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We prove that, for each fixed real number c > 1/3, the triangle-free graphs of minimum
degree at least cn (where n is the number of vertices) have bounded chromatic number.
This problem was raised by Erdős and Simonovits in 1973 who pointed out that there is
no such result for c<1/3.

1. Introduction

It is well-known that there exist triangle-free graphs of arbitrarily large
chromatic number, see e.g. Bondy and Murty [3] or Jensen and Toft [9].
Hajnal (see [5]) used the Kneser graphs to show that such graphs may have
minimum degree close to n/3. Erdős and Simonovits [5] conjectured that this
is best possible. For each natural number t, let ct be the smallest number
such that every triangle-free graph with n vertices and minimum degree
>ctn has chromatic number <t. We prove that ct→1/3 as t→∞.

2. Generalized pentagons

Our terminology is that of Bondy and Murty [3]. In particular, α(G) denotes
the independence number, that is the largest number of vertices in a vertex
set in which no two vertices are joined by an edge. Also, if v is a vertex in
G, then N(v,G) denotes the set of neighbors of v. The degree of v in G is
the number of neighbors of v in G and is denoted d(v,G). Two vertices of G
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are G-equivalent if they are nonadjacent and have the same neighbors. We
say that G is α-dominated if, for every set S of α(G) vertices in G, there
is a vertex v in G such that N(v,G)⊂S. We define a generalized pentagon
as follows: The 5-cycle (pentagon) is a generalized pentagon. Suppose that
G is a generalized pentagon and that v is a vertex of G. We define a new
graph P by adding three new vertices w,x,y to G. We add all edges from w
to N(v,G) and we add the edges of the path vxyw. The idea of the proof is
to find a large generalized pentagon in the dense triangle-free graph under
consideration and then show that either this generalized pentagon contains
a vertex of not too large degree, or else it has a coloring in few colors such
that that coloring can be extended to a coloring of the whole graph in few
colors. For that we need some properties of generalized pentagons.

Proposition 2.1. Let P be a generalized pentagon with 3k − 1 vertices.
Then the following hold.

(a) P has no triangle.

(b) α(P )=k.

(c) P is α-dominated.

(d) If P is a spanning subgraph of a triangle-free graph H, then H has
maximum degree at most k.

Proof. The proof is by induction on k. For k=2 the statement is trivial,
so we proceed to the induction step. Let P be obtained from G by adding
the three vertices w,x,y where w and v have the same neighbors within G,
and P contains the path vxyw. By the induction hypothesis, G satisfies (a),
(b),(c), (d) with k−1 instead of k. It is easy to see that P satisfies (a).
To prove (b), we first note that α(P ) > α(G) = k− 1. Now let S be a

largest set of independent vertices in P . We may assume that S contains at
most one of the vertices w,x,y since w and v may interchange roles. By the
induction hypothesis, S∩V (G) has at most k−1 vertices. This proves (b).
We now prove (c). Recall that the above set S contains at most one

of the vertices w,x,y. If S contains x or y but not v, then we apply the
induction hypothesis to G and S ∩ V (G). If S contains y and v, then S
contains N(x,P ). Finally, if S contains w, then S also contains v and again,
we apply the induction hypothesis to G and S∩V (G). This proves (c).
(d) follows from the facts that α(H)≤α(P )=k and every neighborhood

in H is an independent set of vertices.
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3. Bounding the chromatic number

Theorem 3.2. Let c be any fixed real number, c>1/3. Then the triangle-
free graphs of minimum degree > cn (where n is the number of vertices)
have bounded chromatic number.

Proof. Let M be a triangle-free graph with n vertices and minimum de-
gree > cn. We shall prove that the chromatic number of M is less than
2(3c− 1)−(4c−1)/(3c−1) . Without loss of generality we may assume that M
is maximal triangle-free. In other words, M has diameter 2. If M has chro-
matic number 2, there is nothing to prove. So we may assume that M has
an odd cycle. By considering a path of length 3 in a shortest (and hence
chordless) odd cycle and using the fact that M has diameter 2, we conclude
that a shortest odd cycle in M is a pentagon. Let P be a largest generalized
pentagon in M , and let H be the subgraph of M spanned by P . (That is,
H has the same vertices as P , and contains all those edges in M that join
two vertices of P .) Assume that P has 3k−1 vertices where k>1.
We now give an upper bound on |V (H)| independent of n.

|V (H)| = 3k − 1 < 1/(3c − 1)(1)

To prove (1), we consider the number s =
∑

d(x,M) where the sum is
taken over all vertices x in H. By Proposition 2.1 (b), the number of edges
fromM−V (H) to H is at most k(n−3k+1). By Proposition 2.1 (d), H has
maximum degree at most k. Hence

s ≤ k(n − 3k + 1) + k(3k − 1) = kn.

By the assumption of Theorem 3.2,

s > cn(3k − 1).

By combining these two inequalities, we obtain (1).
We partition V (G) \ V (H) into two sets A,B. A is the set of vertices

in V (G)\V (H) having precisely k neighbors in H. By Proposition 2.1 (b),
every vertex in B has less than k neighbors in H. We now derive an upper
bound for |B|.

|B| < n(c+ k(1 − 3c)) < cn(2)

To prove (2) we repeat the proof of (1):

cn(3k − 1) < s =
∑

d(x,M) ≤ k(3k − 1) + k|A|+ (k − 1)|B| =
k(3k − 1) + k(n − (3k − 1)− |B|) + (k − 1)|B| = kn − |B|.
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Hence

|B| < kn − cn(3k − 1) = n(c+ k(1− 3c)) < cn

which proves (2).
Let x1,x2, . . . ,x3k−1 denote the vertices of H. We partition A into sets

A1,A2, . . . ,A3k−1 as follows. Let x be any vertex of A. By Proposition 2.1 (c),
there is a vertex xi in P such that the set of neighbors of x in P contains
N(xi,P ) (but not necessarily N(xi,H)). Here, i need not be unique but we
choose one such i and we let x belong to Ai. Since any two vertices of Ai

have a common neighbor in P it follows that Ai is an independent set for
each i=1,2, . . . ,3k−1.
For each i=1,2, . . . ,3k−1, we partition Ai∪{xi} into sets Ai,1,Ai,2, . . . ,Ai,qi

as follows: Two vertices u,v of Ai∪{xi} belong to the same Ai,j if and only
if u and v have the same M -neighbors in H. Clearly,

qi < (3k − 1)k for each i = 1, 2, . . . , 3k − 1.(3)

We claim that

For each i = 1, 2, . . . , 3k − 1 and each j = 1, 2, . . . , qi, any
two vertices v,w in Ai,j are M -equivalent.(4)

Suppose (reductio ad absurdum) that x is a vertex joined to v but not w.
By the definition of Ai,j , v and w have the same neighbors in H and hence
x is not in H. Let xyw be a path of length 2 in M . Again, by the definition
of Ai,j , y is not in H. Since v is joined to each vertex in N(xi,P ) (by the
definition of Ai), it follows that v may replace xi in P . In other words, we
may assume that v = xi. Adding the path vxyw and all edges from w to
N(xi,P ) to P gives a contradiction to the maximality property of P . This
proves (4).
For each i=1,2, . . . ,3k−1 and each j=1,2, . . . ,qi, we define Bi,j as the

set of vertices of B that have a neighbor in Ai,j but not in any set with
a smaller index (in the lexicographic ordering). By (2) and the assumption
that all vertices in G have degree >cn, every vertex in B is in some set Bi,j,
and by (4), Bi,j is a set of independent vertices for each i=1,2, . . . ,3k−1
and each j = 1,2, . . . ,qi. Now we color M by giving two vertices the same
color if and only if they belong to the same set Ai,j or Bi,j, i=1,2, . . . ,3k−1,
j=1,2, . . . ,qi. By (3) and (1), this number of colors is less than 2(3k−1)k+1 <
2(3c−1)−(4c−1)/(3c−1) . This completes the proof of Theorem 3.2.
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4. Remarks and open problems

We refer the reader to Brandt [1] for the history of dense triangle free graphs
and open problems in the area.
Below we emphasize two open problems which are particularly relevant

to the result of the present paper.
A graph G is homomorphic to a graph H if there exists a map f :V (G)→

V (H) such that any two adjacent vertices are mapped to adjacent vertices.
Note that f needs neither be 1−1 nor onto. Also note that the largest clique
size in H and the chromatic number of H must be at least as large as the
corresponding numbers for G. Theorem 3.2 would follow from an affirmative
answer to the following question:
Question 1. Let c > 1/3 be any fixed constant. Does there exist a finite
family Fc of triangle-free graphs such that every triangle-free graph with n
vertices and minimum degree >cn is homomorphic to some graph in Fc?
An affirmative answer to Question 1 was conjectured by Jin [7], and a

stronger quantitative version was conjectured by Brandt [2]. The generalized
Möbius ladders (that is, the graphs with vertices p1,p2, . . . ,p3q−1, and all
edges pipi+j, i= 1,2, . . . ,3q− 1, j = q,q+1, . . . ,2q− 1, where the indices are
expressed modulo 3q− 1) show that Question 1 has a negative answer for
c=1/3.
Question 2. Do the graphs with n vertices and minimum degree > n/3
have bounded chromatic number?
Erdős and Simonovits [5] conjectured that these graphs are 3-colorable

but that was disproved by Häggkvist [6]. Jin [8] conjectured that there is
no upper bound for the chromatic number, whereas Brandt [2] conjectures
that 4 is an upper bound.
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