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Motivated by many recent algorithmic applications, this paper aims to promote a system-
atic study of the relationship between the topology of a graph and the metric distortion
incurred when the graph is embedded into �1 space. The main results are:

1. Explicit constant-distortion embeddings of all series-parallel graphs, and all graphs
with bounded Euler number. These are the first natural families known to have con-
stant distortion (strictly greater than 1). Using the above embeddings, algorithms are
obtained which approximate the sparsest cut in such graphs to within a constant fac-
tor.

2. A constant-distortion embedding of outerplanar graphs into the restricted class of
�1-metrics known as “dominating tree metrics”. A lower bound of Ω(logn) on the
distortion for embeddings of series-parallel graphs into (distributions over) dominating
tree metrics is also presented. This shows, surprisingly, that such metrics approximate
distances very poorly even for families of graphs with low treewidth, and excludes the
possibility of using them to explore the finer structure of �1-embeddability.

1. Introduction

Let G = (V,E) be an undirected graph. Each assignment of non-negative
weights to the edges of G naturally defines a metric space (V,µ),1 where
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for each pair of vertices x,y∈V , µ(x,y)= dG(x,y) is the shortest-path dis-
tance between them. We say that the metric µ is supported on (or generated
by) G. Let (S,ρ) be another metric space. An embedding of G into (S,ρ) is a
mapping φ :V →S. The distortion of φ is the smallest value c≥1 such that

dG(x, y) ≤ ρ(φ(x), φ(y)) ≤ c dG(x, y) ∀x, y ∈ V.

Thus the distortion measures the maximum factor by which any distance
is stretched in the embedding. (This is a slightly restricted definition, in
which we assume that no distances are shrunk. See Section 2 for a general
definition.)

In recent years, the idea of embedding a graph into a “nice” metric space
with low distortion has emerged as a useful ingredient in the design and anal-
ysis of algorithms in a variety of domains. “Nice” metric spaces are those
with well-studied structural properties, such as Euclidean or �1 space, or
weighted trees and distributions over them. A very incomplete list of appli-
cations includes approximation algorithms for graph and network problems,
such as sparsest cut [27,2], minimum bandwidth [18,8], low-diameter decom-
positions [27], and optimal group Steiner trees [20,10], and online algorithms
for metrical task systems and file migration problems [4,6]. These applica-
tions, together with its intrinsic mathematical interest, have made the study
of low-distortion embeddings a significant field in its own right.

Most of the embeddings considered in the literature, notably [9,4,27],
have been for metrics supported on general graphs, and give results that
bound the worst-case distortion over all graphs. However, when the input
graph has some special structure, it is plausible that better embeddings can
be found. This is quite intuitive: it is clear that any metric is generated by
the complete graph on its points, while only a very limited set of metrics can
be generated by weighting the edges of, say, a tree. Thus the complexity of
a metric generated by a graph G intrinsically depends on the topology of G.
At present, very little is known about this interplay between the topological
and metrical properties of the graph; the search for connections between the
two is emerging as an intriguing and challenging area. This paper focuses
in particular on the relationship between the topology of graphs and their
optimal (or near-optimal) embeddings into �1 (i.e., real space of arbitrary
dimension endowed with the �1 metric).

Embeddings into �1 have been widely studied, and are of special impor-
tance due to their intimate connection with the problem of finding a sparsest
cut in multicommodity flow networks, which in turn is a key ingredient in
approximate solutions of many other problems in such areas as VLSI lay-
out, network routing and efficient simulations of one network by another
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(see, e.g., [7,26,24]). Although finding the exact sparsest cut is a compu-
tationally hard problem, efficient approximation algorithms for it can be
obtained by embedding a natural metric associated with the optimal multi-
commodity flow into �1; the approximation ratio depends essentially on the
distortion.

One motivation behind this paper is the intriguing conjecture that any
metric supported on a planar graph (henceforth called a planar metric) can
be embedded into �1 with constant distortion. More generally, we conjecture
that this holds for any family of graphs which excludes a fixed minor. There
is some evidence to suggest that planar metrics are better behaved than
general metrics with respect to �1-embeddability. In an interesting recent
development, Rao [34] has given an O(

√
logn)-distortion embedding of n-

point planar metrics into �1, while the lower bound for general metrics is
Ω(logn). This result, and the decomposition lemma of [23] on which it is
based, attest to the special structure of planar metrics.

Despite this promise, current techniques are apparently inadequate to
resolve the above conjecture. For embeddings into �1, a celebrated result of
Bourgain [9] tells us that any metric supported on an n-vertex graph (i.e.,
any metric on n points) can be embedded into �1 with distortion O(logn); un-
fortunately, the embedding technique is not sensitive to the topology and in-
curs a Ω(logn)-distortion even for the metric generated by the unit-weighted
path Pn. Similarly, the method of Konjevod et al. of finding distributions
over dominating trees is limited by a lower bound of Ω(logn) for embedding
the n×n grid [1,25]. Lastly, Rao gives embeddings into �1 by first embed-
ding into �2, an approach that is limited by a lower bound of Ω(

√
logn) for

embedding even series-parallel graphs into �2 [28].
In this paper, we systematically explore how the topology of a graph

affects the distortion incurred by �1-embeddings of metrics supported on
it. Using the intimate connection between �1-embeddability of metrics sup-
ported on a graph and multicommodity flow problems defined on it, one can
show that graphs all of whose metrics are isometrically embeddable into �1
(i.e., embeddable with distortion 1) are exactly the graphs which exclude
K2,3 as a minor, which essentially corresponds to the class of outerplanar
graphs. This fact, which rests on a theorem of Okamura and Seymour [30], is
our starting point. As a natural next step, we consider the family of graphs
which have K4 as an excluded minor. These are graphs with treewidth 2,
and essentially correspond to the familiar class of series-parallel graphs. Our
first main result is an explicit �1-embedding of these graphs with small con-
stant distortion. This is the first natural family known to have a constant
distortion strictly bigger than 1. In addition, our construction implies a sim-



236 A. GUPTA, I. NEWMAN, Y. RABINOVICH, A. SINCLAIR

ple polynomial time algorithm for finding a sparsest cut within a constant
factor of optimal in series-parallel graphs. In a similar vein, we also show
that any family of graphs with bounded Euler characteristic can be embed-
ded into �1 with constant distortion. The technique we use for these results
is to explicitly construct a set of cut metrics whose sum approximates the
original graph metric very closely. Cut metrics arise naturally in the study
of �1-embeddability since any �1-embeddable metric2 can be represented as
a sum of cut metrics with non-negative coefficients, and vice versa [15].

We then go on to study the approximation of a metric by a probabil-
ity distribution over (dominating) tree metrics. Since tree metrics are �1-
embeddable (and so are their non-negative combinations), this gives us an
alternative to the cut metrics approach. Furthermore, embeddings based
on such metrics have proved particularly easy to work with, and possess
additional properties that have been exploited in devising approximation
algorithms and online algorithms for many problems (see, e.g., [4,6,3,20,37,
10,12]). It is natural to ask if we can obtain the above embeddability results
for outerplanar and series-parallel graphs using these more restricted met-
rics. The answers are mixed. On the one hand, we show that this is possible
for outerplanar graphs, at a small cost: we give an explicit embedding for
such graphs into a distribution over dominating tree metrics with distor-
tion 8 (compared to distortion 1 obtained using cuts). On the other hand,
we prove a complementary negative result by exhibiting a family of series-
parallel graphs for which any distribution over dominating tree metrics must
necessarily incur a distortion of Ω(logn).

Thus we see that the tree metrics approach breaks down at a surprisingly
early stage (even for graphs of treewidth 2), which suggests that such em-
beddings by themselves offer little hope for exploring the finer structure of
�1-embeddings. However, our results also indicate that combining dominat-
ing tree metrics with cut metrics is a potentially powerful technique. Indeed,
the graphs which give the lower bound for tree embeddings mentioned above
can be shown to have extremely simple �1-embeddings using cuts. Combin-
ing these cut metric embeddings with tree embeddings in a careful fashion
leads us to an alternative constant distortion embedding for series-parallel
graphs.

The organization of the paper closely follows the above outline. After
a short section containing some definitions and notation, we briefly illu-
minate the connection between flows and �1-embeddings in Section 3. The
embeddings of series-parallel graphs and graphs with small Euler number

2 We shall use the unqualified term “�1-embeddable” to mean “isometrically embeddable
into �1”.
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are described in Section 4. Finally, in Section 5, we present our positive
and negative results on embeddings into tree distributions, as well as the
alternative embedding for series-parallel graphs.

2. Definitions and notation

Metrics. Let X be a set. A function d :X×X→R
+ is called a semi-metric

if it is symmetric, i.e., d(x,y)=d(y,x) for all x,y∈X, and d(x,x)=0 for all
x∈X, and also satisfies the triangle inequality, i.e., d(x,z)≤d(x,y)+d(y,z)
for all x,y,z ∈ X. If, in addition, d(x,y) = 0 holds only when x = y, then
d is a metric. In this paper, we shall only consider finite semi-metrics. The
number of points will usually be denoted by n. Without risk of confusion,
the distinction between metrics and semi-metrics may sometimes be blurred.
For more details on many of the metric concepts used here, see the book of
Deza and Laurent [15].

Given two metric spaces, (V,ν) and (W,µ), and a map f :V →W , define
the following quantities:

‖f‖ = max
x,y∈V

µ(f(x), f(y))
ν(x, y)

;

‖f−1‖ = max
x,y∈V

ν(x, y)
µ(f(x), f(y))

.

We say that f has contraction ‖f−1‖, expansion ‖f‖ and distortion D(f)=
‖f‖·‖f−1‖. We say that (W,µ) r-approximates (V,ν) (or that the distortion
between µ and ν is at most r) if there exists a map f :V →W with D(f)≤r.
Often we shall consider two distance functions µ and ν over the same vertex
set V . In such cases, we shall assume that f is the identity map. Also, µ will
be said to dominate ν if for all x,y∈V , µ(x,y)≥ν(x,y).

Let G=(V,E) be an undirected graph. A metric (V,µ) is supported on (or
generated by) G if it is the shortest path metric of G w.r.t. some non-negative
weighting of the edges E. Unless specified otherwise, we shall assume that
the edge-weights w(·) satisfy w(e)=µ(e), where µ is the shortest-path metric
of G with weights w. Observe that if it is not the case, the edge e can be
removed without affecting the metric; such an e will be called redundant.

For a set S ⊆ V , the cut metric δS on V is defined by δS(x,y) = 1 if
|S∩{x,y}|=1, and δS(x,y)=0 otherwise. An important observation is that
the �1-embeddable metrics on V are precisely those metrics which can be
written as a sum of cut metrics on V with non-negative coefficients [15]. One
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implication of this is that if two metrics µ1 and µ2 on the same underlying
set are �1-embeddable, then so is their sum µ1+µ2.

Finally, we use the following simple observation throughout the paper: if
each block (i.e., biconnected component) Gi of a graph G can be embedded
into �1 with distortion Di, then G can be embedded into �1 with distortion
maxiDi. This immediately implies, in particular, that any metric supported
on a tree T can be embedded isometrically into �1. (For a more direct proof
of this latter fact, let (Se,Se) be the cut obtained by deleting an edge e
in T ; it can be verified that µ =

∑
e∈T dT (e) · δSe is isometric to the tree

metric dT [15, Prop. 11.1.4].)

Multicommodity flows. A multicommodity flow network (V,E,P ) is
specified by an undirected graph G = (V,E), where E is the set of edges
along which flow can be routed, and a set P of unordered pairs of vertices
in V between which demands can be placed. In the unrestricted case, where
P consists of all pairs of vertices, we shall omit explicit mention of P and
refer to the network simply as G=(V,E). Assigning non-negative capacities
C to the graph edges E and demands D to the pairs P gives us a particular
instance (V,C,D) of the multicommodity flow problem. For background, see
the survey by Shmoys [36].

The optimal solution to this problem is the maximum value λ such that
there is a multicommodity flow f respecting the edge capacities that satis-
fies a multiple λ of each demand. We shall refer to λ as MaxFlow(V,C,D).
Its value (as well as an actual flow f which realizes it) can be found in
polynomial time by linear programming.

A closely related problem is the sparsest cut problem, which entails find-
ing a partition (A,A) of V that minimizes the ratio

κ(A) =
Capacity(A,A)
Demand(A,A)

=
C · δA

D · δA
.

(To make sense of the inner products, note that C,D and the cut metric δA

can all be viewed as elements of the vector space R
(|V |

2 ).) We shall refer to
κ=minAκ(A) as MinCut(V,C,D).

In the sequel it will be convenient to use the following identities (see,
e.g., [27] or [15, page 135] for the proofs):

MaxFlow(V,C,D) = min
δ∈M(V )

C · δ
D · δ ; MinCut(V,C,D) = min

δ∈M1(V )

C · δ
D · δ ,(2.1)

where M(V ) is the set (in fact, a convex cone) of all metrics over V , and
M1(V ) is the set (again, a convex cone) of all �1-embeddable metrics over V .
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As M1(V )⊆M(V ) (the inclusion being strict for V of size ≥5), it is always
the case that MaxFlow ≤ MinCut.

In contrast with the case when there is just one commodity, the MinCut
is not equal to the MaxFlow in general. The ratio γ ≥ 1 between the Min-
Cut and the MaxFlow is called the gap of the instance (V,C,D). From the
computational point of view, computing the value of the MinCut (and hence
also the value of γ) is an NP-hard problem.

Graphs and Minors. An outerplanar graph G is a planar graph with an
embedding in the plane so that every vertex lies on the outer (unbounded)
face. A series-parallel graph G=(V,E) with terminals s,t∈V is either a sin-
gle edge (s,t), or a series combination or a parallel combination of two series-
parallel graphs G1 and G2 with terminals s1, t1 and s2, t2. The series combi-
nation of G1 and G2 is formed by setting s=s1, t= t2 and identifying s2= t1;
the parallel combination is formed by identifying s=s1=s2, t= t1= t2.

The graph G=(V,E) has an H-minor if there exists a sequence of edge-
deletion and edge-contraction operations on G which results in a graph G′

that is isomorphic to H. Note that each vertex of G′ corresponds to a (con-
nected) set of vertices of G which were contracted to it. For U ⊆V , we say
that G has an H-minor w.r.t. U if it has an H-minor G′ such that for every
vertex of G′, the corresponding set of vertices of G contains a vertex from U .
Finally, we say that G is H-free (w.r.t. U) if it has no H-minor (w.r.t. U).

It is well known that K4-free graphs are those whose blocks are series-
parallel graphs [16, p. 185], and that K2,3-free graphs are those whose blocks
are either outerplanar or isomorphic to K4 [16, p. 81].

Finally, the Euler number of an undirected connected graph G is defined
as χ(G) = |E(G)| − |V (G)|+1. (Throughout this paper, the symbol χ(G)
denotes the Euler number and not the chromatic number.)

3. Multicommodity flows, metrics and graphs

Multicommodity flows have long been an object of study in combinatorial
optimization (see [19] for a historical survey). The classical theory was con-
cerned mainly with the following question: Under what conditions on the
flow network (V,E,P ) is the MaxFlow equal to the MinCut for every setting
of capacities C and demands D? As it turns out, this question is equivalent
to the following question concerning the �1-embeddability of metrics: What
are the conditions on (V,E,P ) such that, for every metric µ supported on
G=(V,E), there exists an �1-embeddable metric ν on V such that µ domi-
nates ν, and µ=ν on P? [35, Section 3]
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In light of this equivalence, the classical results about flows (in cases
where the gap γ=1) have consequences for �1-embeddability and vice versa.
For instance, a well-known theorem due to Okamura and Seymour [30] says
that if G=(V,E) is a planar graph with outer face F , and P consists only
of pairs of vertices in F , then the MaxFlow and MinCut are equal for all
instantiations of C and D. Taking G= (V,E) to be an outerplanar graph,
letting P consist of all pairs in V and using the above equivalence, we can
infer that all metrics supported on outerplanar graphs can be isometrically
embedded into �1. (See also [14] for a direct argument.)

To state this and other such results succinctly, let us introduce some
notation. For a metric µ, let c1(µ) be the minimum distortion between µ
and ρ, where ρ ranges over all �1 metrics, and let c1(G) be the maximum
value of c1(µ) for all metrics µ supported on G. Hence, we have just seen
that c1(G)=1 for every outerplanar graph G.

In fact, this turns out to be almost a characterization of graphs G with
c1(G) = 1. The full picture is that c1(G) = 1 iff G is K2,3-free. On the one
hand, as mentioned earlier, each block of a K2,3-free graph is either outerpla-
nar or isomorphic to K4, and a graph is �1-embeddable iff each of its blocks
is. We have already seen that outerplanar graphs are �1-embeddable; it is
also well known that the same holds for any metric on four points [15, Exam-
ple 11.1.8]. Thus, for every K2,3-free graph G, c1(G)=1. Conversely, it is well
known that the metric of the unit-weighted K2,3 is not �1-embeddable [15,
Example 6.3.2]. Now if G has a K2,3-minor, consider the sequence of edge
contractions and deletions which turn G into K2,3. Assigning ∞ to each
deleted edge, 0 to each contracted edge, and 1 to the remaining edges, we
obtain a semi-metric supported on G and coinciding (as a metric space) with
that of the unit-weighted K2,3. Thus, c1(G)≥ c1(K2,3)> 1. Hence we have
the following characterization:

Proposition 3.1. The class of graphs for which c1(G) = 1 is exactly the
class of K2,3-free graphs.

Much recent research on multicommodity flows has been directed towards
the case where equality does not hold, and to finding good bounds on the
ratio γ between the MinCut and the MaxFlow. This study was pioneered
in the paper of Leighton and Rao [26], and the results presented there were
extended in a long sequence of papers by several authors (see [36] for a
detailed account). The best results known [27,2] show that for any flow
network (V,E,P ), the gap between the MaxFlow and the MinCut can never
be more than O(log |P |), and hence O(logn). This bound is tight when
G=(V,E) is a constant-degree expander, all edge capacities are unity and
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there is unit demand between all pairs of vertices. Better results have been
obtained for planar graphs, showing that in such graphs the gap γ never
exceeds O(

√
logn) [34], and in fact is bounded by a constant in the special

case of uniform demands [23].
An intimate relationship between the gap γ and c1(G) holds even in

the case where the MaxFlow is not equal to the MinCut, and provides a
compelling motivation for studying the quantity c1(G).

Theorem 3.2. For any graph G=(V,E), the worst possible gap γ attained
by a multicommodity flow problem on G is exactly c1(G).

Proof. The direction γ≤c1(G) was shown already in [27]. Indeed, by defini-
tion of c1, for every metric µ supported on G, there exists an �1-embeddable
metric δ which distorts µ by at most c1(G). But then, by definition of dis-
tortion, C·δ

D·δ ≤c1(G) C·µ
D·µ , and in view of (2.1) we are done.

For the other, apparently new, direction γ≥c1(G), it will be convenient
to use an equivalent dual definition of c1(µ) for a metric µ on V :

c1(µ) = max
(C,D)

D · µ
C · µ ,(3.2)

where the maximum is taken over all non-negative vectors C,D indexed by
ordered pairs of vertices of V which satisfy the restriction D·δ

C·δ ≤ 1 for any
�1-embeddable metric δ on V . The proof of this equality follows from general
facts about convex cones, and is deferred to the appendix.

By this dual definition, there exists a metric µ supported on G, and
non-negative vectors C,D⊆R

(|V |
2 ), such that D·µ

C·µ = c1(G), while for any �1-
embeddable metric δ we have D·δ

C·δ ≤ 1. First we claim that, without loss of
generality, one may assume that C vanishes outside E(G). Indeed, assume
that for some pair of vertices {i,k} �∈ E(G), the value C(i,k) is strictly
positive. Since µ is supported on G, there exist edges e1 = (j0, j1),e2 =
(j1, j2), . . . ,eq =(jq−1, jq) in G such that j0= i,jq =k and µ(j0, jq)=µ(j0, j1)+
· · ·+µ(jq−1, jq). Define a new vector C ′ by

C ′(i, k) = 0,
C ′(jr−1, jr) = C(jr−1, jr) +C(i, k) for each r = 1, 2, . . . , q, and

C ′(u, v) = C(u, v) otherwise.

Now, the pair C ′,D can replace the pair C,D in the above definition of
c1(G). Clearly, for any metric δ on V we have C ′·δ≥C·δ; in particular, for any
�1-embeddable δ we have (D ·δ)/(C ′ ·δ)≤ (D ·δ)/(C ·δ)≤ 1, as required by
(3.2). On the other hand, for µ, the “worst” metric supported on G, we have
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the equality C ′ ·µ=C ·µ, and thus (D ·µ)/(C ′ ·µ) = (D ·µ)/(C ·µ) = c1(G).
Repeating this updating procedure for all non-edges of G, we arrive at a
vector C that vanishes outside E(G).

Employing such a pair C,D and bearing in mind the definitions of MinCut
and MaxFlow given in (2.1), we conclude that

γ ≥ γ(V,C,D) =
MinCut(V,C,D)
MaxFlow(V,C,D)

≥
minδ∈M1(V )(C · δ)/(D · δ)

(C · µ)/(D · µ)

≥ D · µ
C · µ = c1(G).

Recall that by Proposition 3.1, the graphs for which c1(G) = 1 are ex-
actly the K2,3-free graphs. It is no coincidence that this characterization
involves excluded minors. Observe that the graph-theoretic function c1 is
minor-monotone, i.e., if H is a minor of G then c1(G)≥c1(H). Indeed, edge
deletion corresponds to assigning the edge the value ∞, while edge contrac-
tion corresponds to assigning it the value 0. The principal consequence of
this observation is that Fc, the family of all graphs G with c1(G) ≤ c, is
minor-closed for any c. Hence, by a celebrated theorem of Robertson and
Seymour, any Fc can be characterized in terms of forbidden minors (see,
e.g., [16, Cor. 12.5.3]).

Another consequence of monotonicity of c1(G) is that the set {c1(G)}⊂
R, where G ranges over all finite graphs, contains no infinite descending
sequence. Indeed, assume that c1(G1)> c1(G2)>c1(G3)> .. . is an infinite
descending sequence. By a theorem of Robertson and Seymour, there must
exist Gi and Gj with j > i such that Gi is a minor of Gj (see, e.g., [16,
Thm. 12.5.2]), contradicting the monotonicity of c1. In particular, every
point of {c1(G)} contains a unique “next to the right” point. Currently, we
only know that the smallest point of this set is 1, and the second smallest
is c1(K2,3), which can be shown to be 4/3.

An intriguing conjecture, and one of the main motivations behind this
paper, is that for any non-trivial minor-closed family F of graphs, there
exists a constant cF ≥1 such that for all G∈F , c1(G)≤cF .

The results in the next section provide some evidence in support of this
conjecture. We consider the next natural minor-closed class of graphs con-
taining K2,3, namely the class of series-parallel graphs, and show that they
are �1-embeddable with constant distortion. In addition, we bound the dis-
tortion c1(G) of a graph in terms of its Euler characteristic alone, and thus
establish an infinite sequence of natural minor-closed families with constant
distortion, namely those with bounded Euler characteristic.
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4. Constant-distortion embeddings for some graph families

In this section, we shall present explicit constant-distortion embeddings into
�1 of the natural minor-closed families of series-parallel graphs, and of graphs
with bounded Euler characteristic. These are the first non-trivial results ex-
hibiting (necessarily) non-isometric embeddings of graph families with con-
stant distortion.

4.1. Series-parallel graphs

Our goal will be to show that any metric supported on a series-parallel
graph is embeddable in �1 with constant distortion. In fact, our argument
is presented for the slightly more general class of treewidth-2 graphs, i.e.,
graphs whose blocks are series-parallel graphs. Recall that this is a minor-
closed family with K4 as the excluded minor. We have not attempted to
achieve the best possible constant distortion, which we believe is rather less
than the value of (just under) 14 shown here.

Theorem 4.1. Let G= (V,E) be a weighted graph with treewidth 2, and
let µ=µG be the metric induced by the edge weights of G. Then there exists
an �1-embeddable metric µ̃ and a constant c<14 such that for every u,v∈V ,

1
c
µ(u, v) ≤ µ̃(u, v) ≤ µ(u, v).

Moreover, this embedding preserves the length of edges, i.e., for every (u,v)∈
E, µ̃(u,v)=µ(u,v). Finally, µ̃ can be computed in polynomial time.

Before proving the theorem, let us briefly discuss some properties of
treewidth-2 graphs and the metrics generated by them. According to one
of the many alternative definitions, treewidth-2 graphs can be constructed
using the following composition procedure. Start with a single edge e0, and
repeatedly attach a single new vertex to the endpoints of an already exist-
ing edge (which we call the parent edge of the vertex); finally, after all the
vertices have been attached, remove an arbitrary subset of the edges. We
shall consider a weighted treewidth-2 graph G together with the sequence of
intermediate weighted graphs G2,G3, . . . ,Gn =G occurring during its com-
position, where G2 is the initial edge e0. Each new edge e= (u,v) will be
endowed with weight µ(u,v), where µ is the metric induced by G. Observe
that, w.l.o.g., we may assume that no edges are removed in the second stage
of the construction, since removing a non-essential edge e (one with weight
µ(e)) has no effect on µ.
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Figure 1. Ancestor and related edges.

The manner in which G was constructed implies that the metric µi in-
duced by an intermediate graph Gi on V (Gi)⊆V (G) agrees with µ restricted
to these vertices, i.e., µi=µ|V (Gi). A closer look at the structure of G reveals
more information about µ. Let us define the notions of ancestor and related
edges of a vertex. The definition is recursive: the ancestor edges of x∈V (G)
include the parent edge e = (s,t) of x, and the ancestor edges of s and t.
The first edge e0 is an ancestor edge of both its endpoints, and thus of all x
in V (G). A related edge of a vertex is an edge both of whose endpoints lie
either on ancestor edges of x, or coincide with x. In particular, all ancestor
edges of x are also related edges of x.

An example is shown in Figure 1, in which the vertices were added
in the order x1,x2,x3,x4. The parent edge of x4 is e3, its ancestor edges
are {e0,e1,e3}, while {(t,x1),(x1,x3),(s,x4),(x3,x4)} are its related non-
ancestor edges.

Let e be an ancestor edge of x. Define Gx,e, a subgraph of G, as the
union of all the related edges of x which were introduced after e, plus edge e
itself. (For example, in Figure 1 the graph Gx4,e1 is the subgraph induced
by the vertices {s,x1,x3,x4}.) The subgraph Gx,e has a particularly simple
structure: it is constructed by starting from e, marking it, and repeatedly
attaching a single new vertex to the endpoints of the currently marked edge,
upon which the marked edge is unmarked and one of the newly added edges
is marked. The order of composition of Gx,e is induced by that of G. The
graph Gx,e will simplify our later analysis; for the moment, observe that
the distance between any pair of vertices in Gx,e is equal to their original
distance in G.

For a pair of vertices x,y, the last common ancestor edge f = (s,t) of
x,y is the common ancestor edge of x and y which was added last in the
composition of G. When neither x nor y lies on an ancestor edge of the
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other, two possibilities may occur: either f separates x and y (i.e., every x-y
path passes through either s or t), or there exists a vertex q whose parent
edge is f , such that (s,q) is an ancestor edge of x (but not of y) while (t,q)
is an ancestor edge of y (but not of x).

We are now ready to embark on the proof of the theorem.

Proof of Theorem 4.1. We start with the inductive construction of the
approximating metric µ̃. The construction follows the composition procedure
for G, first defining µ̃ on G2, then extending it to G3, G4, etc. in turn. In
the base case, G2 is a single edge e0 = (a,b), and we set µ̃(a,b) = µ(a,b).
For the inductive step, we assume that µ̃ is already defined on V (Gi−1).
Assume also that Gi is obtained from Gi−1 by attaching a new vertex x to
the endpoints of the edge (s,t). Let

δ =
µ(x, s) + µ(x, t) − µ(s, t)

2
; Ps =

µ(x, t) − µ(x, s) + µ(s, t)
2µ(s, t)

;

Pt =
µ(x, s) − µ(x, t) + µ(s, t)

2µ(s, t)
.

Now, the value of µ̃(x, ·), where · stands for any vertex of Gi−1, is defined as

µ̃(x, ·) = δ + Ps µ̃(s, ·) + Pt µ̃(t, ·).(4.3)

The definition of µ̃ immediately implies that it is computable in polynomial
time.

The argument that µ̃ is �1-embeddable is inductive. The base case is that
µ̃ on G2 is trivially �1-embeddable. For the inductive step, observe that µ̃
on Gi is a positive linear combination of three metrics: the cut metric δ{x}
(with coefficient δ), the metric µ̃ on Gi−1 with x at distance 0 from s (with
coefficient Ps), and the metric µ̃ on Gi−1 with x at distance 0 from t (with
coefficient Pt). The cut metric is �1-embeddable; µ̃ on Gi−1 is �1-embeddable
by the induction hypothesis, and identifying the vertex x with either s or
t does not affect this. Thus, by induction, the restriction of µ̃ to each Gi

(and hence to Gn = G) is a sum of �1-embeddable metrics, and hence is
�1-embeddable.

The next fact to prove is that µ̃ is dominated by µ. Since µ is the shortest
path metric of G, the expansion of µ̃ is bounded by its expansion on the
edges of G; thus it suffices to prove the stronger statement that every edge
of G maintains its length under µ̃, i.e., for every e=(u,v), µ̃(u,v)=µ(u,v).
This stronger statement is again established by an inductive argument. The
claim obviously holds for G2. Assume that the vertex x is attached to the
edge (s,t)∈E(Gi−1). By the inductive assumption, the claim holds for Gi−1,
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and in particular for (s,t). Consider, e.g., the new edge (x,s); by (4.3),
µ̃(x,s)= δ+Pt µ̃(s,t)= δ+Pt µ(s,t) which, by definition of δ and Pt, equals
µ(x,s).

Bounding the contraction of µ̃ will be the hardest part of the proof. In
preparation for this, let us give an equivalent but more intuitive “backwards”
description of µ̃. We envisage the process of constructing µ̃ as starting from
the final vertex, and collapsing the current “last” vertex onto one of the
endpoints of its parent edge. More precisely, if the edge (s,t) is the parent
of x, we remove the cut metric corresponding to x (with weight δ), and
then collapse the vertex x onto either s or t, with probabilities Ps and Pt

respectively. (Note that Ps and Pt sum to 1, and both are non-negative by the
triangle inequality.) Upon reaching G2, we simply remove the corresponding
cut metric, thus collapsing the entire graph to a single point. The metric µ̃ is
just the expected sum of the (weighted) cut metrics removed in this process.
In what follows, we shall make repeated use of this view of µ̃ as the expected
result of a random process.

The bound we will prove on the contraction of µ̃ is stated in the following
lemma.

Lemma 4.2. Let x and x∗ be any two vertices of G. Then, for any ξ∈
(

1
2 ,1
)
,

we have

µ̃(x, x∗) ≥ (1 − ξ)(2ξ − 1)
1 + ξ

µ(x, x∗).

Theorem 4.1 follows at once from this lemma: we simply choose ξ op-
timally to be

√
3− 1, and conclude that the contraction (and hence the

distortion) of µ̃ is (2−
√

3)−2, which is at most 13.93.
We will split the proof of Lemma 4.2 into two cases:

Case (i): x∗ lies on an ancestor edge of x.
Case (ii): Neither x nor x∗ lies on an ancestor edge of the other.

Proof of Lemma 4.2, Case (i). In this case x∗ = s lies on an ances-
tor edge e= (s,t) of x. Consider the graph Gx,e as defined above, and let
〈(s1, t1), . . . ,(sk, tk)=(s,t)〉 be the sequence of ancestor edges of x up to the
edge on which s lies. (See Figure 2.) For convenience, set also s0 = t0 = x.
For 1≤ i≤k, define

Li = µ(si, ti); αi = µ(si−1, si); βi = µ(ti−1, ti).

Note that for each i≥2, either ti−1= ti with βi =0, or si−1=si with αi =0.
Denote by Ps (resp., Pt) the probability (under the random-process def-

inition of µ̃) that, when x collapses to the edge (s,t), it collapses onto s
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Figure 2. Proof of Lemma 4.2, Case (i).

(resp., t). Let ∆ be the expected sum of the weights of the cuts removed
under all collapses of x up to and including this time. Then we have
µ̃(x,s)=∆+Ptµ̃(s,t), and therefore, by the edge preservation property of µ̃,

µ̃(x, s) = ∆+ Pt µ(s, t) .(4.4)

Note also that not only is the actual distance µ(x,s) equal in G and in
Gx,e, but the same holds for the approximated distance µ̃(x,s): this is clear
from (4.4) since the quantities ∆ and Pt must be equal in G and in Gx,e.
Thus in what follows we may restrict our attention to the subgraph Gx,e.

Now let P i
s (resp., P i

t ) be the probability that, when x collapses to the
edge (si, ti), it collapses onto si (resp., ti), and let ∆i be the expected sum of
the weights of the cuts removed under all collapses of x up to and including
this time. Assume also that ti= ti−1 while si,si−1 are distinct, as in Figure 2.
(The other case is handled symmetrically.) The following claim establishes
three inequalities relating the value of µ̃(x,si) to the values of µ̃(x,si−1) and
µ̃(x,ti−1).

Claim 4.3. Let ξ∈(1
2 ,1). Then, in the above situation,

(a) If P i−1
s ≥ξ, then µ̃(x,si)≥ µ̃(x,si−1)+(2ξ−1)αi.

(b) If P i−1
t ≥ξ, then µ̃(x,si)≥ µ̃(x,ti−1)+(2ξ−1)Li.

(c) Otherwise, if 1 − ξ ≤ P i−1
s ≤ ξ, then µ̃(x,si) + 2ξ

1−ξ (∆i − ∆i−1) ≥
µ̃(x,si−1)+αi.

Proof. The proof is elementary but somewhat technical. Arguing as in the
derivation of (4.4), we obtain

µ̃(x, si−1) = ∆i−1 + P i−1
t Li−1;

µ̃(x, ti−1) = ∆i−1 + P i−1
s Li−1.

(4.5)

Keeping in mind the edge preservation property of µ̃, and conditioning on
whether x collapsed onto si−1 or ti−1, we can express µ̃(x,si) as

µ̃(x, si) = ∆i−1 + P i−1
t Li + P i−1

s αi.(4.6)
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Performing a formal manipulation, we get

µ̃(x, si) = ∆i−1 + P i−1
t (Li + αi) + (P i−1

s − P i−1
t )αi

≥ ∆i−1 + P i−1
t Li−1 + (P i−1

s − P i−1
t )αi

= µ̃(x, si−1) + (P i−1
s − P i−1

t )αi,

where we have used the triangle inequality Li−1 ≤ Li +αi, and (4.5). This
implies (a).

Similarly,

µ̃(x, si) = ∆i−1 + P i−1
s (Li + αi) + (P i−1

t − P i−1
s )Li

≥ ∆i−1 + P i−1
s Li−1 + (P i−1

t − P i−1
s )Li

= µ̃(x, ti−1) + (P i−1
t − P i−1

s )Li,

implying (b).
In order to show (c), consider the change in ∆. Let δi−1 be the weight of

the cut removed while collapsing si−1 to (si, ti). Then

∆i −∆i−1 = P i−1
s · δi−1 = P i−1

s · αi + Li−1 − Li

2
.

Substituting this expression for the value of (∆i −∆i−1), and using (4.6)
and (4.5), we get

µ̃(x, si) +
2P i−1

t

P i−1
s

(∆i −∆i−1)

=
[
∆i−1 + P i−1

t Li + P i−1
s αi

]
+
[
P i−1

t (αi + Li−1 − Li)
]

= µ̃(x, si−1) + αi .

We are now in a position to bound µ̃(x,s) from below in terms of µ(x,s).
For this purpose, we will construct a path between x and s in Gx,e, and show
that every edge on this path makes a substantial contribution to µ̃(x,s).
Since the length of the path is at least µ(x,s), this will yield the desired
lower bound.

The path Π from s= sk to x in Gx,e will be defined as follows. Assume
we have already constructed some initial segment of Π, and have reached an
endpoint of the edge (si, ti), but have not yet reached the edge (si−1, ti−1).
Assume also, w.l.o.g., that si, ti are again situated as in Figure 2; the other
case is treated in a symmetrical manner. Then we must have reached si.
Consider the value of P i−1

t defined above. If P i−1
t > ξ, we add to Π the
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edge (si, ti−1) of length Li and continue; otherwise, we add to Π the edge
(si,si−1) of length αi and continue. Upon reaching (s1, t1), we add the edge
connecting x to (s1, t1) to complete the path Π.

Clearly, Π is a well-defined path from s = sk to x in Gx,e. Moreover,
by our choice of Π and the preceding analysis (i.e., Claim 4.3), if Π is
〈sk = π0 → π1 → π2 → . . .→ πm = x〉, then for every edge (πj−1,πj)∈Π we
have

µ̃(x, πj) − µ̃(x, πj−1) +
2ξ

1 − ξ
(∆πj −∆πj−1) ≥ (2ξ − 1) · µ(πj−1, πj),

where, with a slight abuse of notation, ∆πj stands for ∆r where r is the
smallest index such that πj ∈(sr, tr). (Observe that (∆πj −∆πj−1)≥0, so we
may safely add this term for all j.)

Summing up these expressions, we arrive at

µ̃(x, sk) +
2ξ

1 − ξ
∆k ≥ (2ξ − 1) · (the µ-length of P )

≥ (2ξ − 1)µ(x, sk).(4.7)

Since clearly µ̃(x,sk) ≥ ∆k, this completes the proof of Case (i) of
Lemma 4.2.

Proof of Lemma 4.2, Case (ii). In this case, neither x nor x∗ lies on an
ancestor edge of the other. Let (s,t) be the last common ancestor edge of x
and x∗. As mentioned before, there are two possibilities. The first is that
(s,t) separates x and x∗. The second is that there is a triangle T = (s,q, t)
such that (s,q) is an ancestor edge of x but not of x∗, (t,q) is an ancestor
edge of x∗ but not of x, and both (s,q) and (t,q) separate x from x∗.

We start with the analysis of the first possibility. Let Ps (resp., Pt) denote
the probability that when x collapses to (s,t), it collapses onto s (resp., t);
the probabilities P ∗

s (resp., P ∗
t ) are the corresponding values for x∗. Also,

let ∆ (resp., ∆∗) be the expected value of the sum of the weights of cut
metrics removed in the process of collapsing x (resp., x∗) to the edge (s,t).
By the random process definition of µ̃, the collapses of x and of x∗ proceed
independently of each other; keeping in mind that µ̃ is preserved on edges,
we get

µ̃(x, x∗) = ∆+∆∗ + (PsP
∗
t + PtP

∗
s )µ(s, t).(4.8)

Moreover, it can be easily verified that

PsP
∗
t + PtP

∗
s ≥ 1

2 min {Ps + P ∗
s ; Pt + P ∗

t } .(4.9)
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Substituting this into (4.8), assuming w.l.o.g. that the minimum is attained
at t, and using (4.4), we get

µ̃(x, x∗) ≥ 1
2 ( µ̃(x, s) +∆) + 1

2 ( µ̃(x∗, s) +∆∗) .(4.10)

However, adding the inequality (4.7) times the positive constant ζ= 1−ξ
1+ξ to

the inequality µ̃(x,s)−∆≥0 times the positive constant (1
2 −ζ), gives

1
2 ( µ̃(x, s) +∆) ≥ (1 − ξ)(2ξ − 1)

1 + ξ
µ(x, s) .

An analogous bound holds for µ̃(x∗,s). These two bounds, together
with (4.10) and the triangle inequality µ(x,x∗) ≤ µ(x,s) +µ(s,x∗), imply
the Lemma when the first possibility occurs.

We now look at the second possibility, i.e., when there is the triangle
T = (s,t,q). To compute the values of µ(x∗,x) and µ̃(x∗,x) in the original
graph G, it suffices to look instead at the random process restricted to the
graph H obtained by taking the graphs Gx,(s,q) and Gx∗,(t,q) and attaching
them to the triangle T =(s,q, t). (This follows by the same reasoning as in
Case (i), when we argued that the values of µ(x,s) and µ̃(x,s) in G could
be computed by restricting our attention to Gx,e.)

The random process goes as follows: the graph H is first collapsed onto
T , the vertex q is then collapsed onto either s or t, and finally the resulting
{s,t}-cut is removed. Let us define a new random process, which collapses
H onto T as before, but then collapses t onto (s,q) and removes the result-
ing {s,q}-cut. Our claim is that the value of µ̃(x,x∗) is the same in both
processes. Indeed, the two processes differ only in the final step, and it is
simple to check that, given a triangle, the random process generates the
same metric regardless of which vertex is collapsed onto its opposite edge.

Now, in this new order that we have introduced, the last common ancestor
edge of x,x∗ is (s,q), and this edge separates x and x∗. At this point, the
argument for the first possibility applies, and the claim follows.

This completes the verification of both cases in the proof of Lemma 4.2,
and hence the proof of Theorem 4.1.

Having proved the main theorem of this section, let us state some corol-
laries and observations.

Much of the complication in the proof arises from the need to account for
both the cuts removed and the collapses made at each step. Let us consider
for the moment the important special situation in which no cuts are removed,
i.e., when the input series-parallel graph G has the property that for all x,
for all ancestor edges (s,t) of x we have µ(x,s)+µ(x,t) =µ(s,t). (Observe
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that this property can be restated in a simpler form: for all x, we have
µ(x,a)+µ(x,b)=µ(a,b), where a, b are the terminals of G. We shall point
out an interesting application of these graphs in Section 5.4.)

For such graphs a stronger version of Lemma 4.2 is true: namely,
µ̃(x,x∗)≥ 1

2µ(x,x
∗). Moreover, the proof is much simpler than in the general

setting. To see this, consider first Case (i) (when x∗ = s lies on an ances-
tor edge of x); in this case we actually have that µ̃(x,s)=µ(x,s), and this
follows directly from the definition of µ̃ using induction on the composition
of G. Indeed, assume that x is attached to (s1, t1), and the claim has already
been established for s1, t1. By definition of µ̃,

µ̃(x, s) =
µ(x, s1)
µ(s1, t1)

· µ̃(t1, s) +
µ(x, t1)
µ(s1, t1)

· µ̃(s1, s) .

By the inductive hypothesis,

µ̃(t1, s) = µ(t1, s) = µ(t1, s1) + µ(s1, s) ; µ̃(s1, s) = µ(s1, s) .

Combining the equations, we get µ̃(x,s) = µ(x,s) as claimed. Case (ii) of
Lemma 4.2 can now be strengthened to µ̃(x,x∗) ≥ 1

2µ(x,x
∗). This follows

from (4.10), keeping in mind that ∆=∆∗=0 and using the stronger version
of Case (i) given above. Thus, we can conclude:

Lemma 4.4. For the special series-parallel graphs described above, 1
2µ≤

µ̃≤µ.

Returning now to the gap γ in multicommodity flow instances, Theo-
rems 3.2 and 4.1 imply:

Corollary 4.5. Let G = (V,E) be a graph with no K4-minor. Then, for
every assignment of edge capacities C and demands D in G, the gap γ =
MinCut/MaxFlow is less than 14.

With the aid of a little graph-theoretic machinery, this corollary can
be generalized as follows. The proof is somewhat orthogonal to our main
development, and is omitted (see [29]).

Theorem 4.6. Let G=(V,E) be a graph, and let the set of demand pairs
be a subset of pairs from U , for some U ⊆ V . If G contains no K4-minor
w.r.t. U , then for every assignment of edge capacities C and demands D
in G, the gap γ=MinCut/MaxFlow is less than 28.
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4.1.1. Approximating the sparsest cut in series-parallel graphs
The iterative procedure used in the above proof can be exploited to find
a near-optimal sparsest cut in series-parallel graphs in polynomial time.
Previously, this result was known only for the special case of uniform de-
mands [33,31,23]. Observe that Corollary 4.5 alone does not immediately
imply the existence of a polynomial time procedure for finding a good cut.

Theorem 4.7. There is a polynomial time 14-approximation algorithm for
the Sparsest Cut problem on series-parallel graphs.

Proof Sketch. To approximate the MinCut in a series-parallel graph, we
first solve the corresponding multicommodity flow problem, and find the
metric µ minimizing C·µ

D·µ (see the discussion following Theorem 3.2). By
Theorem 4.1, we can find in polynomial time an �1-metric µ̃ that 14-
approximates µ. Recall the manner in which µ̃ is built (see equation (4.3)
and the description following it): at each step, it is a positive linear com-
bination of three �1-metrics µ̃1, µ̃2 and µ̃3. Consequently, at least one of
these metrics must yield a value C·µ̃i

D·µ̃i
which is at most C·µ̃

D·µ̃ . Choosing this
minimizing metric and continuing with the corresponding subgraph, we will
eventually reach a point where the remaining metric is a cut metric. This
cut achieves the desired approximation ratio.

4.2. Embedding graphs with few edges

Recall that for a graphG=(V,E), the Euler characteristic χ(G) is defined as
|E|−|V |+1. It is easy to see that, for each c∈Z

+, the family of graphs Fc =
{G |χ(G) ≤ c} is minor-closed. The following theorem shows that graphs
with low χ(G) can be embedded with low distortion into �1:

Theorem 4.8. A metric supported on an arbitrary graph G can be embed-
ded into �1 with distortion O(logχ(G)), where χ(G) is the Euler character-
istic of G.

Proof. The embedding will be similar in flavor to that of Theorem 4.1,
though much simpler. As before, we assume that G is 2-connected; if not,
we can apply the argument to each of its blocks. We also assume that G is
not a cycle, since the cycle metric embeds isometrically into �1, as can be
deduced from Proposition 3.1 (or for a direct proof see [27, Prop. 5.10]).

Define an isolated path to be a maximal path in G, each of whose internal
vertices has degree 2. Hence each of its endpoints has degree at least 3. Call
an isolated path B tight if its length is equal to the distance between its
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endpoints. We first decompose dG, the shortest-path metric of G, into two
simpler metrics: µ̃, which is the shortest-path metric of a graph G′ with the
same vertices and edges as G but which has only tight isolated paths, and
µ̃′, which is a sum of cut metrics.

For this, let us consider a weighted cycle C, assuming that the weight
of any edge is just its shortest-path length. Let e=(u,v) be an edge on C.
Since C is �1-embeddable, the metric dC can be written as a positive linear
combination of cut metrics. Let d0 be the sum of all those cuts that separate
u and v, and d1 be the sum over the remaining cuts; clearly, dC = d0 +d1.
Observe that the sum of d0-lengths of all the edges in E(C)−{e} is necessarily
exactly equal to the length of e, or, in other words, the length of the path
P =C−{e} under d0 is equal to the length of e; note also that d0(e)=dC(e).
Concerning d1, observe that no cut metric δS in d1 separates u and v, so we
may assume w.l.o.g. that the corresponding set S satisfies S⊆V (C)−{u,v}.

All this leads to a decomposition of G into G′ plus an �1 metric. Suppose
G has isolated paths that are not tight. To the endpoints u and v of each
isolated path B, add an edge e=(u,v) of length d(u,v); this forms a cycle
with B. The shortest path metric of each such cycle can be decomposed
into d0 and d1 as above. Each of the cut metrics in d1 naturally extends
to the whole of G, and hence d1, being their weighted sum, also extends to
an �1-embeddable metric on G. Call this µ̃′. By the preceding discussion,
dG=dG′+µ̃′, where G′ has the same vertices and edges as G, but all isolated
paths in G′ are now tight (as in d0). This is the desired decomposition.

Since this phase involved no distortion, it suffices for the proof of the
theorem to show that any graphG with tight isolated paths can be embedded
into �1 with distortion O(logχ(G)). We will denote the length of an isolated
path B by d(B).

Let G̃ be a minor (multigraph) of G obtained by the following random
procedure: for each isolated pathB with endpoints uB and vB, choose a value
rB uniformly and independently from the interval [0,d(B)], and collapse
all vertices in B at distance less than rB from vB to this endpoint, and
all the other vertices in B to uB . The length of the newly created edge
(uB ,vB)∈E(G̃) is defined as d(B)=dG(uB ,vB), so that the distance between
uB and vB remains unchanged. Clearly, the minimum degree of G̃ is now at
least 3. Define µ̃(·, ·)=E

[
d

G̃
(·, ·)

]
; being a convex combination of metrics, µ̃

is a metric as well. We claim that µ̃ closely approximates d:

Claim 4.9. For any two vertices x,y of G, the expected distance µ̃ between
x and y in G̃ satisfies

1
4
d(x, y) ≤ µ̃(x, y) ≤ d(x, y).
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Proof. Let us start with two simple observations. Firstly, if neither x nor y
is an internal vertex of an isolated path, the distance between them remains
the same, i.e., µ̃(x,y)=d(x,y). Furthermore, a simple calculation (involving
the probability that x and y are collapsed to different endpoints of B) shows
that the same is true for any x and y belonging to the same isolated path
B. Thus µ̃ preserves the lengths of all the edges of G, and since d is the
shortest-path distance in G, we infer that µ̃ is dominated by d.

Consider now the case when the vertices x,y lie on different isolated paths
B and B′. Let s,t be the endpoints of B, and q,r the endpoints of B′. Define
Ps and Pt to be the probabilities that x is contracted to s and t respectively.
Pq and Pr are defined similarly, with respect to y. Clearly,

Ps =
d(x, t)
d(s, t)

; and Pt =
d(x, s)
d(s, t)

.

The expressions for Pq and Pr are analogous. By the definition of µ̃,

µ̃(x, y) = PsPq · d(s, q) + PsPr · d(s, r) + PtPq · d(t, q) + PtPr · d(t, r)
= Ps · [Pqd(s, q) + Prd(s, r)] + Pt · [Pqd(t, q) + Prd(t, r)] .(4.11)

A scaled version of (4.9) together with the triangle inequality implies that

Pqd(s, q) + Prd(s, r)
≥ 1

2 min {Pq [d(s, q) + d(s, r)] + d(s, r) ; Pr [d(s, q) + d(s, r)] + d(s, q)}
≥ 1

2 min {Pqd(q, r) + d(s, r) ; Prd(q, r) + d(s, q)}
= 1

2 min {d(y, r) + d(s, r) ; d(y, q) + d(s, q)}
= 1

2 d(s, y).

Similarly, Pqd(t,q) + Prd(t,r) ≥ 1
2d(t,y). Substituting these inequalities

into (4.11), and using the scaled version of (4.9) again, we conclude that

d(x, y) ≥ 1
2 {Psd(s, y) + Ptd(t, y)} ≥ 1

2 · 1
2 d(x, y) .

This completes the proof of the claim.

Thus d is 4-approximated by µ̃. To conclude the proof of the theorem,
we show that µ̃ can be embedded into �1 with small distortion. Note that µ̃
is a convex combination of semimetrics, all of which are supported on G′,
the graph obtained from G by replacing each isolated path by an edge. The
distortion of embedding µ̃ into �1 is no more than that of dG′ , so it suffices
to bound the latter.

But G′ has very few vertices. On the one hand, it has minimum degree
≥ 3; on the other hand, it is a minor of G, and since taking minors cannot
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increase the Euler number, χ(G)≥χ(G′). Let n′= |V (G′)|, and m′= |E(G′)|.
By a degree argument, m′ ≥ 3

2n
′, implying χ(G)≥ χ(G′)≥ 1

2n
′+1. Conse-

quently, G′ has at most 2χ(G)−2 vertices, and hence dG′ can be embedded
into �1 (e.g., using Bourgain’s technique [9]) with distortion O(logχ(G)).

5. Embeddings via tree metrics

The algorithms for �1-embeddings described in the previous section were
based on constructing an approximating set of cut metrics. A different ap-
proach for embedding a metric (V,µ) into �1 is to specify a probability distri-
bution over trees containing V , such that the expected tree distance between
any two vertices x and y in V approximates µ(x,y) well. Since trees can be
embedded isometrically into �1, this also gives an �1-embedding. Of par-
ticular interest are embeddings into distributions over dominating trees, in
which the distance function in each tree dominates µ. Finding low-distortion
embeddings of this kind has consequences for the design of many approxi-
mation algorithms (e.g., [4,3,20,37,10,12]) and online algorithms (e.g., [4,
6]). Formally:

Definition 5.1. A metric dG supported on a graph G is α-probabilistically
approximated by a distribution D over (dominating) trees if
(1) each tree T in the distribution D has V (G)⊆V (T );
(2) for all x,y∈V and T in the distribution, dT dominates dG, i.e., dG(x,y)≤
dT (x,y);
(3) for all x,y∈V , the expected distance ED[dT (x,y)]≤α ·dG(x,y).

In this paper we will use only spanning subtrees of G, and thus (1) and
(2) will automatically be satisfied. Since the expansion is always maximal
on the edges of G, condition (3) can be replaced by the more convenient

(3′) for all edges e = (x,y) ∈ E(G), the expected distance ED[dT (x,y)] ≤
α ·dG(x,y).

We shall also refer to this approximation as an embedding of dG with
distortion α into a tree distribution D.

Distributions over trees were first studied by Karp, who showed that
distances in the unweighted cycle Cn can be 2(1− 1

n)-probabilistically ap-
proximated by a distribution over its subtrees [22]. The distribution is very
simple: each possible spanning tree of G is output with probability 1/n.
This is in sharp contrast to the deterministic case, where it can be shown
that any tree (not necessarily a subtree) approximating the cycle has Ω(n)
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distortion [32]. This line of enquiry was further developed in several pa-
pers [1,4,5,25,11], where distributions over arbitrary dominating trees were
considered. The state-of-the-art results show that any graph with n vertices
can be embedded into tree distributions with distortion O(logn) [17]. In line
with our general approach, we now study the embeddability of outerplanar
and series-parallel graphs into tree distributions.

5.1. Tree embeddings for outerplanar graphs

The first result of this section shows that any metric supported on aK2,3-free
graph can be embedded into a tree distribution with distortion at most 8.
Of course, we already know by Proposition 3.1 that such metrics are iso-
metrically embeddable into �1. However, that result says nothing about the
stronger requirement that the embedding be a distribution over dominating
trees. Both the main result of this section and the method used play an es-
sential part in later, more difficult constructions (see, e.g., Section 5.4, and
the recent [13]).

As usual, it suffices to embed only the biconnected components of the
K2,3-free graph, which are either K4 or outerplanar. It is easy to verify that
approximating any metric on n points by its minimum-weight spanning tree
incurs a distortion of at most (n−1), so any 4-point metric can be embedded
into a tree with distortion 3. Thus, it suffices to bound the distortion for 2-
connected outerplanar graphs. As always, we assume w.l.o.g. that the length
of any edge is equal to the distance between its endpoints.

We start with a composition procedure for outerplanar graphs which will
form the basis for the embedding. Given such a graph G, one can define a
sequence of outerplanar graphs G0,G1, . . . ,Gt =G, where G0 is a path or a
cycle, and the graph Gi is obtained by attaching a path Pi either to a single
vertex ui on the outer face of Gi−1, or to the endpoints of an edge ei =(ui,vi)
lying on the outer face of Gi−1. In the latter case, since the length of any
edge is equal to the distance between its endpoints in G, the path Pi is at
least as long as ei. This implies that the shortest-path metric of the graph Gi

coincides with the metric induced by dG on V (Gi). Clearly, the composition
of G is completely specified by G0 and the sequence of paths {Pi}.

Given an outerplanar graph G with a specified composition procedure,
the path Pi is called slack if either Pi is attached to a single vertex, or Pi

is attached to an edge ei and the length of Pi is at least twice the length
of ei. A composition is called slack if all the paths Pi in it are slack. We shall
first provide an embedding procedure for an outerplanar graph G assuming
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that G has a slack composition, and then show how to extend this to all
outerplanar graphs.

Lemma 5.2. Given an outerplanar graph G and a slack composition for it,
G can be embedded into a tree distribution D with distortion at most 4.

Proof. The embedding is inductive and follows the composition. At stage i,
we shall construct a random spanning tree Ti of Gi from a random spanning
tree Ti−1 of Gi−1, while maintaining property (3′) for Ti with α = 4; i.e.,
with E[dTi(x,y)]≤4dGi(x,y) for all edges (x,y)∈Gi.

In the base case, if G0 is a path, we do nothing. If it is a cycle, we
randomly pick an edge e of G0 with probability proportional to its length,
and delete it to get a random subtree of G0. Let the length of e be l, and
the length of G0 be L. The expected distance between the endpoints of e in
T0 is (

l

L

)
· (L− l) +

(
L− l

L

)
· l ≤ 2l,(5.12)

satisfying property (3′).
At stage i, we look at Pi. If it is attached to a single vertex ui, we attach

it to Ti−1 at ui to get Ti. Clearly, property (3′) continues to hold for Ti. On
the other hand, if Pi is attached to an edge ei, we randomly pick an edge
e from Pi (again with probability proportional to the length of e) and set
Ti=Ti−1∪(Pi−{e}). It is clear that Ti is a spanning tree of Gi. Let us show
that property (3′) is maintained. By the induction hypothesis, this is true
for edges (x,y) of Gi−1, since

E [dTi(x, y)] = E [dTi−1(x, y)] ≤ 4dGi−1(x, y) = 4dGi(x, y).

Consider an edge e=(x,y)∈Pi; denote its length by l, and the length of Pi

by Li. Furthermore, assuming that Pi is attached at the edge (ui,vi), denote
dGi−1(ui,vi) by d. The expected distance between x and y in Ti is at most(

l

Li

)
· (4d+ Li − l) +

(
Li − l

Li

)
· l =

(
l

Li

)
· (4d+ 2(Li − l))

≤ l

(
4
(
d

Li

)
+ 2

)
.

Since the composition is slack, we have d/Li≤1/2, and hence the expression
above is at most 4l, as required.

While it might be the case that an outerplanar graph G does not have a
slack composition, we now show that G can always be converted into a graph
H which does have a slack composition, at the cost of a small distortion.
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Lemma 5.3. Given an outerplanar graph G=(V,E), there is an outerpla-
nar graph H = (V,E′) (in fact, a subgraph of G) with a slack composition
such that dG≥dH ≥ 1

2dG.

Proof. The graph H will be a subgraph of G, with edge lengths no longer
than in G and no shorter than half those in G. Let 〈G0 = P0,P1, . . . ,Pt〉
be the composition defining G. Our goal is to produce a slack composition
〈H0=Q0,Q1, . . . ,Qt′〉 for H, thereby defining H in the process.

The composition sequence for H is initially set to be the same as that
for G; we then consider the lowest unmarked path Qi, and while processing
and marking the path Qi, we modify possibly both the preceding (marked)
and forthcoming (unmarked) paths. We maintain the following invariants
during this process: H is always a connected spanning subgraph of G; at
each stage, the distances may only decrease; and finally, the edge lengths
never decrease by more than a factor of 2 from their original values.

To begin, Q0 is marked. For each i > 0, if the path Qi is attached to a
single vertex, we mark it and go on. Otherwise, Qi is attached to some edge
ei = (ui,vi) lying on some Qk with 0 ≤ k < i. If Qi is slack at this point,
we again mark it and continue. So assume that the current length of Qi is
less than twice the current length of the edge ei = (ui,vi). We then do the
following:

1. Modify Qi: Decrease the lengths of all the edges in Qi by a factor
of 1≤ length(Qi)/length(ei)< 2, so that the current length of Qi becomes
exactly the current length of ei. Remove Qi from the sequence for H. Note
that the lengths of edges in Qi are halved in the worst case. They will never
be changed again (except that the edges may possibly be removed later).

2. Modify Qk: Recall that Qi was attached to the ends of ei lying
on some previously marked path Qk with k < i. Since now length(ei) =
length(Qi), replace ei in Qk by the entire rescaled path Qi to get Q′

k. This
does not change any current distances in the graph.

3. Modify Qj, j > i: Observe that shrinking the path Qi may have
resulted in some edges being longer than the current distance between their
endpoints in the forthcoming (but not the preceding) paths. To overcome
this problem, consider any such edge e ∈ Qj. If there is a path Qj′, with
j′ > j, that is attached to the endpoints of e (and there can be only one
such path), replace e in Qj with Qj′ and remove Qj′ from the sequence. If
there is no such Qj′ , deleting e splits Qj into two paths, each attached to a
single point, and we replace the old Qj in the composition with these two
new paths. Again, note that this does not alter any current distances. We
do not mark any paths in this modification.
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The main properties of the above procedure are as follows. At each time
step, we have connected spanning subgraphs of G. The edges surviving upon
termination were modified at most once, and their lengths were decreased
at that time by at most a factor of 2. No edge-length (and hence no distance
between any pair of vertices) is ever increased. The final sequence is slack.
The process terminates when we have marked all the paths, i.e., in at most
|E| steps.

Let H be the graph specified by the resulting slack sequence. It is a
connected spanning subgraph of G, with edge lengths at least half those in
G. This immediately implies the lower bound dH ≥ 1

2dG. The upper bound
dH ≤dG follows from the fact that none of the steps above caused distances
to increase.

Now the overall procedure for embedding an outerplanar graph G is
as follows. First, we obtain the graph H with a slack composition as in
Lemma 5.3, incurring a distortion of at most 2. The graph H (with the
edge lengths doubled in order to dominate G) is then embedded into a
tree distribution with distortion at most 4 using Lemma 5.2, giving a total
distortion of at most 8.

Furthermore, note that all the trees in the distribution are dominating
subtrees of H with doubled edge lengths, and thus also dominating subtrees
of G. For each such tree T , restoring the length of an edge e∈ T to dG(e)
can only decrease the distortion without changing the domination property.
Hence we get the main result of this section:

Theorem 5.4. For any metric dG supported on a K2,3-free graph G, there
is an embedding of dG into a tree distribution D with distortion at most 8.
Moreover, the embedding uses only subtrees of G with their original edge
lengths.

5.2. Tree embeddings for graphs with few edges

Theorem 5.5. Any graph G with Euler characteristic χ(G) can be embed-
ded into a dominating tree distribution with distortion O(logχ(G)).

Proof. The proof is very similar to that of Theorem 4.8. Recall that an
isolated path in G is a path with endpoints of degree ≥ 3, and all internal
nodes of degree 2. For every isolated path B= 〈v1,v2, . . . ,vk〉 in G, we add
to G a new edge eB between the endpoints of B, of length dG(v1,vk), thus
leaving the original metric unaffected. Now, for each such B, independently
of other isolated paths, choose an edge e in B with probability proportional
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to the length of e, and delete it. We get a distribution over graphs G′, where
each G′ consists of the same “core” (including all the newly added edges),
and the “hairs” (the remnants of the isolated paths).

Each G′ dominates G, and the expected expansion of any edge in B intro-
duced by the above step is at most 2 (by an analysis very similar to (5.12)),
implying that the distortion incurred by this distribution over G′-metrics is
at most 2.

Finally, we have to embed each G′ into a dominating tree distribution. It
suffices to embed the core, since each hair is already a tree and can simply
be attached to the random tree approximating the core. As in the proof of
Theorem 4.8, we conclude that the number of vertices in the core is O(χ(G)),
and hence it can be embedded into a distribution over trees with distortion
O(logχ(G)) by the general result of [17]. This completes the proof.

5.3. Lower bounds for series-parallel graphs

In view of the results of the previous sections, Theorems 5.4 and 5.5 may
inspire hope that embeddings into tree distributions with constant distor-
tion exist for other minor-closed families, such as series-parallel graphs. Our
next result shows that this is not so; we prove a lower bound of Ω(logn)
on the distortion for embedding series-parallel graphs into dominating tree
distributions. This result extends those of Alon et al. [1] and Konjevod et
al. [25], who gave a technically more involved lower bound for the n-vertex
grid, and shows that approximating graph metrics by distributions over tree
metrics already breaks down for families of graphs that are much simpler
than grids.

Theorem 5.6. There exists an infinite family of series-parallel graphs {Gk}
such that any α-approximation of the shortest-path metric of Gk by a dis-
tribution over dominating trees has α=Ω(log |V (Gk)|).

The proof makes use of the following fact from [32]:

Theorem 5.7 ([32]). The distortion of any embedding of the unit-weighted
cycle Cn into an (arbitrary) tree is at least n/3−1.

Proof of Theorem 5.6. The graphs Gk are defined recursively. G0 is a
single unit-weighted edge between terminals s0 and t0. Inductively, Hi+1

consists of two copies of Gi in series, and Gi+1 consist of two copies of Hi+1

in parallel between terminals si+1 and ti+1 (see Figure 3). The graph Gk has
n=4k edges and Θ(n) vertices. Observe that for any Gi with terminals si
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and ti, both the distance between the terminals and the size of a minimum
si-ti cut are 2i.

Following a standard framework for establishing lower bounds for proba-
bilistic constructions (see, e.g., [38,1,25]), it suffices to come up with a dis-
tribution D over the edges of Gk, such that any tree T with V (Gk)⊆V (T )
and dT ≥ dGk

has a large expected expansion, i.e., E e∈D[dT (ue,ve)] ≥
Ω(log |V (Gk)|), where ue,ve denote the endpoints of edge e. More concretely,
it suffices to show that for any tree metric dT ≥dGk

on V (G) we have∑
e∈E(Gk)

dT (ue, ve) = Ω(k) ·
∑

e∈E(Gk)

dGk
(ue, ve) = Ω(k) · 4k,

since then the same must also hold for any distribution over dominating tree
metrics, implying an expansion of Ω(k)=Ω(log |V (Gk)|).

Figure 3. The graph G3

Let T be a tree containing the vertices of Gk which dominates distances
in Gk. For each i ∈ [1, . . . ,k], assign color i to all edges of Gk which suffer
an expansion of at least 2i+1/3−1 in T . As a result, each edge in Gk has
at least one color assigned to it, while some edges have multiple colors. Let
Si⊂E(Gk) be the set of all edges that are assigned color i.

How large is Sk? Observe that any cycle which goes around the graph Gk

(i.e., a simple cycle which includes the terminals sk and tk) has length 2k+1,
and therefore, by Theorem 5.7, contains an edge colored k. Thus Sk hits all
such cycles, and consequently it must separate the terminals of at least one
of the four copies of Gk−1 that form Gk. Hence |Sk|≥2k−1.

How large is Sk−1? Consider the four copies of Gk−1 forming Gk. Arguing
as before, we conclude that each of these copies must contain at least 2k−2

edges of color k−1. Hence, the size of Sk−1 is at least 4 ·2k−2. Arguing in
the same vein for each i, we get that |Si|≥4k−i2i−1=22k−1−i.
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For each e∈E(Gk), let Ce be the set of colors assigned to e. The expansion
of e is at least

max
i∈Ce

(
2i+1/3 − 1

)
≥ 1

2

∑
i∈Ce

(
2i+1/3 − 1

)
.

Therefore,∑
e∈E(Gk)

dT (ue, ve) ≥
1
2

∑
e

∑
i∈Ce

(
2i+1/3 − 1

)

=
1
2

k∑
i=1

|{e | i ∈ Ce}| ·
(
2i+1/3 − 1

)
=

1
2

k∑
i=1

|Si| ·
(
2i+1/3 − 1

)

≥ 1
2

k∑
i=1

22k−i−1 ·
(
2i+1/3 − 1

)
>
(

k
6 − 1

4

)
4k.

Remark 5.8. After the preliminary version of this paper appeared, we were
informed by Yair Bartal that Theorem 5.6 for the same family of graphs can
also be inferred – albeit much less directly – from the result of Imase and
Waxman [21] combined with the general framework of Bartal [4]. To see
this, note that the Steiner tree problem is trivially 1-competitive on trees,
and hence an α-probabilistic approximation of Gk by trees implies an α-
competitive ratio on the graphs Gk [4, Theorem 4]. However, [21] establishes
an Ω(k) lower bound for the competitive ratio for the Steiner problem on
Gk, and hence α=Ω(k).

5.4. An alternative embedding for series-parallel graphs

In light of the lower bound of the previous section, we cannot hope to embed
general series-parallel graphs into tree distributions with constant distortion.
However, by adding an extra ingredient (specifically, a cut-metric embed-
ding of certain special series-parallel graphs which we call “bundles”) to the
tree metric technology, we will be able to come up with an alternative em-
bedding of series-parallel graphs into �1 with constant distortion which is
quite different from that of Section 4.1.

The new embedding proceeds along the same lines as the embedding of
outerplanar graphs in Section 5.1. Given a series-parallel graph G, it first
performs preprocessing and random edge deletion steps similar to those in
Lemmas 5.3 and 5.2 to get a special tree-like series-parallel graph which
we call a “tree of bundles” (i.e., a graph whose 2-connected components are



CUTS, TREES AND �1-EMBEDDINGS OF GRAPHS 263

bundles). This incurs a distortion of at most 8. The bundles are then embed-
ded using the cut-metric technique with distortion 2, yielding an embedding
with total distortion at most 16 for general series-parallel graphs. Although
it has a marginally worse performance guarantee (at least in terms of the
constant bounds we have established here), this second algorithm is con-
ceptually simpler, and arguably more instructive than that of Theorem 4.1.
Since much of the construction is similar to that for outerplanar graphs
given in Section 5.1, we shall omit the recurring details and emphasize the
differences.

As in Section 4.1, the construction is based on the composition procedure
for G. The compositions allowed here are slightly less restrictive than before,
in that we add paths of arbitrary lengths between the ends of some existing
edge at each stage, rather than a single vertex (i.e., a path of length 2).
Hence the composition consists of a sequence of graphs Gi, where G0=P0 is
a path, and Gi is obtained by attaching a path Pi to an already existing edge
ei = (ui,vi). We require that the length of Pi be no less than the length of
ei=(ui,vi), and that the lengths of all edges are equal to the actual distance
between their endpoints in G. We shall further relax the composition by
permitting Pi to be attached to just a single vertex; such a path will be
called free.

Call a (non-free) path slack if its length Li is at least twice di, the length
of the edge ei =(ui,vi). Similarly, a path is called taut if Li=di. (Note that
it is possible for a path to be neither taut nor slack.) We say a composition is
slack-taut if each (non-free) path is either slack or taut. The first observation
is that we can define a preprocessing step similar to that in Lemma 5.3 for
series-parallel graphs, which outputs a series-parallel graph with a slack-taut
composition.

Lemma 5.9. Given a 2-connected series-parallel graph G=(V,E), there is
a series-parallel graph H = (V,E′) with a slack-taut composition such that
dG≥dH ≥ 1

2dG.

The construction of H and the proof of its correctness are very similar
to those of Lemma 5.3. One small difference is that whenever we reduced
the length of Pi in the sequence defining an outerplanar graph, we could
always remove the edge (ui,vi) to which Pi was attached. For series-parallel
graphs, many paths can be attached to the same edge, so we cannot remove
it. However, since the reduced path Pi is taut, leaving ei in place satisfies
the slack-tautness condition. Another small difference is that now we can-
not remove a (forthcoming) edge which has become longer than the actual
distance between its endpoints: this could contradict the technical require-
ment that paths must be attached to edges. To overcome this difficulty, we
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do not actually remove such an edge, but only mark it as “to be removed”
and never touch it again until the end; then it is removed.

Figure 4. A bundle: all non-labeled edges have unit length.

Before stating the next lemma, let us formally define a bundle as a series-
parallel graph such that all simple paths between its terminals are of the
same length. Note that a bundle has a well-defined length, which is the
distance between its terminals. Figure 4 shows an example of a bundle with
terminals s and t.

Consider the slack-taut composition of H in Lemma 5.9. Observe that
if Pj is a taut path attached to a preceding path Pi, and Pi is part of
a bundle, then Pj also becomes a part of the same bundle. In this way
we obtain the maximal bundles of the graph H. Note that if a maximal
bundle B′ is attached to two vertices on some other maximal bundle B (and
in particular, B′ cannot be considered a sub-bundle of B), then B′ must
be at least twice as long as the distance between its terminals. This view
allows us to define another slack composition for H, in which we attach slack
(maximal) bundles at each step (instead of adding slack paths).

Lemma 5.10. Given a series-parallel graphH and a slack-taut composition
for it, H can be embedded into a distribution over special subgraphs with
distortion at most 4. The special subgraphs in this distribution have the
property that all their maximal 2-connected components are bundles.

The proof is similar to that of Lemma 5.2. Consider the slack composition,
where a slack bundle is attached at each step. This is analogous to the slack
composition for outerplanar graphs, and we shall use it in a similar way.
Specifically, when adding a bundle of length L, we choose a value r∈ [0,L]
uniformly at random and cut all the edges that cross a point at distance
r from a fixed terminal of the bundle. The analysis of edge expansion is
identical to that in the proof of Lemma 5.2. Since by cutting a bundle we
create smaller bundles and some free paths, we obtain a “tree of bundles”
at the end of the procedure.

The final step of the embedding has no outerplanar analog. Notice
that bundles are precisely the special series-parallel graphs discussed in
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Lemma 4.4. Thus they can be embedded into �1 with distortion at most 2
using the cut-metric technique.

Combining Lemmas 4.4, 5.9, and 5.10, we arrive at the main result of
this section:

Theorem 5.11. The procedure described in this section produces an em-
bedding of series-parallel graphs into �1 with distortion at most 16.
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A. Appendix: Proof of equation (3.2)

Equation (3.2) follows from a general result concerning positive real vectors.
Let v,u∈R

k be two positive vectors. Define

H(v, u) = max
i

ui

vi
· max

j

vj

uj
.

If S⊆R
k is a closed set of positive vectors, define H(v,S) as minu∈SH(v,u).

Claim A.1. If K⊆R
k is a closed convex cone, then

H(v,K) = max
(C,D)

D · v
C · v ,(A.1)

where the maximum is taken over all non-negative vectors D,C ∈ R
k for

which D·u
C·u ≤1 for any u∈K.
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In the sequel, we use ξ(v,K) to refer to the expression on the right hand
side of (A.1). Before we prove Claim A.1, let us explain how it implies (3.2).

A metric (V,µ) on |V |= n points can be viewed as a positive vector in
R
(n
2), in which the value of the ij-th coordinate (for i < j) is µ(i,j). Since

the set of l1-embeddable metrics on a set V coincides with the set of non-
negative combinations of cut metrics on V , they form a closed convex cone
in R

(n
2), called the cut cone (see, e.g., [15] for more details). Denote the cut

cone on V by M1(V ).
Note that if vµ is the vector corresponding to a metric (V,µ), then

H(vµ,M1(V )) = c1(µ). Therefore, applying Claim A.1 to K = M1(V ) and
v=vµ, we obtain (3.2).

Proof of Claim A.1. One direction of the claim is easy: for any u∈K and
D,C as above,

D · v
C · v ≤ max

i

ui

vi
·max

j

vj

uj
· D · u
C · u ≤ H(v, u) .

Taking the “closest” u∈K to v, we conclude that ξ(v,K)≤H(v,K).
For the other direction, let Bδ(v)⊆R

k be the set of all positive vectors
x∈R

k such that H(v,x)≤δ. Clearly,

Bδ(v) = {x ∈ R
k | ∀r,q∈[1,...,k] δ · vrxq − vqxr ≥ 0} .

Observe that Bδ(v) is a closed convex cone containing v. By definition,
H(v,K) is the smallest δ such that Bδ(v)∩K �= ∅. For this critical δ, we
claim that there exists a vector l∈R

k such that

1. l ·Bδ(v)≥0;
2. l ·K≤0;
3. l is a non-negative combination of vectors ∆rq ∈R

k, r,q∈ [1, . . . ,k],r �= q,
where ∆rq has −vq in the r-th coordinate, δvr in the q-th coordinate,
and 0 in all other coordinates.

Indeed, the dual cone

B∗
δ = {y ∈ R

k | ∀x∈Bδ
〈x, y〉 ≥ 0}

is the convex hull of vectors {∆rq}, and thus the normal vector to any sup-
porting hyperplane of Bδ(v) separating it from K has the required proper-
ties.

Let l+ and l− be two non-negative vectors in R
k with l+−l−= l, formed

by taking the positive and the negative coordinates of l respectively. By the
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first two properties of l, for any u∈K, l+·u
l−·u ≤1, while l+·v

l−·v ≥1. In the rest of
the argument, l+ will play the role of D, while l− will play the role of C.

Given an arbitrary form (
∑

idixi)/(
∑

i cixi) defined over non-negative
x∈R

k with non-negative coefficients di and ci, let us define a new form(∑
i dixi∑
i cixi

)#

=
∑

i(di −min(di, ci))xi∑
i(ci −min(di, ci))xi

.

Observe that if the value of the original form is ≥ 1, then the value of the
new form exceeds that of the old one. Using this observation and the fact
that l=

∑
αrq∆rq for some non-negative αrq’s, we can infer that

ξ(v,K) ≥ l+ · v
l− · v =

(∑
rq αrq∆

+
rq · v∑

rq αrq∆
−
rq · v

)#

≥
∑

rq αrq∆
+
rq · v∑

rq αrq∆
−
rq · v

= δ = H(v,K) ,

which establishes the claim.
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