logn)).

It is easy to see that ST ≤ 2S . Our second message is that there is a
non-trivial upper bound on the gap, and it is almost tight:

Theorem 2 (Upper Bound). ST (T) = exp
(
O
(

S(T) log logS(T)
logS(T)

))
, for all

CNF contradictions T .

Theorem 1 is proved by giving a construction which associates to every
circuit (fan-in 2 DAG) G on n edges a contradiction T (G) with the following
properties.

1. T (G) has O(n) variables and O(n) clauses.
2. T (G) has general Resolution refutations of length O(n).
3. T (G) has Resolution refutations of width O(1) (i.e. all clauses in the

refutation have a constant number of variables).
4. Every tree-like Resolution refutation of T (G) has length at least

exp(P (G)), where P (G) is the classical pebbling number of the circuit G.

The pebbling measure of a circuit G is the minimal memory size needed
to carry out the computation described in the circuit G, on an input x, (both
G and x are given as inputs), assuming each gate output costs one memory
unit.

The construction of the contradictions is motivated by a special case of
it for the Pyramid graph of [2], which was in turn motivated by [17]. We
show that the pebbling measure of the graph G is an exponential lower
bound on the tree-like size of refuting T (G). The connection of pebbling
to tree-like size allows us to use graphs that have a high pebbling mea-
sure. Specifically, [10] explicitly construct for every n a graph Gn of size
O(n) satisfying P (Gn)=Ω(n/ logn). This, combined with (1) and the upper
bound (2), gives a truly exponential separation between general and tree-
like Resolution systems (the previous best bound being the recent exp(

√
n)

separation of [2]. Finally, (3) means that for these contradictions, the nat-
ural “restricted-width” dynamic programming algorithm [7], that searches

588 ELI BEN-SASSON, RUSSELL IMPAGLIAZZO, AVI WIGDERSON

for a minimal width refutation, has polynomial time, which is exponentially
faster than any recursive method.

Theorem 2 uses techniques from [10], who showed that if a Boolean func-
tion has a circuit of size S then it has a circuit of depth S/ logS. We use
similar techniques to show that one can “cut” any general refutation roughly
in half, by removing some of the middle lines. Then we construct a small
tree-like refutation, depending on the relative size of the “middle part” that
was removed.

The paper is organized as follows. After presenting the essential defini-
tions in section 2, we start by proving the lower bound (section 3), followed
by the upper bound (section 4). We end with a discussion of the applications
of these bounds to automated theorem proving (section 5).

2. Definitions

2.1. General

x will denote a Boolean variable, ranging over {0,1}. Throughout this paper
we shall identify 1 with True and 0 with False. A literal over x is either x
(denoted also as x1) or x̄ (denoted also as x0). A clause is a set of literals,
and a CNF formula is a set of clauses. A clause is viewed as the Boolean
function that is the disjunction of its literals. It is customary to write a
clause {�1, . . . , �t} as �1∨ . . .∨ �t. Analogously, a CNF formula is viewed as
the Boolean function that is the conjunction of its clauses. It is customary
to write a CNF {C1, . . . ,Cm} as C1 ∧ . . . ∧Cm. We say that a variable x
appears in a clause C (denoted x∈C) if a literal over x is an element of C.
A CNF formula T is said to be satisfiable if there exists some assignment
to the Boolean variables, that sets it to 1. Otherwise the formula is said to
be unsatisfiable. Let T ={C1,C2 . . .Cm} be a CNF formula over n variables,
a Resolution derivation π of a clause A from T is a sequence of clauses
π= (D1,D2 . . .DS) such that the last clause is A and each line Di is either
some initial clause Cj ∈T or is derived from previous lines using one of the
following rules.

Resolution Rule: If C,D are clauses and x is a variable such that x∈C and
x̄∈D, we say C,D are resolvable on x and their resolvent is C∪D−{x,x̄}.
C,D are called the assumptions of the derivation and C ∪D−{x,x̄} is
the consequence.

Weakening Rule: If C,D are clauses then C ∪D is a weakening of C. C is
the assumption and C∪D is the consequence.

NEAR OPTIMAL SEPARATION OF TREE-LIKE AND RESOLUTION 589

A resolution refutation1 of T is a resolution derivation of the empty
clause 0 from T . The following theorem is the fundamental property of the
resolution proof system. A CNF T implies a clause C (denoted T |=C) if
all assignments that fix T to 1 also fix C to 1.

Theorem 3 (Implicational Completeness). For any CNF T and any
clause C, T |=C iff there is a resolution derivation of C from T . In particular,
T is unsatisfiable iff it has a resolution refutation.

A circuit is a Directed Acyclic Graph, in which each vertex has fan-in 2
or 0. A vertex with fan-in 0 is called a source, and a vertex with fan-out 0
is called a target. All non-source vertices are called internal vertices.

A derivation π yields a circuit Gπ with |π| vertices. Each vertex of Gπ is
labeled by a clause of π, and for derivation steps edges are added from the
vertices labeled by the assumptions to the vertex labeled by the consequence.
A derivation π is called tree-like if Gπ is a tree; a tree-like derivation may
have multiple sources labeled by the same initial clause in T . The size of the
derivation π is the number of lines (clauses) in it, denoted Sπ. S(T) (ST (T))
is the minimal size of a (tree-like) refutation of T . Notice that since every
tree-like derivation is also a general derivation, we have S(T)≤ST (T). On
the other hand, it is not hard to see that any general derivation of size S can
be converted to a tree-like derivation of size at most 2S , giving the trivial
upper bound ST (T)≤2S(T).

2.2. Restrictions

For C a clause, x a variable and a∈{0,1}, the unit restriction of C setting
x to a is:

C|x=a
def=

C if x does not appear in C,
1 if the literal xa appears in C,
C \ {x1−a} otherwise.

A restriction is a set of distinct unit restrictions. Namely, a restriction ρ of
size k is set of ordered pairs ρ= {(xi1 ,a1), . . . ,(xik ,ak)}, where ij �= ij′ for
all distinct j,j′ ∈{1, . . . ,k}, and aj ∈{0,1}. For ρ a restriction of size k, we
define

C|ρ def= C|xi1
=a1 |xi2

=a2 . . . |xik
=ak

1 Throughout this paper we will only discuss derivations and refutations in the Resolu-
tion proof system. Hence a derivation is always a resolution derivation and a refutation is
always a resolution refutation.

590 ELI BEN-SASSON, RUSSELL IMPAGLIAZZO, AVI WIGDERSON

Similarly, T |ρ def= {C|ρ :C∈T }. For π=(C1, . . . ,Cs) a derivation of Cs from T
and ρ a restriction, let π|ρ =(C ′

1, . . . ,C
′
s) be the restriction of π on ρ, defined

inductively by:

C ′
i =

Ci|ρ Ci ∈ T ,
C ′

j1 ∨C
′
j2 Ci was derived from Cj1 ∨ y and Cj2 ∨ ȳ via one

resolution step, for j1 < j2 < i,
C ′

j ∨A|ρ Ci = Cj ∨A via the weakening rule, for j < i.

The consequence of resolving a clause B with 1 is defined to be B. We shall
assume w.l.o.g. that π|ρ does not contain the clause 1, by removing all such
clauses from π|ρ.

2.3. Width

Definition 4 (Clause width). The width of a clause C, denoted w(C), is
the number of literals appearing in it. The width of a set of clauses is the
maximal width of a clause in the set, i.e. w(T)=maxC∈T {w(C)}.

Definition 5 (Proof width). The width of deriving a clause A from the
formula T , denoted w(T �A) is minπ{w(π)}, where the minimum is taken
over all derivations π of A from T . We also use the notation T �wA to mean
that A can be derived from T in width w. We will be mainly interested in
the width of refutations, namely in w(T �0).

2.4. Decision Trees

Let T be a CNF formula. A search problem for T is the following: given an
assignment α to the variables, find a clause C ∈ T such that C(α) = 0, if
there is such a clause, and otherwise (i.e. T (α)=1) answer 1.

Definition 6 (Decision Trees for CNF Search Problems). A Decision
Tree is a binary tree, with internal vertices labeled by variables, edges labeled
by 0 or 1, and leaves labeled with the possible outputs. Every assignment
to the variables defines a path through the tree in the natural way, and the
label at the end of the path is said to be the output of the decision tree on
that assignment.

We say that D is a Decision Tree for the Search problem for T if it
correctly solves it on every input.

For T a CNF formula, let SD(T) denote the minimal size of a Decision
Tree solving the CNF Search Problem for T .

NEAR OPTIMAL SEPARATION OF TREE-LIKE AND RESOLUTION 591

Decision trees for CNF search problems are closely related to tree-like
resolution, as the following lemma shows.

Lemma 7. For T an unsatisfiable CNF, ST (T)=SD(T)

Proof. The Tree of the resolution refutation is a decision tree, where each
internal vertex is labeled by the variable resolved upon at that step. Hence
ST (T)≤SD(T).

For the opposite direction, we claim that given a decision tree, we can
derive from it a tree like refutation without increasing its size. Notice that if
T is unsatisfiable, every leaf is labeled by a clause, since 1 is not a legitimate
answer. We look at two leaves labeled Ci,Cj , with their father v labeled x. If
x does not appear in one of the two clauses (w.l.o.g. Ci), then we may label
v with Ci, erase its sons, and make the tree smaller. Otherwise, w.l.o.g. x
must appear in Ci in positive form and in Cj in negative form. In this case
we may label v with the consequence of resolving Ci,Cj on x. Continuing in
this way up through the decision tree we conclude that ST (T)≥SD(T).

2.5. Pebbling

The pebbling measure of a circuit is, intuitively, the space needed for simu-
lating the computation of the circuit on a Turing machine. For a thorough
introduction to results regarding pebbling, see the game excellent survey
[18]. In this section we briefly state the essential definitions and facts that
will be used later on in our discussion.

Definition 8 (Pebbling). Let G a circuit, and let S and T be subsets of
the vertices such all sources of G are included in S and the target is included
in T . S is called the set of starting points and T is the set of terminal points
for the following 1-player game. At any point in the game, some vertices
of G will have pebbles on them (1 pebble per vertex), while the remaining
vertices will not. A configuration is a subset of vertices, comprising just
those vertices that have pebbles on them. The rules of the pebble game are
as follows.

1. At any time, a pebble may be placed on any vertex in S.
2. If all immediate predecessors of a vertex have a pebble on them, a pebble

may be placed on that vertex.
3. A pebble may be removed from any vertex.
4. If a pebble is placed on a vertex in T , the player wins and the game ends.

592 ELI BEN-SASSON, RUSSELL IMPAGLIAZZO, AVI WIGDERSON

A legal pebbling of T on G from S is a sequence of configurations, the
first being the empty set, the last containing some element of T , and in
which each configuration follows from the previous configuration by one of
the rules. The number of pebbles used in such a pebbling is the maximum
number of pebbles in any configuration. The pebbling price of T on G from
S, denoted PG(S,T), is the minimal number of pebbles needed in any legal
pebbling of T from S on G.

Notice that PG(S,T) = 1 iff S and T intersect, and that PG(S,T) =
PG(S,{t}) for some t∈ T . We remark that in this paper all vertices of the
DAGs considered have fan-in either 0 or 2.

2.6. A game for proving lower bounds on tree-like resolution

Lower bounds for size of tree-like resolution proofs can be given in terms
of a 2-player game; this description is due to [19]. Any small tree-like proof
will give a good strategy for one of the players, so a good strategy for the
other player yields a corresponding lower bound on proofs.

Let T be an inconsistent set of clauses. Consider the following game
between two players, the Prover, and the Delayer. In each round, the Prover
chooses a variable to be assigned a value. Then the Delayer chooses one of
0, 1, or ∗. If 0 or 1 is chosen, no points are scored, the variable is set to the
chosen bit, and the next round begins. If ∗ is chosen, then the Delayer scores
one point, but the Prover then can choose the value for the variable. The
game ends when one of the clauses in T is forced to false by the assigned
values, i.e., when all the literals in the clause are assigned false.

Lemma 9. If T has a tree-like resolution refutation of size S, then the
Prover has a strategy where the Delayer can win at most �logS� points.

Proof. Fix a proof of size S. The Prover will maintain the following invari-
ant after each round: If the Delayer has scored t points, then the partial
assignment will falsify a clause in the proof, and the sub-tree rooted at this
clause will be of size at most S/2t. In particular, this will show the claimed
bound on the number of points the Delayer can score.

Let C be the clause from the invariant at the previous round. If C is a
leaf, then the game halts, since a clause in T has been falsified. Otherwise,
the Prover picks the variable x resolved on to derive C from C0 and C1 in
the proof. If the Delayer assigns the variable a value, at least one of the two
clauses C0,C1 is falsified, and this is the new clause for the invariant. If the
Delayer chooses ∗, and scores a point, then the Prover chooses the value to

NEAR OPTIMAL SEPARATION OF TREE-LIKE AND RESOLUTION 593

falsify the clause with the smaller sub-tree. This is at most half the size of
the sub-tree for the current clause, so the invariant is maintained.

Corollary 10. If the Delayer has a strategy which always scores r points,
then ST (T)≥2r.

3. Lower Bound

In this section we prove the lower bound of theorem 1, by explicitly present-
ing a family of contradictions that achieves the lower bound. The family of
contradictions is a generalization of [17] and [2]. For these contradictions we
expose a connection between pebbling and tree-like Resolution. We start by
defining these contradictions.

Definition 11 (Pebbling Contradictions). Let G be a circuit, and S
and T subsets of vertices. Associate a pair of Boolean variables x(v)0,x(v)1
with every vertex v ∈ V (G). PebG,S,T , the Pebbling Contradiction of G is
the Boolean formula consisting of the following clauses:
Source Axioms: x(s)0∨x(s)1 for each s∈S.
Target Axioms: x̄(t)0 and x̄(t)1 for each t∈T .
Pebbling Axioms: (x(u1)a∧x(u2)b)→(x(v)0∨x(v)1) for u1,u2 the two pre-

decessors of v, and all a,b ∈ {0,1}. This is equivalent to the clause
x̄(u1)a∨ x̄(u2)b∨x(v)0∨x(v)1.

Notice that PebG,S,T is a 4-CNF over 2|V | variables, with O(|V |) clauses.
Since by definition all sources of G appear in S, and the target of G appears
in T , it is not hard to see that PebG,S,T is unsatisfiable. Furthermore, it has
a short, constant width resolution refutation.

Lemma 12. For G a circuit, S(PebG,S,T)=O(|V |) and w(PebG,S,T �0)≤6.

Proof. Fix a topological sort of G. In order of this sort, we derive x(v)0∨
x(v)1 for each v ∈ V . If v has no predecessors, v ∈ S, so this is an axiom.
If v has two predecessors, u1 and u2, we have inductively derived x(u1)0∨
x(u1)1, and x(u2)0 ∨ x(u2)1. Together with the four Pebbling Axioms for
v, these imply the clause x(v)0 ∨x(v)1. By the implicational completeness
of Resolution (theorem 3) there is a derivation of x(v)0 ∨ x(v)1 from the
above mentioned clauses. This derivation has constant width and size, since
it involves at most 6 variables. Hence, starting from the Source Axioms, one
can infer x(t)0∨x(t)1, for a target t∈T , in constant width and size O(|V |).
Then, resolving with the Target Axioms, one derives 0.

The following theorem is the main result presented in this section, and
it immediately implies theorem 1.

594 ELI BEN-SASSON, RUSSELL IMPAGLIAZZO, AVI WIGDERSON

Theorem 13. ST (PebG,S,T)=2Ω(PG(S,T)).

Proof [Theorem 1]. Lemma 12 shows that for any circuit G, the pebbling
contradiction based on G has a linear size, constant width, general resolution
refutation. [10] present an infinite family of explicitly constructible circuits
{Gn}, with |V (G)|=n and PG(S,T)=Ω(n/ logn). Taking the Pebbling con-
tradictions of these graphs, theorem 13 implies a lower bound of 2Ω(n/ logn)

on the tree-like refutation size, completing the proof of theorem 1.

The rest of this section is devoted to the proof of theorem 13. We use
Corollary 10; we give a strategy for the Delayer that achieves at least
PG(S,T)−3 points on PebG,S,T .

The strategy is as follows: Set S′ =S,T ′=T . On each round, the Prover
proposes a variable x(v)i.

The Delayer’s response is as follows:
Case 1. If v∈T ′, assign the variable 0.
Case 2. If v∈S′ assign the variable 1.
Case 3. If v �∈S′∪T ′, and if PG(S′,T ′∪{v})=PG(S′,T ′), assign the variable

0 and add v to T ′.
Case 4. If v �∈S′∪T ′, and if PG(S′,T ′∪{v})<PG(S′,T ′), respond ∗ (letting

the Prover assign a value) and add v to S′.
We prove that the strategy above earns the Delayer at least PG(S,T)−3

points by showing that PG(S′,T ′) only decreases by the number of points
earned, and is at most 3 at the end of the game.

Lemma 14. When the game terminates, PG(S′,T ′)≤3.

Proof. Note that, if any variable x(v)i is set to 1, it happened either in Case
2 or Case 4, and in either case v∈S′. Similarly, if both x(v)0 and x(v)1 are
assigned 0, the first to be assigned was either via Case 1 or Case 3, and so
v∈T ′ . (If the first to be assigned fell under Case 4, v would be put in S′,
and the second variable would have been assigned 1 via Case 2.)

So a source axiom will never be violated for s ∈ S ⊆ S′, because both
variables will not be set to 0, and similarly, a target axiom will never be
violated for t ∈ T ⊆ T ′. So at the end of the game, a a pebbling axiom is
violated, say for node v with predecessors u and u′. To be violated, both
x(v)0 and x(v)1 must be set to 0, so v∈T ′. Also, at least one of x(u)0 and
x(u)1 must be set to 1, so u∈S′. Similarly, u′∈S′. So to pebble T ′ from S′

using three pebbles, simply place a pebble on both u and u′, and then on
t.

Lemma 15. For any v ∈ V and any sets S,T , PG(S,T) ≤max{PG(S,T ∪
{v}),PG(S∪{v},T)+1}.

NEAR OPTIMAL SEPARATION OF TREE-LIKE AND RESOLUTION 595

Proof. One way to pebble T from S is to first pebble T∪{v} from S, using
PG(S,T ∪{v}) pebbles. If the result is a pebble in T , stop, otherwise the
final configuration has a pebble on v. Keeping that pebble on v, remove the
other pebbles, then simulate a pebbling of T from S∪{v}. This second stage
uses a total of PG(S∪{v},T)+1 pebbles.

Lemma 16. After any round, if the Delayer has scored p points,
PG(S′,T ′)≥PG(S,T)−p.

Proof. At the beginning of the game, both sides are PG(S,T). Note that
the only case when PG(S′,T ′) changes is in Case 4. In this case, PG(S′,T ′∪
{v})<PG(S′,T ′) at the beginning of the round. By Lemma 15, this means
PG(S′∪{v},T ′)≥PG(S′,T ′)−1. Since in Case 4, the Delayer scores a point,
and v is added to S′, this preserves the invariant.

Corollary 17. Using the strategy described, the Delayer scores at least
PG(S,T)−3 points.

Corollary 18. Any tree-like resolution proof of PebG,S,T has size

Ω(2PebG(S,T)).

4. Upper Bound

In this section we prove that the gap presented in the previous section cannot
be “too large”. Specifically, we prove theorem 2. This shows that the lower
bound stated in theorem 1 is nearly optimal.

The theorem will be proved by explicitly constructing a small size tree
like refutation of T given a small size general refutation. We shall limit our
attention only to “hard” contradictions, for which the gap between tree-like
and general size is maximal, and bound from above the refutation size for
these inputs.

In order to prove theorem 2, we shall work with a different size measure,
hereby defined. This measure, inspired by [15,10], counts the number of
internal edges in the graph of a minimal refutation, and is closely connected
to the standard size measure S defined above. For technical reasons we will
restrict ourselves to proofs π such that Gπ has maximal fan-out 2. This is
not a big limitation, because any proof π can be converted to a proof π′

such that Gπ′ has fan-out 2, where the size of π′ is at most twice the size of
π. (If C is used as an assumption in k derivation steps, make k copies of C
using the weakening rule).

596 ELI BEN-SASSON, RUSSELL IMPAGLIAZZO, AVI WIGDERSON

Definition 19 (Internal Size). An internal vertex of a DAG is any non-
source vertex. An internal edge in a DAG connects two internal vertices.
For G a DAG, e(G) is the number of internal edges in G. For T a CNF
contradiction, define the internal size of refuting T to be:

e(T) def= min{e(Gπ) : π is a refutation of T and Gπ has maximal fan-out 2}.

We define f(e) to be the maximal tree-like size of refuting T , given that T
has a refutation with internal size e. Formally:

f(e) def= max{ST (T) : e(T) ≤ e};

T is called e-maximal if e(T) = e, ST (T) = f(e), and removing any clause
from T enlarges e or makes T satisfiable.

We start by proving two lemmas that will be used in the proof of the
main theorem.

Lemma 20. f(e+1)≤2f(e).

Proof [Lemma 20]. Let T be an e+1-maximal contradiction, and let π be
a refutation of T having e+1 internal edges. Let C be a clause of π that is a
consequence of resolving two axioms A,B∈T , and is involved in at least one
internal edge. (The proof has at least one internal edge. Repeatedly backing
from the current node to any internal predecessor, starting at the source of
this edge, we eventually get to a minimally internal vertex, which must be
labeled by such a C.) Let T ′=T ∪{C}. T ′ has a tree like refutation T ′ of size
at most f(e), since deleting the derivation of C from π gives a refutation of
T ′ with ≤ e internal edges. Adding the derivation A B

C to T ′ whenever C
appears as an axiom in T ′, will be a refutation of T which is at most double
the size of T ′.

Let
(n
≤m

)def=
∑m

i=0

(n
i

)
. For m>n let

(n
≤m

)def= 2n.

Lemma 21. Given a CNF formula with m clauses and n variables, there is
a decision tree solving the CNF search problem, with size at most

(n
≤m

)
.

Proof [Lemma 21]. Consider the following strategy for the CNF search
problem. In every step, we have a partial assignment ρ , we query a variable,
and add its value to ρ. If at the beginning of a step, ρ has forced any clause
to be false, we stop and output that clause. If ρ has forced all clauses to
be true, we stop and output ”true”. Otherwise, we choose the first clause
whose value is not forced, and query the first variable in that clause whose
value is not assigned.

NEAR OPTIMAL SEPARATION OF TREE-LIKE AND RESOLUTION 597

In each step of the above strategy, there is one value for the query that
satisfies the current clause. Along any path of the decision tree, the satisfying
value can be chosen at most m times before all clauses are forced to true, and
the decision tree terminates. Thus, a path in the tree can be described by a
sequence of n bits with at most m 1’s, where 1 means, assign the satisfying
value, and 0, assign the other value. Therefore, there are at most

(n
≤m

)
such

paths.

Next, we wish to show that any Gπ can be split “in half”, into two
derivations, each having roughly half the number of internal edges appearing
in the original Gπ.

Definition 22 (Topological Partition). Let v1 . . . vS be a topological or-
dering of the vertices of a circuit G. For 0≤ i≤ S, let V0(i) = {v1, . . . ,vi},
and let V1(i)={vi+1, . . . ,vS}. Let G0(i) (G1(i) resp.) be the subgraph of G
induced by V0(i) (V1(i) resp.). Let e0(i) (e1(i) resp.) be the number of in-
ternal edges in G0(i) (G1(i) resp.). Let Mi be the set of internal vertices of
V0(i) that are connected to vertices in V1(i), and define mi = |Mi|.

An internal vertex of G0(i) is also an internal vertex in G, thus Mi

is a subset of the internal vertices of G. Notice that π = (C1, . . . ,CS) is a
topological ordering ofGπ. If V0(i),V1(i) is a topological partition ofGπ, then
V0(i) is a resolution derivation from T , and V1(i) is a resolution refutation
of T ∪Mi.

Lemma 23 (Existence of an Equal Topological Partition). [10] For
v1 . . . vS a topological ordering of the vertices of a single-target circuit G with
maximal fan-out 2, there exists a partition of G such that |e0(i)−e1(i)|≤2.
Such a partition is called equal, and for an equal partition, e0(i)< e−mi

2 +2.

Proof. e0(0)=0, e0(S)=e and e0(i+1)≤e0(i)+2, since adding the vertex
vi+1 to V0(i) increases the number of internal edges in V0(i) by at most 2 (G
has maximal fan-in 2). The fan-out of G is at most 2, so e1(i+1)≥e1(i)−4,
since removing vi+1 from V1(i) can transform at most 2 internal vertices of
G1(i) into source vertices of G1(i+1), and each of these two new sources has
fan-out at most 2, meaning at most 4 internal edges are removed from G1(i)
when vi+1 is removed. Hence, there exists an i such that |e0(i)−e1(i)|≤3.

G has a single target, so every vertex in Mi is connected to at least one
vertex in V1(i). Hence e(G)≥e0(i)+e1(i)+mi, and e0(i)≤ e−mi+3

2 .

We are ready to prove the main theorem of this section:

Theorem 24. There exists a constant c>0, such that for all integers k≥4,
f(k2k)≤2c·2k ·logk.

598 ELI BEN-SASSON, RUSSELL IMPAGLIAZZO, AVI WIGDERSON

Proof. By induction on k. Let c≥8 be large enough that the claim is true
for all k < 4, and assume the claim holds for all values smaller than some
fixed k ≥ 4. Let e= k2k. We assume T is a CNF in n variables which has
a refutation with at most e internal edges, and show how to construct a
tree-like refutation of size 2c·2k·logk.

First, if n > e, there is some variable x never resolved on in the proof.
Deleting x and any clause containing x from the proof makes it only smaller,
and keeps it a refutation. So without loss of generality, we assume n≤e.

Let π=(C1,C2, . . . ,CS) be a refutation of T , such that Gπ has e internal
edges. Let π0,π1 be the equal partitioning of π at some 1≤ i ≤ S, denote
e0 =e0(i),e1 =e1(i) and m= |Mi|.

Given the partition, we present two alternative methods for constructing
tree-like refutations of T . We choose our method according to the size of m:

m≥2k – The Brute Force method. Each clause C ∈ Mi was derived by a
derivation with at most e0 ≤ e−m

2 + 2 ≤ (k− 1)2k−1 + 2 internal edges
(by lemma 23), hence it has a tree like derivation of size at most
f((k−1)2k−1 +2)≤ 4f((k−1)2k−1) (by lemma 20). We replace π1 with
a tree-like derivation, that, similarly, has size at most 4f((k− 1)2k−1),
and then replace each axiom C ∈Mi by the tree-like derivation of size
at most 4f((k − 1)2k−1). The total size of this derivation is at most
16f2((k−1)2k−1). Using induction we get:

16f2
(
(k − 1)2k−1

)
≤ 24+c2k log(k−1) ≤ 2c2k log k.

The last inequality is true for c≥8 and k≥4.
m<2k – The Intelligent method. By lemma 21, there is a decision tree D of

size at most
(n
≤m

)
solving the CNF search problem over Mi (Mi may be

satisfiable). Look at a leaf v of D. If v is labeled C∈Mi, using lemma 23
we claim C can be derived from T by a tree like derivation of size at most
f(e−m

2 +2)≤4f(e−m
2) (the previous inequality uses lemma 20 again), and

we plug into v this “small” tree-like derivation. Otherwise v must be
labeled 1. This means that the restriction ρ defined by the path leading
to v, satisfies Mi, and hence π1|ρ is a refutation of T |ρ with at most
e−m

2 +2 internal edges (lemma 23). Hence, there is a tree like refutation
of T |ρ of size at most 4f(e−m

2) (lemma 20). This can be transformed into
a derivation from T of Cρ, the clause which contains all literals set to 0 by
ρ, without increasing its size. Plugging the tree-like derivation of Cρ into
v, for every v labeled 1 in D, transforms D into a tree-like refutation of
T . We need only show that the new tree-like refutation is not too large.

NEAR OPTIMAL SEPARATION OF TREE-LIKE AND RESOLUTION 599

Its size is bounded by:

≤
(

n

≤ m

)
· 4f

(
k2k −m

2

)
.(1)

n≤e+1, so

≤
(
k2k + 1
≤ m

)
· 2f

(
k2k −m

2

)
.(2)

k≥4 and m<2k, so

≤ 2k+1

(
k2k

m

)
· f
(
k2k − 2k

2
+

2k −m
2

)
.(3)

By lemma 20

≤ 2k+1

(
k2k

m

)
· 2

2k−m
2 f

(
(k − 1)2k−1

)
,(4)

≤ 2k+1

(
k2k

2k

)
f
(
(k − 1)2k−1

)
,(5)

(because
(r
m

)
2

−m
2 is monotonically increasing in m for m ≤ r/4, and

m<2k≤k2k/4, we can substitute m=2k to upper bound the quantity);

≤ 2k+1(4k)2
k · 2c·2k−1·log k−1,(6)

≤ 2k+1+2·2k+2k·(log k)+(1/2)c(2k log k),(7)

= 2k+1+2k ·(2+log k(1+c/2)) ≤ 2c2k ·log k.(8)

The last inequality follows for k≥4 and c≥8.

We are now set to prove theorem 2.

Proof [Theorem 2]. Let T be a contradiction, and π be its minimal size
refutation, with S(π)=S(T)=S. Let π′ be the minimal size refutation for
which Gπ′ has maximal fan-out 2. By our discussion in the beginning of this
section, |π′| ≤ 2S. Hence e def= e(Gπ′) ≤ 4 ·S, because at most two internal
edges enter a vertex of Gπ′ . Set k def= �log 2e

loge�. Clearly e≤ k2k, and recall
that f(e) is monotonically increasing, hence:

ST (T) ≤ f(e) ≤ f(k2k) = 2O(S log log S
log S

)
.

600 ELI BEN-SASSON, RUSSELL IMPAGLIAZZO, AVI WIGDERSON

5. Applications to Automated Theorem Proving

Some of the most extensively used and investigated methods for proving
unsatisfiability of CNF formulas, are called Davis–Putnam procedures. Ac-
tually, these procedures are derived from a system devised by Davis, Loge-
mann and Loveland [13], and hence we will refer to them as DLL Procedures.
A DLL procedure relies on choosing a variable x (called the splitter), and
trying to refute T |x=T and T |x=F recursively.

If T is unsatisfiable, DLL(T) terminates providing a tree-like resolution
refutation of T . The DLL procedure is actually a family of algorithms; an
algorithm in the family is specified by a rule that determines the choice of
splitter at each recursive step.

A different method is to seek a minimal width refutation. Algorithms for
finding such refutations are well-known in the AI community ([24]), but were
given additional theoretical motivation by [7]. (See also [4]). One algorithm
to do such a search can be described as follows:
A (T)

fix w=0
Repeat {

If 0∈T end
Else {

increase w
repeatedly derive from T all clauses of
width ≤w and add to T
}

}
Algorithm A has running time bounded by nO(w(T 	0)), because this is

the maximal number of different clauses that will be encountered. A simple
consequence of this observation, is that the pebbling contradictions provide
concrete examples for which algorithm A exponentially outperforms any
DLL-procedure.

Theorem 25. Let DLL be any implementation of a DLL procedure.
There exists an infinite family of unsatisfiable CNF formulas T such
that T ime(DLL(T)) is exponentially larger than T ime(A(T)), i.e.,
exp(T imeΩ(1)T ime(A(T))).

Proof. We use the notation of section 3. Take T =PebG,S,T a circuit G with
high pebbling measure PG(S,T)= |V |/ log |V |. By lemma 12

T ime(A(T)) = |V |O(1).

NEAR OPTIMAL SEPARATION OF TREE-LIKE AND RESOLUTION 601

By theorem 1, any tree-like refutation of T , must have size at least

2Ω(|V |
log |V |).

Since the run time of any DLL procedure is bounded from below by the size
of its output, which is a tree-like refutation, the theorem follows.

6. Open Problems

One result of this paper is that for all CNFs

ST ≤ exp
(
S log log S

log S

)
.

Another result is that for some CNFs

exp
(

S

log S

)
≤ ST .

Can the gap between the two bounds be closed?
Hopcroft, Paul and Valiant proved that any circuit with n vertices can

be pebbled with O(n/ logn) pebbles [15]. Thus, one cannot hope to find
“harder” graphs whose pebbling measure will match our upper bound. The
analysis we perform is locally tight, so it seems that using our techniques
one cannot obtain better results. Finally, we do not have good intuition as
to which of the two bounds (if any) is the right one.

References

[1] R. Aharoni and N. Linial: Minimal Non-Two-Colorable Hypergraphs and Minimal
Unsatisfiable Formulas, J. of Combinatorial Theory, Series A 43(2) (1986), 196–204.

[2] M. L. Bonet, J. L. Esteban, N. Galesi and J. Johannsen: Exponential Sep-
arations between Restricted Resolution and Cutting Planes Proof Systems, in 39th
Symposium on Foundations of Computer Science (FOCS 1998) pp. 638–647.

[3] P. Beame, R. Karp, T. Pitassi andM. Saks: On the Complexity of Unsatisfiability
Proofs for Random k-CNF Formulas, Preliminary version in Proceedings of the 30th
Annual ACM Symposium on Theory of Computing, pages 561–571, Dallas, TX, May
1998. Final version in SIAM Journal on Computing 31(4) (2002), 1048–1075.

[4] P. Beame and T. Pitassi: Simplified and Improved resolution lower bounds, Pre-
liminary version in 37th Annual Symposium on Foundations of Computer Science,
pp. 274–282, Burlington, VT, October 1996, IEEE. Final version in SIAM Journal
on Computing 31(4) (2002), 1048–1075.

[5] S. Buss and T. Pitassi: Resolution and the Weak Pigeonhole Principle, in Springer-
Verlag Lecture Notes in Computer Science. (Publications of selected papers presented
at Proceedings from Computer Science Logic ’97).

602 ELI BEN-SASSON, RUSSELL IMPAGLIAZZO, AVI WIGDERSON

[6] S. R. Buss and Gy. Turán: Resolution Proof of generalized Pigeonhole principles,
Theoretical Comp. Sci. 62(3) (1988), 311–317.

[7] E. Ben-Sasson and A. Wigderson: Short Proofs are Narrow – Resolution made
Simple, Journal of the ACM 48(2) (2001), 149–169. Preliminary version in STOC99.

[8] S. A. Cook: An Observation on Time-Storage Trade-Off, J. of Comp. and Sys. Sci.
9 (1974), 308–316.

[9] M. Clegg, J. Edmonds and R. Impagliazzo: Using the Groebner Basis algorithm
to find proofs of unsatisfiability, In Proceedings of the 28th ACM symposium on
Theory of Computing, 1996, pp. 174–183.

[10] J. R. Celoni, W. J. Paul and R. E. Tarjan: Space Bounds for a Game on Graphs,
Math. Systems Theory 10 (1977), 239–251.

[11] S. A. Cook and R. Reckhow: The relative efficiency of propositional proof systems,
J. of Symbolic Logic 44 (1979), 36–50.

[12] V. Chvátal and E. Szemerédi: Many Hard Examples for Resolution, J. of the
ACM 35(4) (1988), 759–768.

[13] M. Davis, G. Logemann and D. Loveland: A Machine program for theorem
proving, Communications of the ACM 5 (1962), 394–397.

[14] A. Haken: The Intractability of Resolution, Theoretical Computer Science 39 (1985),
297–308.

[15] J. E. Hopcroft, W. Paul and L. Valiant: On Time vs. Space, J. of the ACM
24 (1977), 332–337.

[16] R. Impagliazzo, P. Pudlák and J. Sgall: Lower Bounds for the Polynomial-
Calculus and the Groebner Basis Algorithm, Computational Complexity 8(2) (1999),
127–144. Electronically at Electronic Colloquium on Computational Complexity Re-
ports Series 1997, Available at http://www.eccc.uni-trier.de/eccc/, Technical
Report TR97-042.

[17] R. Raz and P. McKenzie: Separation of the Monotone NC Hierarchy, Combina-
torica 19(3) (1999), 403–435. Preliminary version in Proceedings of the 38th FOCS
1997, pp. 234–243.

[18] N. Pippenger: Pebbling, Technical Report, IBM Watson Research Center.

[19] P. Pudlák and R. Impagliazzo: Lower bounds for DLL algorithms for k-SAT,
Proceedings of SODA 2000, pp. 128–136.

[20] A. A. Razborov: Unprovability of Lower Bounds on Circuit Size in Certain Frag-
ments of Bounded Arithmetic, Izvestia of the RAN 59(1) (1995), 201–222.

[21] A. A. Razborov: Lower Bounds for the Polynomial Calculus, Computational Com-
plexity 7(4) (1998), 291–324.

[22] A. A. Razborov and S. Rudich: Natural Proofs, Journal of Computer and System
Sciences 55(1) (1997), 24–35. Preliminary version in Proc. of the 26th STOC 1994,
pp. 204–213.

[23] A. A. Razborov, A. Wigderson and A. Yao: Read-Once Branching programs,
rectangular proofs of the pigeonhole principle and the transversal calculus, Proc. of
the 29th STOC 1997, pp. 739–748.

[24] B. Selman: personal communication, 1995.

[25] G. S. Tseitin: On the Complexity of Derivation in Propositional Calculus, in Studies
in Constructive Mathematics and Mathematical Logic, Part 2, Consultants Bureau,
New-York–London, 1968, pp. 115–125.

[26] A. Urquhart: Hard Examples for Resolution, J. of the ACM 34(1) (1987), 209–219.

http://www.eccc.uni-trier.de/eccc/

NEAR OPTIMAL SEPARATION OF TREE-LIKE AND RESOLUTION 603

[27] A. Urquhart: The Complexity of Propositional Proofs, The Bulletin of Symbolic
Logic 1(4) (1995), 425–467.

Eli Ben-Sasson

Division of Engineering

and Applied Sciences

Harvard University

and

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA

USA

eli@eecs.harvard.edu

Russell Impagliazzo

Computer Science

& Engineering Department

University of California, San Diego

Mail Code 0114

9500 Gilman Drive

La Jolla, CA 92093

USA

russell@cs.ucsd.edu

Avi Wigderson

School of Mathematics

Institute for Advanced Study

Princeton, NJ

USA

and

Hebrew University

Jerusalem

Israel

avi@ias.edu

mailto:eli@eecs.harvard.edu
mailto:russell@cs.ucsd.edu
mailto:avi@ias.edu

	Heading
	1. Introduction and Main Results
	2. Definitions
	2.1. General
	2.2. Restrictions
	2.3. Width
	2.4. Decision Trees
	2.5. Pebbling
	2.6. A game for proving lower bounds on tree-like resolution

	3. Lower Bound
	4. Upper Bound
	5. Applications to Automated Theorem Proving
	6. Open Problems
	References

