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Consider a k-element subset P of the plane. It is known that the maximum number of
sets similar to P that can be found among n points in the plane is Θ(n2) if and only if
the cross ratio of any quadruplet of points in P is algebraic [3], [9].

In this paper we study the structure of the extremal n-sets A which have cn2 similar
copies of P . As our main result we prove the existence of large lattice-like structures in
such sets A. In particular we prove that, for n large enough, A must contain m points
in a line forming an arithmetic progression, or m×m lattices, when P is not cocyclic
or collinear. On the other hand we show that for cocyclic or collinear sets P , there are
n-element sets A with cP n2 copies of P and without k×k lattice subsets.

1. Introduction

We identify the plane with the field of complex numbers C. For A,B ⊆ C

and z,w∈C we denote zA= {za :a∈A}, and A+w= {a+w :a∈A}. Also,
we say that A and B are similar, and we write A∼B, if there are complex
numbers w and z �=0 such that B=zA+w (i.e., we do not allow reflections).

For every pattern set P and finite set A⊂C we define

SP (A) = |{X ⊆ A : X ∼ P}| .
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It is a natural question, posed many times by Erdős and Purdy [4]–[6], to
determine or estimate the following function

SP (n) = max
|A|=n

SP (A);(1)

i.e., the maximum number of subsets similar to a given pattern P that can
be found among n points in the plane. In [3] Erdős and the second author
started the study of this function. They noticed that SP (n)≤n(n−1) (a set
similar to P is determined by the location of any pair of reference points).
They also proved that SP (n) ≥ cn2−b log−an for some constants a,b,c > 0
depending only on P , and SP (n) = Θ(n2) when P is an algebraic set or
|P |=3. Later, Laczkovich and Ruzsa [9] proved that SP (n)=Θ(n2) if and
only if the cross ratio among every quadruplet of distinct elements in P is
algebraic. Recall that the cross ratio of a quadruplet (a,b,c,d) of different
complex numbers is given by

(a; b; c; d) =
(c− a)(d− b)
(d− a)(c− b)

.

Even though this settles the order of magnitude for a big class of sets P ,
it is not known if limn→∞SP (n)/n2 exists for any non-trivial sets P , e.g.,
triangles.

In this article we take a qualitative approach to the problem. For a pat-
tern set P satisfying SP (n) = Θ(n2), we say that A is a (P,c)-rich set if
SP (A) ≥ c |A|2. Our objective is to find structural properties about (P,c)-
rich sets. To accomplish this, we introduce in Section 2 the notion of a
GP (m) set. Then we state our main result, Theorem 1, which asserts that
every sufficiently large (P,c)-rich set must contain a GP (m) set. The impor-
tance of this result is seen through its corollaries. We prove, for example,
the existence of large arithmetic progressions or lattice structures (when P
is not cocyclic or collinear) among (P,c)-rich sets. Other corollaries include
the fact that the related function Sgen

P (n), where the maximum in (1) is
restricted to sets in general position, satisfies Sgen

P (n)= o(n2); and the ex-
istence of regular triangle lattices among sufficiently large extremal sets of
the function ST (n), where T is an equilateral triangle.

For the sake of continuity, we postpone the proof of Theorem 1 to Sec-
tion 4, where we introduce the reader to some necessary Number Theory
results by Freiman [7], Balog, Szemerédi [2], Laczkovich, Ruzsa [9], and
Fürstenberg, Katznelson [8].

Finally, in Section 3, we look closely to the case when P is a cocyclic or a
collinear set. For this case we construct (P,c)-rich sets contained in at most
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|P | lines. From this construction we characterize cocyclic or collinear sets as
the only sets P for which there are arbitrarily large (P,c)-rich sets avoiding
|P |×|P |-lattice structures.

2. P -generated sets and the main result

We start this section by introducing the concept of a GP (m) set which will
be essential for our main result. From now on P = {p1,p2, . . . ,pk} will be
the pattern set, and for every positive integer m, Im = {j∈Z : |j|≤m} and
[m]={j∈Z :1≤j≤m}.

We say that A is a P -generated set of parameter m, for short GP (m) set,
if for some triplet of points in P , say p1,p2,p3, there exist complex numbers
u,v, and z �=0 such that A=

⋃k
j=1Lj where

Lj =
p1 − pj
p1 − p3

(u+ zIm) +
p2 − pj
p2 − p3

(v + zIm).

(We suggest depicting the special case u=v=0, z=1; all others are similar.)
A GP (m) set has the property that whenever we ‘place’ a similar copy

of P in such a way that p1∈L1 and p2∈L2, then pj∈Lj for all j≥3 (hence
the term ‘generated’). We make this precise in the following proposition.

Proposition 1. For α,β∈Im and 1≤j≤k let

aj,α,β =
p1 − pj
p1 − p3

(u+ zα) +
p2 − pj
p2 − p3

(v + zβ) ∈ Lj .

If a1,α,β �=a2,α,β the set {a1,α,β,a2,α,β,a3,α,β, . . . ,ak,α,β} is similar to P .

Proof. For fixed α and β we have

aj,α,β =
p1

p1 − p3
(u+ zα) +

p2

p2 − p3
(v + zβ) +

(
u+ zα

p3 − p1
+

v + zβ

p3 − p2

)
pj

= uα,β + zα,βpj

where uα,β and zα,β do not depend on j and zα,β �=0 since, by assumption
a1,α,β �=a2,α,β.

By definition L1,L2 and L3 are arithmetic progressions of lengths 2m+1,
2m+1 and 4m+1 respectively. On the other hand, for j ≥ 4 the set Lj is
generated by p1−pj

p1−p3
z and p2−pj

p2−p3
z. It turns out that these vectors are parallel

if and only if {p1,p2,p3,pj} lie on a circle or a line. Hence Lj is entirely
contained in a line whenever p1,p2,p3, and pj are cocyclic or collinear, and
it is a (2m+1)×(2m+1) lattice otherwise.
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If P is a triangle and A is a GP (m) set corresponding to the values u=
v=0 and z=1, then by the above proposition we have SP (A)≥(2m+1)2−1.
Also, by our previous remark, n= |A|=8m+1. Thus A is an n-element set
with at least n2/16 triplets similar to P . This is a minor improvement over
the n2/18 construction given in [3]; which can in fact be seen as a proper
subset of A.

The following theorem is the main result of the paper. It describes the
structure of sets in the plane with a large number of subsets similar to P
by showing the existence of large GP (m) subsets. The proof of the theorem
will be postponed to Section 4. Before that, we will explore some interesting
geometric consequences.

Theorem 1. For every c > 0 and m positive integer there is a threshold
N0=N0(c,m) with the following property.
Every (P,c)-rich set with n>N0 elements must contain a GP (m) set.

Proof. See Section 4.

Corollary 1. If S′
P (n,m) denotes the maximum number of subsets similar

to P , among all n-element subsets of the plane with no m points on a line,
then for every fixed m we have S′

P (n,m)=o(n2).

Proof. Follows directly from Theorem 1 and the fact that any GP (m) set
has m collinear points.

As a further corollary we also have Sgen
P (n)=o(n2), where this last func-

tion is the maximum number of subsets similar to P among n-sets in general
position (no 3 on a line no 4 on a circle).

The next corollary states the existence of large lattices among (P,c)-rich
sets when P is not cocyclic or collinear.

Corollary 2. If P is a finite set and {p1,p2,p3,p4}⊆P is not a cocyclic or a
collinear set then for every c>0 and m positive integer there is a threshold
N0=N0(c,m) with the following property.
Every (P,c)-rich set with n>N0 elements must contain a (2m+1)×(2m+1)

lattice with generators x and y satisfying x/y=(p1;p2;p3;p4).

Proof. Assume without loss of generality that p1 =0 and p2 =1. Suppose
Q is a (P,c)-rich set with |Q|= n >N0, where N0 is given by Theorem 1.
Hence Q must contain a GP (m) set, so in particular Q contains the set

L4 =
p4

p3
(u+ zIm) +

1 − p4

1 − p3
(v + zIm)

=
(
p4

p3
u+

1− p4

1− p3
v

)
+
p4

p3
zIm +

1 − p4

1 − p3
zIm.
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Let x= 1−p4

1−p3
z, y= p4

p3
z. Notice that x/y=(0;1;p3;p4) and since {p1,p2,p3,p4}

is not a cocyclic set then (0;1;p3;p4) /∈ R, and consequently x and y are
linearly independent vectors. Thus L4 is the required lattice.

There are n-sets with cn2 triples determining equilateral triangles, and
containing no 3× 3 lattices (e.g. any GP (m) set with n points and P an
equilateral triangle). But large lattices are unavoidable whenever c > 1/6,
more precisely we have the following.

Corollary 3. Let T be an equilateral triangle. For m positive integer and
ε>0 there is a threshold N1 =N1(ε,m) with the following property.
Every set A with n > N1 elements for which ST (A) ≥

(
1
6 +ε

)
n2 must

contain a (2m+1)×(2m+1) regular triangle lattice.

Proof. Let T be the triangle {0,1,eiπ/3} and R the rhomb {0,1,eiπ/3,e−iπ/3}.
Suppose A is an n-element set satisfying ST (A) ≥

(
1
6 +ε

)
n2. For i = 1,2

define Xi as the number of pairs in A that are the vertices of exactly i equi-
lateral triangles with vertices in A. Observe that according to our definitions
ST (A)= 1

3X1 + 2
3X2 and SR(A)=X2, hence

X1 + 2X2 ≥
(

1
2

+ 3ε
)
n2

and using the trivial inequality X1 +X2<(1/2)n2 we conclude that

SR (A) = X2 > 3εn2.

Hence by Corollary 2, for n > N1 = N0(3ε,m) we have that A con-
tains a (2m + 1) × (2m + 1) lattice with generators x and y satisfying
x/y = (0;1;eiπ/3;e−iπ/3) = −eiπ/3, so the lattice is in fact a regular trian-
gle lattice.

As a further corollary we can remark that in [1] it was proved that
ST (n)≥

(
1
3 −

√
3

4π

)
n2 +O(n3/2), so the extremal sets for the function ST (n)

contain large regular lattices.
When the set P is cocyclic Theorem 1 cannot guarantee a lattice sub-

structure, but in that case we can always obtain a set of k concurrent lines
with many points.

Corollary 4. A set of arithmetic progressions in C is said to be concurrent
if the lines containing the progressions are concurrent. If P is a cocyclic
set with k elements then for every c > 0 and m positive integer there is a
threshold N0 =N0(c,m) with the following property.
Every (P,c)-rich set with n>N0 elements must contain a set of k con-

current arithmetic progressions each of size 2m+1.
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Proof. Let gj = (p1;p2;p3;pj) for j≥ 2. Assume again without loss of gen-
erality that p1 =0 and p2 =1. Since P is a cocyclic set then we know that
gj ∈R for all j≥ 2. Suppose Q is a (P,c)-rich set with |Q|=n>N0, where
N0 is given by Theorem 1. Thus Q contains a GP (m) set. Define the lines

*1 =
v

1− p3
+

z

1 − p3
R and

*j = (u+ gjv) +
zpj
p3

R for j ≥ 2.

Clearly Lj⊆*j and every Lj contains a 2m+1 arithmetic progression. Now
consider the similarity transformation T : C→C given by T (w) = p3

z w− u
z .

By definition we have

T (*1) = x+
p3

1 − p3
R and

T (*j) = x(1 − pj) + pjR for j ≥ 2,

where x= p3(u+v)−u
z(1−p3) . A simple calculation shows that Rj :=T (*j)∩T (*2) is

given by

R1 =
p3(1 − p3)x− p3(1 − p3)x

p3 − p3
and

Rj =
pj(x̄+ xpj)− pj(x+ xpj)

pj − pj
for j ≥ 3.

Using the fact that gj ∈R and pj =p3(p3+gj(1−p3))−1 we obtain for j≥3

Rj =
p3(1 − p3)x− p3(1 − p3)x

p3 − p3
.

Therefore the set of lines {*1, *2, . . . , *k} is concurrent.

3. Cocyclic and collinear patterns

To complement the results from last section we present the following theo-
rem, where for P a cocyclic set, we construct a set contained in k concurrent
lines and with many similar copies of P .

The proof of the theorem mimics, in a certain sense, the construction first
done in [3]. The main difference being the use of the cross ratios (p1;p2;p3;pj)
instead of the value pj, this allows our set to be contained in a set of at most
k lines as opposed to have the grid-like structure described in [3].
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Theorem 2. For every k-element cocyclic or collinear set P with k≥3 and
SP (n) = Θ(n2), there is a constant c = c(P ) > 0 and a collection of lines
*1, *2, . . . , *k through the origin satisfying the following property.
For every integer n≥ k there is a n-element set An ⊂⋃k

j=1 *j satisfying

SP (An)≥cn2.

Before we see the proof of the theorem let us state the following con-
sequence which characterizes the notion of cocyclicity (or collinearity) for
finite sets.

Corollary 5. For every k-element set P satisfying SP (n)=Θ
(
n2
)
the fol-

lowing are equivalent.

1. P is cocyclic or collinear.
2. There is a constant c>0 and arbitrarily large (P,c)-rich sets containing
no k×k lattices.

Proof. Trivial for k≤ 2. The implication (1)⇒(2) follows from Theorem 2
and the fact that a set contained in k concurrent lines cannot contain a
k×k lattice. (2)⇒(1) follows directly from Corollary 2 using any value m≥
(k−1)/2.

Proof of Theorem 2. Assume without loss of generality that p1 =0 and
p2 = 1. Let g2 = 0, g3 = 1, and gj = (0;1;p3;pj) for 4 ≤ j ≤ k; note that
gj∈R since P is cocyclic or collinear. Since SP (n)=Θ

(
n2
)
, we have that by

Laczkovich–Ruzsa Characterization Theorem [9] every gj is algebraic. Let D
be the degree of L=Q(g3,g4, . . . ,gk) over Q and {h1,h2, . . . ,hD} be a basis
of L over Q.

We first prove the theorem for an increasing sequence {nm} of values of
n. For every m≥1 consider the following set of real numbers

Gm =

{
D∑
i=1

aihi : ai ∈ Im

}
.

Clearly |Gm|=(2m+1)D. Let Jm =Gm×Gm\{(a,b)∈Gm×Gm :bp3−a=0}.
For every (a,b)∈Jm define the similarity transformation

Ta,b(z) =
p3(a− b)
p3 − 1

+
bp3 − a

p3 − 1
z.

Let nm =
∣∣∣∣⋃(a,b)∈Jm

1≤j≤k

Ta,b(pj)
∣∣∣∣ and Anm =

⋃
(a,b)∈Jm

1≤j≤k

Ta,b(pj). By definition we

have

Ta,b(0) =
p3

p3 − 1
(a− b), and Ta,b(pj) = pj (a(1 − gj) + bgj) for j ≥ 2.(2)
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Fig. 1 Examples of the sets Anm for some sets P .

Let *1, *2, . . . , *k be a collection of lines defined as follows,

*1 :=
(

p3

p3 − 1

)
R, and *j := pjR for j ≥ 2.(3)

By construction we have that for every 1≤j≤k⋃
(a,b)∈Jm

Ta,b(pj) ⊆ *j ,

thus Anm ⊂⋃k
j=1 *j and Ta,b(P )⊂Anm for every (a,b)∈Jm.

Now, if P is cocyclic then all the lines in (3) are pairwise different which
together with (2) gives Ta,b(P ) �= Ta′,b′(P ) whenever (a,b) �= (a′, b′). On the
other hand, if P is collinear we can assume p1=0<p3<p4<.. .<pk<1=p2.
If Ta,b (P )=Ta′,b′ (P ) then either (a,b)=(a′, b′) or by (2) P is symmetric with
respect to 1/2 and T−1

a,b ◦Ta′,b′ (z) is a half-turn rotation with center 1/2. In
both cases, for each pair (a,b) there is at most one pair (a′, b′) �=(a,b) such
that Ta,b(P )=Ta′,b′(P ) which means

SP (Anm) ≥ 1
2
|Jm| ≥ 1

2

(
|Gm|2 − |Gm|

)
≥ 1

3
|Gm|2 .(4)

Now we will find appropriate bounds for the size of Anm in terms of |Gm|.
To accomplish this we need the following lemma.
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Lemma 1. There are positive integers M,K independent of m so that for
every 2≤j≤k we have that (Kgj)Gm⊆GMm.

Proof. Let y∈L=Q(g3,g4, . . . ,gk). Express yhi as a linear combination of
{h1,h2, . . . ,hD} over Q,

yhi =
D∑
j=1

qi,jhj .

Suppose qi,j = ai,j/bi,j with ai,j, bi,j integers. Let K be the least common
multiple of {bi,j} and M0 the maximum of {|ai,j|}. Then for every z =∑D

i=1 zihi∈Gm we have

Kyz =
D∑
i=1

ziKyhi =
D∑
j=1

(
D∑
i=1

ziKai,j
bi,j

)
hj ∈ Z(g3, g4, . . . , gk),

and ∣∣∣∣∣
D∑
i=1

ziKai,j
bi,j

∣∣∣∣∣ ≤
D∑
i=1

∣∣∣∣∣ziKai,j
bi,j

∣∣∣∣∣ ≤ KM0Dm.

So by letting M = KM0D we infer that (Ky)Gm ⊆ GMm. Clearly we can
find common values of K and M to make this work simultaneously for
y=g2,g3, . . . ,gk.

Besides this lemma we also need the following easy facts for gener-
alized arithmetic progressions of the form Gm: For any positive integers
N,m1,m2,m we have that NGm ⊆ GNm and Gm1 ±Gm2 = Gm1+m2 . Using
these properties we have∣∣∣ ⋃

(a,b)∈Jm

Ta,b(p1)
∣∣∣ = |Gm − Gm| = |G2m|

(note that |Gm|≤|G2m|≤2D |Gm|), and for j≥2,∣∣∣ ⋃
(a,b)∈Jm

Ta,b(pj)
∣∣∣ = |(1 − gj)Gm + gjGm| ≤ |KGm −KgjGm +KgjGm|

≤ |GKm−GMm+GMm| =
∣∣∣G(K+2M)m

∣∣∣ ≤ (K+2M)D |Gm| ,∣∣∣ ⋃
(a,b)∈Jm

Ta,b(pj)
∣∣∣ = |(1 − gj)Gm + gjGm| ≥ |Gm| .
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So by letting c1 =k and c2 =k(K+2M)D we have

c1 |Gm| ≤ nm ≤ c2 |Gm| .(5)

Hence by (4) we conclude that SP (Anm)≥ 1
3 |Gm|2≥ 1

3c
−2
2 n2

m.
To prove the result for arbitrary n≥k we note that, using (5) and |Gm|=

(2m+1)D, there is a constant c3 independent of m such that nm<nm+1≤
c3nm. Thus, if nm<n≤nm+1 we let An be the set Anm constructed before
together with n−nm extra points in the line *1. It is clear that SP (An)≥c4n

2

which completes the proof.

Remark. If P is collinear all the lines in (3) are the same. If P is cocyclic
then all the lines in (3) are different and every similar copy of P lies on a
circle passing through the origin.

4. Proof of Theorem 1

The proof of our main result will be based on some deep results of Com-
binatorial Number Theory, namely those which describe the structure of
small sumsets. These results are usually stated for subsets of the integers,
but they are in fact true for subsets of any torsion-free abelian group [10],
in particular for subsets of C. The notion of generalized arithmetic progres-
sions (first introduced by Szemerédi [12] in his famous paper) is involved
in all of these results. For any d positive integer, {n1,n2, . . . ,nd} ⊆ N, and
{z1,z2, . . . ,zd}⊆C\{0}, we call the set

G =

{
d∑

i=1

kizi : 0 ≤ ki < ni

}

a generalized arithmetic progression of dimension d and parameters {ni} and
{zi}. In what follows the symbol Gd,n will denote a generalized arithmetic
progression of dimension not exceeding d and size n. For short we will use
expressions like “there exists a Gd,n”.

From now on we assume A,B⊆C, |A|= |B|=n, and E⊆A×B. We write
A+B={a+b :a∈A,b∈B} and A+EB={a+b : (a,b)∈E}.

Using exponential sums and methods from the geometry of numbers.
Freiman obtained the following result that describes the structure of A+B
when the cardinality of such set is not much greater than n. Later Ruzsa
found a simpler proof [11].
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Theorem A (Freiman [7]). For every C > 0 there is a positive constant
c=c(C) and a natural number d=d(C) satisfying the following property.
If |A+B|≤Cn then A∪B is contained in a Gd,cn.

Balog and Szemerédi found a statistical version of this theorem, by re-
laxing the assumption that all pairwise sums must be taken into account,
and just considering the sums of cn2 pairs.

Theorem B (Balog, Szemerédi [2]). For every C1,C2 > 0 there are
positive constants c1 = c1(C1,C2), c2 = c2(C1,C2), and a natural number
d=d(C1,C2) satisfying the following property.
If |A+EB| ≤ C1n and |E| ≥ C2n

2 then there is a Gd,c1n satisfying
|A∩Gd,c1n|≥c2n and |B∩Gd,c1n|≥c2n.

Laczkovich and Ruzsa took this theorem a step further by proving the
following generalization, which is precisely the result we use for the proof of
Theorem 1.

Theorem C (Laczkovich, Ruzsa [9]). For every C1,C2 > 0 there are
positive constants c1 = c1(C1,C2), c2 = c2(C1,C2), and a natural number
d=d(C1,C2) satisfying the following property.
If |A+EB|≤C1n and |E|≥C2n

2 then there is a Gd,c1n satisfying

|E ∩ (Gd,c1n × Gd,c1n)| ≥ c2n
2.

The following lemma, which is a consequence of Theorem C, is used in
the proof of Theorem 1. Any proof with explicit bounds of this lemma would
in turn provide explicit bounds for the results in this paper.

Lemma 2. For every C1,C2>0 there is a positive constant c3 =c3(C1,C2)
such that for every positive integer M , there is a threshold function N =
N(C1,C2,M) satisfying the following property.
For every n≥N , if |A+EB|≤C1n and |E|≥C2n

2 then there are arith-
metic progressions G1,G2 of length l≥M and common difference such that

|E ∩ (G1 × G2)| ≥ c3l
2.

Proof. By Theorem C, applied to the sets A and B, there are positive
constants c1, c2, a positive integer d (all depending on C1 and C2 only), and
G=Gd,c1n a generalized arithmetic progression satisfying |(G×G)∩E|≥c2n

2.
Suppose G is given by

G =

{
d∑

i=1

kizi : 0 ≤ ki < ni

}
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with n1≥n2≥ . . .≥nd≥1 and
∏d

i=1ni=c1n. Let c3 =c2/c
2
1, N=Md/c1, and

l=n1.
For every r=(r2,r3, . . . ,rd)∈ [n2]× [n3]×·· ·× [nd] define

Gr =
{
k1z1 +

d∑
i=2

rizi : 0 ≤ k1 < n1 = l

}
.

Observe that ∑
r,s∈[n2]×[n3]×···×[nd]

|(Gr × Gs) ∩ E| ≥ |(G × G) ∩ E| ≥ c2n
2

so by an averaging argument there are R1,R2∈ [n2]×[n3]×·· ·×[nd] satisfying

|E ∩ (GR1 × GR2)| ≥ (c2/c21)n
2
1 = c3l

2.

Notice that GR1 and GR2 are arithmetic progressions with common difference
z1. If n≥N then ld =nd

1≥ c1n≥ c1N =Md, i.e., l≥M and thus GR1,GR2 is
the required pair of arithmetic progressions.

The other main ingredient for our proof is a two dimensional generaliza-
tion of the famous Szemerédi Theorem [12] regarding the existence of long
arithmetic progressions among subsets of Z with positive density. The the-
orem is due to Fürstenberg and Katznelson and was obtained by means of
Ergodic Theory [8]. No quantitative proof of this result is known.

Theorem D (Fürstenberg, Katznelson [8]). For every integer m and
constant c>0 there is a threshold function N1 =N1(c,m) with the following
property.
For every n≥N1, if A⊆ [n]× [n] and |A|≥cn2 then A contains an m×m

square sublattice, i.e., a set of the form (a1+b[m])×(a2+b[m]) with a1,a2, b
positive integers.

Finally we are in a position to prove the main theorem.

Proof of Theorem 1. First assume without loss of generality that p1 =0
and p2=1. SupposeQ is a (P,c)-rich set of size n. Let A=p3Q, B=(1−p3)Q,
and

E =
{
(a, b) ∈ A×B : bp3 �= a (1− p3) and a

pj
p3

+ b
1 − pj
1 − p3

∈ Q for all j
}

Consider the function f :E→{X⊂Q :X∼P} given by

f(a, b) =
{
a
pj
p3

+ b
1 − pj
1 − p3

: 1 ≤ j ≤ k

}

=
{

b

1− p3
+
(
a

p3
− b

1 − p3

)
pj : 1 ≤ j ≤ k

}
.
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Observe that f is well defined since a/p3−b/(1−p3) �=0 by assumption (i.e.,
bp3 �=a(1−p3)). Let X⊆Q satisfy X∼P , thus X=w+zP for some w,z∈C

and z �= 0. Let a= p3(w+ z) and b = w(1− p3), notice that (a,b) ∈ E and
w+zpj =a

pj

p3
+b

1−pj

1−p3
∈Q. Thus f(a,b)=X, i.e., f is surjective.

Therefore |E| ≥ |{X⊂Q :X∼P}| = SP (Q) ≥ cn2, and additionally
|A+EB| ≤ n since A+E B ⊆ Q (see the condition in the definition of E,
for pj = p3). So we have the exact hypothesis of Lemma 2 with C1 =1 and
C2 = c. Let M =N1(c3,2m+1) and N0 =N (1, c,M), where N1 and N are
the respective threshold functions of Theorem D and Lemma 2. Therefore,
by Lemma 2 there are arithmetic progressions G1,G2 of length l ≥M and
common difference such that

|E ∩ (G1 × G2)| ≥ c3l
2.(6)

Suppose Gi = {u1+jz :0≤j <l} for i=1,2. Identify G1×G2 with [l]× [l]
and E∩(G1×G2) with the corresponding subset of [l]×[l]. Now, since l>M=
N1(c3,2m+1) then using (6) as the hypothesis for Theorem D we conclude
that E∩ (G1×G2) contains a (2m+1)× (2m+1) square sublattice S1×S2.
Suppose Si = ûi + tzIm for i = 1,2, with t a positive integer and û1 ∈ G1,
û2∈G2. Since S1×S2⊆E we have

Lj :=
pj
p3
S1 +

1− pj
1 − p3

S2 ⊂ Q for 1 ≤ j ≤ k.

Hence
⋃k

j=1Lj is the required GP (m) set contained in Q.

Remark. We actually proved that Q contains a GP (m) set for every choice
of the triplet p1,p2,p3.
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[4] P. Erdős and G. Purdy: Some Extremal Problems in Geometry, Journal of Com-
binatorial Theory 10 (1971), 246–252.
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