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Abstract
Timely prediction of pathogen is important key factor to reduce the quality and yield losses. Wheat is major crop in north-
ern part of India. In Punjab, wheat face challenge by different diseases so the study was conducted for two locations viz. 
Ludhiana and Bathinda. The information regarding the occurrence of Karnal bunt in 12 consecutive crop seasons (from 
2009-10 to 2020-21) in Ludhiana district and in 9 crop seasons (from 2010-11 to 2018-19) in Bathinda district, was col-
lected from the Wheat Section of the Department of Plant Breeding and Genetics at Punjab Agricultural University (PAU), 
located in Ludhiana. The study aims to investigate the adequacy of various methods of machine learning for prediction of 
Karnal bunt using meteorological data for different time period viz. February, March, 15 February to 15 March and overall 
period obtained from Department of Climate Change and Agricultural Meteorology, PAU, Ludhiana. The most intriguing 
outcome is that for each period, different disease prediction models performed well. The random forest regression (RF) for 
February month, support vector regression (SVR) for March month, SVR and BLASSO for 15 February to 15 March period 
and random forest for overall period surpassed the performance than other models. The Taylor diagram was created to assess 
the effectiveness of intricate models by comparing various metrics such as root mean square error (RMSE), root relative 
square error (RRSE), correlation coefficient (r), relative mean absolute error (MAE), modified D-index, and modified NSE. 
It allows for a comprehensive evaluation of these models’ performance.

Keywords Karnal bunt · Wheat · Machine learning methods · Meteorological parameters · Disease prediction models

Introduction

The rapid population growth and unpredictable climate 
changes present significant challenges to the agricultural 
sector, particularly in terms of ensuring food security, pro-
ductivity, and sustainability. Climate change has emerged as 
a critical concern affecting a country's food security, leading 
to extreme weather events. With temperatures projected to 
rise by 1-2.5°C by 2030, crop yields could be substantially 
impacted due to changes in photosynthesis, increased plant 

respiration, and alterations in disease incidence and pest 
populations (Bhanumathi et al. 2019).

Crop diseases are heavily influenced by weather condi-
tions. The disease triangle, a conceptual model, outlines 
the fundamental factors responsible for causing disease. 
It explains that diseases occur when a virulent pathogen 
interacts with a susceptible host organism under favora-
ble environmental conditions. The disease triangle was 
first depicted by Stevens in 1960 and was later revisited 
by Francl in 2001, who expanded the concept to include 
additional parameters such as humans, vectors, and time. 
Numerous researchers have dedicated considerable efforts 
to studying how various weather parameters interact and 
indirectly impact the development of plant disease out-
breaks. These studies underscore the importance of incor-
porating multiple climate change parameters into models 
addressing this issue. Newbery et al. (2016) introduced 
a graphical scheme to facilitate a more concise under-
standing of how climate, crop growth, and disease models 
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can be integrated to project crop growth stages and dis-
ease incidence/severity under different climate change 
scenarios.

The issue of effective plant disease protection is closely 
linked to the challenges of sustainable agriculture and cli-
mate change. Climate change has the potential to impact 
pathogen development stages and rates, as well as alter host 
plant resistance, resulting in physiological changes in the 
interactions between hosts and pathogens. These changes 
can have significant implications for the occurrence and 
management of plant diseases (Garret et al. 2006). Several 
minor diseases have reappeared during different crop sea-
sons. For instance, Karnal bunt, a significant wheat disease 
in Punjab, exhibited an upward trend in both severity and 
prevalence between 2012-13 and 2014-15 (Kaur et al. 2018). 
Despite being considered a minor disease, Karnal bunt 
resurfaced during the 2014-15 crop season due to the pres-
ence of favorable weather conditions (Sharma et al. 2012). 
Smiley (1996) emphasized the significance of specific cli-
matic conditions, including appropriate rainfall and associ-
ated humidity levels, which play a crucial role in teliospore 
germination, secondary sporidial multiplication, penetration, 
and infection. These events need to be synchronized with the 
susceptible period, typically spanning 3 to 4 weeks leading 
up to wheat anthesis. The defined suitable rain and humid-
ity events involve measurable rainfall (> 3 mm) occurring 
on two or more successive days, with at least 10 mm col-
lected within a 2-day interval, and an average daily relative 
humidity exceeding 70% on both rainy days. To summarize, 
the climatic conditions during the susceptible period before 
wheat anthesis, which facilitate the survival, establishment, 
and spread of Tilletia indica sporidia, include optimum 
maximum temperatures ranging from 16 to 23°C, optimum 
minimum temperatures ranging from 7 to 11°C, high average 
daily humidity (> 70%) or relative humidity exceeding 48% 
at 3 pm, and measurable rainfall on multiple successive days 
(Smiley 1996). In context of Punjab, the favorable conditions 
for Karnal bunt were determined to be a maximum tempera-
ture ranging from 25 to 31°C in March, a minimum tempera-
ture ranging from 8.5 to 11.0°C in February, morning and 
evening relative humidity ranging from 85 to 95% and 40 to 
60%, respectively, in March, and sunshine hours of 5.5 to 9.0 
hours per day, along with rainfall exceeding 25 mm during 
mid-February to mid-March (Sandhu et al. 2022).

The liberalization of trade has facilitated the global 
spread of diseases, leading to the emergence of new dis-
eases in previously unaffected regions where there may be 
a lack of local expertise to deal with them. Inadequate pes-
ticide usage can also lead to the development of long-term 
resistance in pathogens, making it difficult for host plants to 
defend themselves. As a result, timely detection of diseases 
in plants poses a significant challenge for farmers (Anony-
mous 2019).

One potential solution to address this challenge is the 
development of prediction models based on the relationship 
between prevailing weather conditions and disease severity. 
By studying the complex interplay between plants, patho-
gens, and the environment, such models can aid in guid-
ing management decisions. However, the complexity of 
many plant diseases and their dependence on mathematical 
or statistical forecasting models can be limiting. Although 
numerous laboratory studies have been conducted to under-
stand the impact of environmental conditions on the survival 
and growth of T. indica (Smilanick et al. 1989), and sev-
eral models have been created to simulate meteorological 
factors relevant to the establishment and spread of the dis-
ease (Jhorar et al. 1992, Mavi et al. 1992, Kaur et al. 2000, 
Sandhu et al. 2022), the task remains challenging due to the 
intricate nature of the disease processes involved. Several 
attempts have also been made to model KB forecasting in 
Indian conditions (Srinivasan 1980, Jhorar et al. 1992, Mavi 
et al. 1992; Singh et al. 1996) but all the models could not be 
validated in Punjab, India (Kaur et al. 2006). Biswas et al. 
(2013) carried out bivariate probability density analysis to 
develop a predictive regression model for inoculum load that 
was successfully validated and could be used for prediction 
of sporidial activity in field. Much of the recent progress has 
come from advances in computing and storage capabilities 
that are expected to improve complex computing systems 
that can learn to mimic humans and perform specific tasks. 
Biswas et al. (2013) carried out bivariate probability density 
analysis to develop a predictive regression model for inocu-
lum load that was successfully validated and could be used 
for prediction of sporidial activity in field.

Much of the recent progress has come from advances 
in computing and storage capabilities that are expected 
to improve complex computing systems that can learn to 
mimic humans and perform specific tasks. Artificial Intel-
ligence (AI) highlights the potential usefulness of pattern 
and trend detection in large amounts of data using perti-
nent mathematical algorithms and the objective of solving 
a particular task (Winston 1992). The task can be generic, 
such as computer vision, natural language processing (NLP), 
predictive modelling, or specific and related to a specific 
area that would otherwise require an expert in the field. AI 
includes field of Machine Learning (ML) and Deep Learn-
ing (DL). While, AI is the general term used to categorize 
any task that allows a machine or system to mimic human 
behaviour and intelligence, machine learning and deep learn-
ing are the specific methods used to do so. Machine learning 
uses algorithms that learn from data, make generalizations, 
and create rules that enable prediction of one or more target 
variables on the basis of set of input variables (Goodfel-
low et al. 2016). Fortunately, machine learning not only 
helps in understanding and developing new models but also 
accounts for understanding highly complex relationships to 
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define with mathematical models (Fu et al. 2018). Thus, 
keeping this aspect in view this article proposes improved 
ML algorithms that use specialized ensemble methods such 
as artificial neural networks (ANN), efficient neural network 
(ENET), k-nearest neighbour (kNN), least absolute shrink-
age and selection operator (LASSO), Bayesian least absolute 
shrinkage and selection operator (BLASSO), support vec-
tor regression (SVR), ridge regression (RIDGE), Bayesian 
ridge (BRIDGE), multiple linear regression (MLR), princi-
pal component regression (PCR), and random forest (RF) 
for developing prediction models for Karnal bunt disease.

Data methodology

Study area

The study was conducted at two locations viz. Ludhiana 
(latitude  30o54’, longitude N  75o48’E and at an altitude 
of 247 meter above mean sea level) and Bathinda (latitude 
30°58’N, longitude 74°18’E, altitude 211 meter above mean 
sea level. Ludhiana is located in the central plain region of 
Punjab with general climatic conditions classified as sub-
tropical and semi-arid while Bathinda region falls in west-
ern zone and its climate is classified as semi-arid. Annual 
normal rainfall levels of Ludhiana and Bathinda are 760 
mm and 436 mm, respectively. In Ludhiana, the summer 
temperature exceeds 40°C with dry summer spell while the 

lowest temperature may be near 0°C during winter season. 
In Bathinda, dust storms are common in May-June when 
the mercury touches 47°C and frosty nights associated with 
chilled winds are common when night temperature touches 
0°C during December-January.

Disease data collection

The data on Karnal bunt incidence for 12 crop seasons (from 
2009-10 to 2020-21) in Ludhiana district and 9 crop seasons 
(from 2010-11 to 2018-19) in Bathinda district was obtained 
from the Wheat Section of the Department of Plant Breeding 
and Genetics at PAU, Ludhiana (Fig. 1). To gather the Kb 
incidence data, wheat grain samples were collected from 
various grain markets in both districts. Approximately 15-30 
samples of grains, each weighing between 500g to 1000g, 
were randomly collected from different wheat heaps and 
placed in paper bags.

Meteorological data collection

The meteorological data for the respective districts (Figs. 2, 
3 and 4) was collected from the Department of Climate 
Change and Agricultural Meteorology at PAU, Ludhiana. 

(1)

Disease incidence(%) =
No. of infected grains

Total no. of grains examined
× 100

Fig. 1  Karnal bunt incidence 
data of Ludhiana and Bathinda
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This weather data included maximum and minimum temper-
atures (Tmax and Tmin), mean relative humidity (RHme), 
rainfall (RF), and the number of rainy days (RD) for the 
months of February and March. These specific months were 
chosen as they correspond to the anthesis and ear formation 
stages of wheat, which are considered the most vulnerable 
stages for the development of Karnal bunt.To begin the anal-
ysis, descriptive statistics were applied to the meteorological 
data. Subsequently, a Humid-thermal index (HTI) was devel-
oped to forecast the suitability for disease establishment and 
spread. The HTI was calculated using the following formula:

Results of HTI are interpreted as per Table 1 in Fig. 5.

(2)Humid-thermal index =
Evening relative humidity

Maximum temperature

Potential predictor attributes

Eleven attributes were chosen as possible predictor variables 
(as shown in Table 2), and many of these attributes have 
been recognized as significant factors in previous studies 
regarding the development of Karnal bunt disease.

Machine learning regression models

The collected dataset was split into training and testing 
sections. The 70 per cent of the total dataset was used 
as training dataset while the remaining 30 per cent data-
set was used as testing data. Machine learning regression 
models were applied to the dataset to train the model to 
predict disease. The process of modelling is shown in 
Fig. 6. These models include artificial neural networks 
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Fig. 2  Maximum and minimum temperatures of February and March months of Ludhiana and Bathinda
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Fig. 3  Mean relative humidity of February and March months of Ludhiana and Bathinda
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(ANN), efficient neural network (ENET), k-nearest neigh-
bour (kNN), least absolute shrinkage and selection opera-
tor (LASSO), Bayesian least absolute shrinkage and selec-
tion operator (BLASSO), support vector regression (SVR), 

ridge regression (RIDGE), Bayesian ridge (BRIDGE), 
multiple linear regression (MLR), principal component 
regression (PCR), and random forest (RF).

Model accuracy terms/indices

Six of the most common accuracy metrics of regression 
models were used: root mean square error (RMSE), root 
relative square error (RRSE), correlation coefficient (r), 
the relative mean absolute error (MAE), modified D-index 
and modified NSE. Table 3 shows regarding estimation of 
these matrics.
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Fig. 4  Rainfall and rainy days of February and March months of Ludhiana and Bathinda

Table 1  Forecasting suitability for disease establishment and spread 
(source: Jhorar et al. 1992)

HTI Forecasting suitability
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Fig. 5  Humid thermal index of February and March months of Ludhiana and Bathinda
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Results and discussion

Descriptive statistics

The descriptive statistics of studied weather parameters is 
presented in Tables 4, 5, and 6. In these tables, ranges of 
different meteorological parameters along with mean and 
standard deviation are presented for the periods under study. 
The mean maximum temperature during March month was 
mostly higher (27.34°C) than February (21.68°C) month 
and 15 February-15 March period (23.98°C). The mean 
number of days when optimum maximum temperature pre-
vailed was higher (15.00) during March as compared to 15 
February-15 March period (10.58) and February (3.17). 

Table 2  Potential predictor 
attributes

Attribute code name Attribute name / description

Tmax Maximum temperature
Tmin Minimum temperature
OTmax Number of weeks when optimum maximum temperature for Karnal bunt 

disease development occurred
OTmin Number of weeks when optimum minimum temperatures for Karnal bunt 

disease development occurred
RHm Mean relative humidity
RHm>70 Number of weeks when mean relative humidity was greater than 70 per cent
RF Rainfall
RD Rainy days
RD CNT Number of weeks with continuous rainy days
RD C10 Number of days when at least 10 mm rainfall was recorded
HTR Humid thermal ratio

Disease and 
weather data 

collection

Data preprocessing
Feature 

extraction
Collection of 

preprocessed data
Collection of training and 

tested data Using machine 
learning 
algorithms

Final disease prediction 
report

Fig. 6  Process of modelling

Table 3  Model accuracy terms/ indices

Where, y = real value, yˆ = predicted value, i = observation, y¯, yˆ¯ = means, O observed and P predicted values

Metric Description Formula Reference

Root mean square error (RMSE) The RMSE measures the difference between the actual and 
estimates, exaggerating the presence of outliers. The RMSE 
values should be as low as possible for a better-performing 
model.

�
∑n

i=1 (yi+ŷy)
2

n

(Han & Kamber, 2006)

Root relative square error (RRSE %) RRSE, which compares the model prediction against the mean. 
For this metric, a value below 100% indicates a better perfor-
mance than the average.

�∑n

i=1 (yi+ŷi)
2

∑n

i=1 (yi−y)
2
× 100

Gonzalez-sanchez et al. (2014)

Mean absolute error (MAE (%) MAE is the average of differences in estimations (in physical 
units)

∑n

i=1 �yi−ŷi�
ny

⋅ 100
Gonzalez-sanchez et al. (2014)

Correlation coefficient (r) Correlation coefficient (r) measures the linear relationship 
between regression model predictions and the real values.

∑n

i=1 (yi−y)(ŷi−y)
2

√∑n

i=1 (yi−y)
2

√∑n

i=1 (ŷi−y)
2

Gonzalez-sanchez et al. (2014)

Modified Index of aggrement (d) The index of agreement represents the ratio of the mean square 
error and the potential error. The range of d is similar to that 
of r2 and lies between 0 (no correlation) and 1 (perfect fit)

dj = 1 −
∑n

i=1 �Oi−Pi�j
∑n

i=1

����Pi−O
���+�oi−o�

�
(Willmot 1984)

Modified Nash–Sutcliffe efficiency (E) The efficiency E proposed by Nash and Sutcliffe (1970) is 
defined as one minus the sum of the absolute squared differ- 
ences between the predicted and observed values normalized 
by the variance of the observed values during the period 
under investigation.

Ej = 1 −
∑n

i=1 �Oi−Pi�j
∑n

i=1

���Oi−O
���
j

Nash and Sutcliffe (1970)
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During March, the mean minimum temperature was also 
higher (13.27°C) than that in February (9.07°C) month and 
15 February-15 March period (10.98°C). The mean number 
of days when optimum minimum temperature prevailed were 
higher (17.92) during March as compared to15 February-15 
March period (16.25) and February (10.00). Lower mean 
relative humidity was observed during the March (67.31%) 

month followed by 15 February-15 March period (71.76%) 
and February (73.80%). The mean number of days when 
mean relative humidity was higher (19.42) during Febru-
ary as compared to15 February-15 March period (16.50) 
and March (12.17). Lesser mean number of rainy days were 
observed during March (2.58) month as compared to 15 
February-15 March period (3.17) and February (2.75). The 

Table 5  Descriptive statistics of studied parameters for Karnal bunt of wheat for March month

Parameter Tmax Tmin OTmax OTmin RHm RHm>70 RF RD RD CNT RD C10 HTR

Mean 27.34 13.27 15.00 17.92 67.31 12.17 27.17 2.58 0.58 2.00 1.76
Standard Error 0.57 0.33 1.40 1.14 1.58 2.52 8.27 0.71 0.29 0.81 0.12
Median 27.40 13.23 14.50 18.50 66.60 9.00 21.20 1.50 0.00 1.00 1.73
Standard Deviation 1.98 1.13 4.84 3.94 5.48 8.74 28.65 2.47 1.00 2.80 0.42
Sample Variance 3.92 1.28 23.45 15.54 30.01 76.33 821.00 6.08 0.99 7.82 0.17
Kurtosis -0.56 -0.82 0.08 -1.23 -1.42 -1.49 -0.26 -1.06 2.23 1.17 -1.25
Skewness 0.27 -0.02 0.59 -0.30 0.11 0.38 0.85 0.75 1.71 1.47 0.36
Range 6.63 3.47 17.00 11.00 16.65 25.00 84.60 7.00 3.00 8.00 1.21
Minimum 24.39 11.40 8.00 12.00 59.55 1.00 0.00 0.00 0.00 0.00 1.27
Maximum 31.02 14.87 25.00 23.00 76.19 26.00 84.60 7.00 3.00 8.00 2.48

Table 6  Descriptive statistics of studied parameters for Karnal bunt of wheat for 15 February-15 March month

Parameter Tmax Tmin OTmax OTmin RHm RHm>70 RF RD RD CNT RD C10 HTR

Mean 23.98 10.98 10.58 16.25 71.76 16.50 33.53 3.17 0.67 2.42 2.27
Standard Error 0.54 0.41 1.75 1.43 1.55 2.27 8.88 0.81 0.28 0.73 0.14
Median 23.44 11.35 10.00 17.00 70.36 15.00 34.90 2.50 0.00 2.00 2.17
Standard Deviation 1.88 1.41 6.07 4.94 5.35 7.87 30.75 2.82 0.98 2.54 0.50
Sample Variance 3.52 1.99 36.81 24.39 28.65 61.91 945.51 7.97 0.97 6.45 0.25
Kurtosis -0.87 -0.47 -1.31 0.14 -1.19 -1.02 -0.83 -1.14 1.70 -1.49 -1.93
Skewness 0.41 -0.47 0.01 -0.74 0.33 0.22 0.51 0.44 1.50 0.48 0.19
Range 6.13 4.75 18.00 17.00 15.78 25.00 88.20 8.00 3.00 6.00 1.26
Minimum 21.15 8.23 2.00 6.00 63.76 4.00 0.00 0.00 0.00 0.00 1.68
Maximum 27.28 12.98 20.00 23.00 79.53 29.00 88.20 8.00 3.00 6.00 2.95

Table 4  Descriptive statistics of studied parameters for Karnal bunt of wheat for February month

Parameter Tmax Tmin OTmax OTmin RHm RHm>70 RF RD RD CNT RD C10 HTR

Mean 21.68 9.07 3.17 10.00 73.80 19.42 34.51 2.75 0.58 2.33 2.61
Standard Error 0.41 0.28 0.95 0.76 1.47 1.98 9.10 0.65 0.34 0.68 0.15
Median 21.87 9.17 2.50 9.50 72.71 19.00 26.00 2.00 0.00 2.00 2.45
Standard Deviation 1.44 0.96 3.30 2.63 5.08 6.84 31.52 2.26 1.16 2.35 0.51
Sample Variance 2.06 0.93 10.88 6.91 25.81 46.81 993.32 5.11 1.36 5.52 0.26
Kurtosis -1.37 2.64 -0.17 1.17 -1.26 -1.45 0.89 1.52 7.73 2.00 -1.56
Skewness -0.21 -1.10 0.81 1.05 0.43 -0.13 1.33 1.45 2.66 1.19 0.30
Range 4.33 3.77 10.00 9.00 14.79 19.00 91.80 7.00 4.00 8.00 1.33
Minimum 19.45 6.73 0.00 7.00 67.46 9.00 4.60 1.00 0.00 0.00 2.00
Maximum 23.77 10.50 10.00 16.00 82.25 28.00 96.40 8.00 4.00 8.00 3.34
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mean number of weeks with continuous rainy days were 
higher for 15 February-15 March (0.67) period and equal for 
February and March month i.e. 0.58. The mean number of 
days when at least 10 mm rainfall was recorded were higher 
for 15 February-15 March (2.42) period as compared to Feb-
ruary (2.33) and March (2.00) month. Lower mean HTR was 
observed for March (1.76) as compared to February (2.61) 
and 15 February-15 March period (2.27).

Development of disease prediction model

The results here are depicted here in both visual (Fig. 7) and 
numerical fashions (Tables 7, 8 and 9). The results demon-
strate the adequacy of various methods of machine learn-
ing for prediction of Karnal bunt for different time period 
taken under study. The most intriguing finding is that for 
each period different models for disease prediction were per-
ceived. The results accomplished surpass the earlier work in 
this area. The Taylor diagram (Fig. 7) provides readers with 
a comprehensive understanding of the degree of similarity 
between patterns in terms of correlation, root-mean-square 
difference, and variance ratio. While this diagram has a 
general application, it proves to be particularly valuable in 
assessing complex models.

As shown in Fig. 7, one can clearly see the observed 
or reference field, usually representing observed state. 
Another field is denoted as a test field usually represent-
ing model-simulated field. The purpose is to develop a 
theoretical framework of how closely the test field bear 
a resemblance to the reference field. The radial distances 
from the origin to the points represent pattern standard 
deviations. Correlation coefficient between two fields is 
illustrated by the azimuthal positions. The dashed lines 
represent RMSE values. For each period, cross-location 
multiple regression models {artificial neural networks 
(ANN), efficient neural network (ENET), k-nearest 
neighbour (kNN), least absolute shrinkage and selection 
operator (LASSO), Bayesian least absolute shrinkage 
and selection operator (BLASSO), support vector regres-
sion (SVR), ridge regression (RIDGE), Bayesian ridge 
(BRIDGE), multiple linear regression (MLR), principal 
component regression (PCR), and random forest (RF) 
approaches}were validated against each other. The mod-
els such as efficient neural network (ENET), k-nearest 
neighbour (kNN), Bayesian least absolute shrinkage and 
selection operator (BLASSO), support vector regression 
(SVR), Bayesian ridge (BRIDGE), principal component 
regression (PCR), and random forest (RF) for February 

Fig. 7  Taylor diagram
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month perform relatively well because they lie relatively 
close to the reference point. Unlike others, the mod-
els such as artificial neural networks (ANN), k-nearest 
neighbour (kNN) and multiple linear regression (MLR) 
grossly underestimated the results for March month. 
Bayesian least absolute shrinkage and selection operator 
(BLASSO), support vector regression (SVR) and princi-
pal component regression (PCR) were reported as good 
models for 15 February-15 March period. All the models 
except efficient neural network (ENET) and k-nearest 
neighbour (kNN) grossly underestimated the results for 
overall period.

Validation of developed models

For February month, lower than mean RMSE, RRSE 
and MAE were observed for the models ENeT (14.48% 
,117.11% and 12.89 %), BRIDGE (14.51%, 117.32 % 
and 12.33 %), BLASSO (12.35%, 99.86 % and 10.64 %), 
SVR (10.99%, 88.89 % and 9.76 %), RF (7.70%, 62.24 % 
and 6.20 %) and kNN (11.18%, 90.36 % and 10.10 %), 
respectively (Tables 7 and 8). The lowest RMSE, RRSE 
and MAE values were recorded for random forest (RF) 
model. The modified index of agreement (d) and modi-
fied Nash–Sutcliffe efficiency (E) values went maximum 
up to 0.73 and 0.44, respectively for RF model (Table 9). 
This indicates that d and E are not sensitive to system-
atic over or under prediction unlike other models. The 
coefficient of determination  (R2) and correlation coef-
ficient (r) was highest for kNN model i.e., 0.86 and 0.93, 
respectively. For March month, the minimum RMSE, 
RRSE and MAE was observed for support vector regres-
sion (SVR) i.e., 8.97%, 72.51 % and 7.25%, respectively. 
But the coefficient of determination  (R2) and correlation 
coefficient (r) was highest for RF model i.e., 0.91 and 
0.95, respectively and for SVR,  R2 and r were 0.83 and 
0.91, respectively. The d and E values went maximum up 
to 0.71 and 0.34, respectively for SVR model that makes 
this criterion not much sensitive to quantification of sys-
tematic over or under prediction errors whereas the d and 
E values for RF model were quite less 0.57 and -0.28, 
respectively as compared to SVR model. SVR with RMSE 
value as 18.91%, RRSE as 152.91% and MAE value as 
16.97% and BLASSO model with RMSE value as 18.78%, 
RRSE as 151.88% and MAE value as 16.53% perform 
relatively well as compared to other models for period 
15 February to 15 March. The d values for BLASSO 
and SVR were 0.49 and 0.5, respectively and E values 
for BLASSO and SVR went maximum up to -0.50 and 
-0.54, respectively. But the coefficient of determination 
 (R2) and correlation coefficient (r) was highest for SVR 
model i.e., 0.97 and 0.98, respectively followed by ANN 
 (R2 = 0.94 and r=0.97). For overall period, little glitches Ta
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were observed. Lower RMSE, RRSE and MAE values 
were observed for SVR (12.15%, 98.22% and 10.59%), 
ENET (15.91%, 128.65% and 14.52%) and RF (16.16%, 
130.46% and 13.71%) models. The corresponding d and E 
values were SVR (0.46 and 0.04), ENET (0.48 and -0.32) 
and RF (0.59 and -0.25). But the value of index of agree-
ment (d) was higher for RF (0.59), RIDGE (0.55) and 
BLASSO (0.54) and Nash–Sutcliffe efficiency (E) values 
went maximum up to 0.04, -0.25 and -0.32 for SVR, RF 
and ENET models. The coefficient of determination  (R2) 
and correlation coefficient (r) was highest for RF model 
i.e., 0.90 and 0.95, respectively followed by SVR  (R2 = 
0.85 and r = 0.92).

Tuning parameters of the machine learning models

Tuning parameters are used in statistical modeling, par-
ticularly in shrinkage methods like RIDGE regression, 
LASSO regression, or Elastic Net (Table 10). They control 

Table 9  Modified Index of 
agreement (d) and Modified 
Nash–Sutcliffe efficiency (E) 
values of different machine 
learning models

Model Modified Index of agreement
(d)

Modified Nash–Sutcliffe efficiency (E)

FEB MAR FM15 ALL FEB MAR FM15 ALL

ENET 0.49 0.45 0.30 0.48 -0.17 -0.22 -3.11 -0.32
MLR 0.28 0.44 0.25 0.28 -3.61 -1.29 -4.36 -3.70
RIDGE 0.36 0.49 0.31 0.55 -2.14 -0.40 -2.97 -0.39
BRIDGE 0.44 0.49 0.35 0.35 -0.12 -0.62 -2.35 -2.32
BLASSO 0.54 0.45 0.49 0.54 0.03 -0.32 -0.50 -0.48
LASSO 0.39 0.46 0.25 0.51 -1.81 -0.52 -4.32 -0.69
ANN 0.43 0.44 0.39 0.40 -1.38 -1.33 -1.79 -1.70
SVR 0.46 0.71 0.51 0.46 0.11 0.34 -0.54 0.04
RF 0.73 0.57 0.47 0.59 0.44 -0.28 -1.01 -0.25
kNN 0.58 0.62 0.47 0.53 0.08 -0.10 -1.06 -0.41
PCR 0.30 0.47 0.54 0.53 -3.28 -0.55 -0.56 -0.58

Table10  Tuning parameters of the machine learning models

Model Tuning Parameter FEB MAR FM15 ALL

ENET Fraction 0.045 0.455 0.528 0.0455
Lambda 0.002 0.002 1.986 0.003

MLR AIC 104.56 100.63 77.97 928.27
RIDGE Alpha 0 0 0 0

Lambda 11.497 93.260 1.873 187.381
BRIDGE NA NA NA NA NA
BLASSO NA NA NA NA NA
LASSO Alpha 1 1 1 1

Lambda 3.274 11.497 0.024 10
ANN Layer1 2 2 3 3
SVR Sigma 0.1 0.1 0.1 0.1

C 0.25 0.5 1 1
RF mtry 3 3 3 3
kNN k 11 2 3 6
PCR N Component 3 3 1 2

Table 8  Root relative square 
error (RRSE) and Mean 
absolute error (MAE) values 
of different machine learning 
models

Model Root relative square error (RRSE) (%) Mean absolute error (MAE)
(%)

FEB MAR FM15 ALL FEB MAR FM15 ALL

ENET 117.11 122.13 379.35 128.65 12.89 13.40 45.14 14.52
MLR 419.06 249.94 489.64 470.82 50.65 25.15 58.86 51.71
RIDGE 285.59 136.33 353.99 145.90 34.49 15.41 43.67 15.25
BRIDGE 117.32 161.57 300.51 305.46 12.33 17.81 36.84 36.48
BLASSO 99.86 128.34 151.88 157.65 10.64 14.48 16.53 16.30
LASSO 256.59 144.75 484.44 177.15 30.89 16.71 58.46 18.53
ANN 234.64 237.85 277.05 307.77 26.20 25.63 30.62 29.63
SVR 88.89 72.51 152.91 98.22 9.76 7.25 16.97 10.59
RF 62.24 130.65 247.62 130.46 6.20 14.10 22.10 13.73
kNN 90.36 138.29 219.68 142.21 10.10 12.09 22.64 15.54
PCR 387.74 153.93 170.13 158.63 47.06 16.98 17.15 17.38
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the amount of shrinkage applied to model coefficients or 
data values. Shrinkage helps create simpler, more inter-
pretable models and avoids overfitting when dealing with 
high-dimensional data or many predictors. The central 
point, often the mean, represents a prior belief about the 
data distribution. Shrinkage makes models more stable, 
robust, and better at generalizing to new data. It is valuable 
for limited data and problems with numerous predictors.

Conclusion

After rigorous investigation, key findings were emerged 
regarding the adequacy of various methods of machine 
learning for prediction of Karnal bunt for different time 
period taken under study. The most intriguing finding is that 
for each period, different models have performed well for 
disease prediction. The random forest regression (RF) for 
February month, support vector regression (SVR) for March 
month, SVR and BLASSO for 15 February to 15 March 
period and random forest for overall period surpassed the 
performance than other models. The suitability of these 
methods can be assessed for real time data and can be used 
for forewarning of Karnal bunt in Punjab.
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