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Abstract
This study aimed to investigate the vegetation production changes in Khuzestan province, Iran using MODIS data production, 
meteorological data, vegetation maps as well as topographic and field monitoring data in CASA model. The study area was 
divided into different climatic classes based on multivariate statistical method, so the vegetation of each climatic region was 
examined separately for changes in NPP values. Production changes due to degradation were calculated using the Miami 
model and subsequently, the rain use efficiency (RUE) and the light use efficiency (LUE) and correlation indices between the 
CASA model and ground data were determined. The results of this study  (R2) showed that the accuracy of this model varies 
depending on the type of climatic regions  (R2 = 0.80 to  R2 = 0.15). In different climatic regions, the rate of NPP changes 
(very humid 68 gC/m2 to ultra-dry 15 gC/m2) varies in rangeland types. The highest rate of vegetation production is observed 
seasonally in May. Degradation conditions also reduced RUE and LUE. However, in hyper-arid regions, adaptations of plants 
in some different species (Hammada Spp.) increase their efficiency compared to other vegetation types. The results showed 
the importance of vegetation and climate classification in vegetation production studies.
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Introduction

The United Nations (UN), through the sustainable develop-
ment goal 13 (SDG13), urged member nations to take urgent 
action to combat climate change and its impacts. One of 
the major impacts of climate change is decreasing vegeta-
tion and food production, which has implications for food 
security (UN, 2015). This issue is more apparent in arid and 
semi-arid lands, where there is a high vulnerability to unpre-
dictable weather change patterns and scarce resources. Many 
countries worldwide adopted mitigation measures through 
monitoring the Net Primary Production (NPP) estimation of 
plants in different climatic regions. This process facilitates 

fostering the process of decision making and policy making 
in resource allocation and foreseeing the potential treats to 
address before impacting the societies. As an example, NPP 
estimation and its comparison in different climatic regions 
have been used to inform the impact of climate change on 
vegetation production and, accordingly, an indicator for 
decision-making on future food security measures (UN, 
2020).

The NPP indicates the difference between photosynthesis 
or gross production and plant respiration, which can explain 
the state of the carbon cycle and how carbon dioxide is sta-
bilized (Ruimy et al. 1999). The NPP value is one of the 
most essential quantitative characteristics of the biosphere. 
Production rates of vegetation in any ecosystem are affected 
by climatic factors such as temperature(Han et al. 2023a, b), 
precipitation, soil conditions, solar energy, and living organ-
isms, which vary significantly on a seasonal and annual scale 
(Imhoff et al. 2004). Therefore, the amount of NPP is essen-
tial in terms of the amount of matter for the second levels 
of the food chain and a sign of ecosystem health, ecological 
balance, and a carbon fixation source (Costanza 2012).

Therefore, studying the relationship between climate 
change and the amount of NPP is one of the basic principles 
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of environmental studies (Wang et  al. 2022; Han et  al. 
2023a, b). In research studies of climate impact on NPP at 
various global or regional levels, the interaction between 
ecosystems and climate change has been studied (Cramer 
et al. 2001). The amount of NPP is also referred to as the 
rate of carbohydrate stabilization in plant tissues and is 
defined as the rate of gross primary production regardless 
of plant respiration. Changes in NPP values have been 
investigated from various aspects such as climate and spatial 
and temporal distribution (Chen et al. 1999) on different 
geographical scales. Although the amount of vegetation 
production and carbon stabilization can be measured through 
land surveys, there are many limitations in traditional 
methods for various reasons, such as their cost-effectiveness 
and time-consuming nature and the generalization of results 
in the large area.

Over the last two decades, technological advancements 
such as remote sensing and modeling addressed the cost-
effectiveness and tedious workflow challenges of land 
surveying in extended areas. Using such technological 
developments alongside field works allowed collecting 
more reliable ecological data and results (Khajeddin 1995; 
Darvish Sefat and Zare 1998; Bajgiran et al. 2008). In recent 
years, various models have been proposed to estimate the 
NPP, including models based on the carbon cycle and plant 
structure (He et al. 2018). These remote sensing models 
can be categorized into three groups of 1) statistical, 2) 
parametric, and 3) process-based, which make it possible 
to study spatial and temporal changes in NPP (Ruimy et al. 
1994). For instance, the CASA is a process-based model 
that considers the efficiency of solar energy absorption 
with the help of remote sensing and climate measurement 
data. This model estimates the NPP value on a regional and 
global scale. The CASA model uses monthly climatic data 
of temperature, precipitation, and sunshine hours of NDVI3 
data and land cover maps (Zhang et al. 2017). The CASA 
model as a process-oriented model has a remarkable ability 
to reveal temporal and spatial patterns combining climatic 
and terrestrial information simulates changes in the NPP 
situation (Deyong et al., 2009).

However, due to the need for soil moisture parameter 
and the limitations of its determination on various scales 
in the CASA model, further methods should be applied to 
ensure the reliability of results. For instance, in the case 
of the error measurement between observed and modeled 
NPP, light use efficiency (LUE) value can be calculated, 
and exchanging carbon dioxide between the atmosphere 
and carbon sequestration can be modeled (Bradford et al. 
2005; Yu et al. 2009). The LUE is an influential factor in 
converting absorbable energy into organic matter and is a 
critical factor in measuring NPP with the CASA model. 
Evaluation of the CASA model at the global (Field et al. 
1995) and regional (Peng et al. 2016) levels has shown that 

it is possible to estimate NPP values according to climatic 
conditions and plant type.

The effects of land degradation can also be examined at 
different stages of phenology (Dieguez & Paruelo 2017). 
According to observations (Fischer et al. 2014), the LUE 
value of plants was maximum in the optimal environ-
mental conditions. Still, factors such as temperature, 
humidity, pests and diseases, soil nutrients, and genetic 
and morphological characteristics of plants (i.e., leaf area 
index) greatly impacted it. Therefore, it is not the same 
amount in different plant types. Yaghmaei et al. (2021) 
studied the estimation of NPP in the climatic regions of 
the Central Zagros of Iran using the CASA model and 
meteorological data. NPP, LUE, and (rain use efficiency) 
RUE were extracted from MODIS images and climatic 
data using CASA and Miami models. The spatial distri-
bution of NPP and RUE showed that NPP and photosyn-
thetic efficiency in degraded rangelands with poor and 
very poor conditions presented a greater decrease than 
the rangelands with a better condition. Some studies have 
also investigated the extent of NPP changes in a part of 
the African continent (Fu et al. 2023), China (He et al. 
2023; Chen et al. 2023), Mongolia (Ke et al. 2022), and 
Tibetan Plateau (Zha et al. 2022).

Due to the vastness of the rangelands, their impass-
ability, and the speed of vegetation changes, the use of 
field methods alone cannot be used, and the modeling of 
vegetation in different climates and conditions of range-
lands also needs to be investigated. On the other hand, the 
use of global models of net primary production in arid 
and semi-arid regions of Iran has some limitations (Yuan 
et al. 2006), and vegetation modeling with the help of 
MODIS images in some arid regions is not appropriately 
accurate (Gao et al. 2015). Iran is located in the Middle 
East between Caspian Sea and Oman Sea. The Alborz (in 
the north) and Zagros (in the west) ranges have created 
diverse climates in the country, so that the highest average 
annual rainfall is observed in Anzali port (2000 mm) and 
the lowest in Yazd (60 mm).

The changes in climatic regions play an important role 
in vegetation production (Han et al. 2023a, b), but due to 
the lack of sufficient land information in different climates 
of Iran, the modeling of NPP using the CASA model in 
various geographical conditions has not been done. Climate 
classification in studies can also play a significant role in the 
possibility of examining the level of NPP. Therefore, study-
ing an area with high climatic diversity and accurate field 
data can illustrate the potential of modeling NPP.

Khuzestan province has different height altitudes and 
diverse climates from very humid and cold to ultra-dry, 
which is due to being located next to the Zagros ranges and 
plains. The study area is also located in a coastal area which 
related studies have been rarely performed in similar areas. 
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This climate condition has led to the emergence of various 
plant species with different vegetative forms that have good 
to very poor rangeland status. Therefore, the main purpose 
of this study is to investigate and model the NPP in plant 
types in the rangelands of Khuzestan province with the help 
of MODIS images and to evaluate the efficiency of plant 
photosynthesis in different climates of this region. The pre-
sent study was conducted specifically to map NPP of Khuz-
estan province with the CASA model over a 21-year period 
from 2000–2021 along with its accuracy evaluation adopting 
field data on the scale of the climate zones.

Materials and methods

Study area

The study area located in the latitude 47° 41´ to 50° 39´ 
and latitude 29° 58 ´ to 33° 04´and covers an area of about 
64,236 square kilometers in Khuzestan province, Iran. 
This region includes different climatic regions in south-
western Iran (Fig. 1). The region's average annual rainfall 
is 285 mm, where the air dryness increases from the north 
to the south by reducing the altitude. The highest and low-
est recorded rainfall observed in Izeh and Abadan mete-
orological stations are 614 mm and 150 mm, respectively. 
The northern parts have a humid climate, but the southern 
parts have a hot and dry climate. The average annual tem-
perature in this region is 27.6 °C, the absolute maximum 
is 53.7 °C, and the absolute minimum is -8.4 °C. In this 
area, about 500 hectares of vegetation are forests and 2.5 
million hectares are rangelands. About 95% of the forests 
are Oak and the rest are other trees. In the rangelands of 
the province, 10% is good, 30% is poor and the rest have 
been degraded.

Meteorological data

In the present study, the adopted meteorological stations’ 
data relating to rain gauges, climatology, and synoptic 
were extracted for studied province and neighboring 
regions. The data used in the CASA model include monthly 
temperature, precipitation, and hours of sunshine. The 
amount of solar energy was calculated using the sum of 
the hours of sunshine recorded at synoptic meteorological 
stations and the Angstrom- Prescott relationship (Alamdari 
et al., 2013). To prepare climatic maps, digital elevation 
models (DEM) and the relationship between climatic 
factors and topography were used.

Vegetation field data

The study intended to evaluate the amount of vegetation 
production. So, after homogenizing the areas from the soil 
and vegetation points of view, all rangeland vegetation 
productions in plant types with different rangeland 
conditions was measured in 4-pixel method in 2021 
(Khaleghi and Aeinebeygi, 2016). In each plant type, 35 
sites were determined, and at an area of 500 × 500  m2 
with 8 plots of 10 × 10  m2, the percentage of perennial 
shrub was measured, and the annual production amount 
of all plant species was cut and weighed in 1 × 2  m2 plots 
(Yeganeh et al., 2014). In perennial plants, only the current 
year's growth and in the case of wheat and annual plants, 
the entire harvested biomass on the ground was cut off. 
The sampling level was determined by considering the 
resolution of the MODIS satellite with 250*250  m2, 
according to Eq. 1, where A is the sampling level, P is 
the pixel resolution of the satellite in meter, and L is the 
acceptable error (McCoy, 2005).

The condition of rangelands in Khuzestan province 
was adjusted using the 4-factor method, and the relevant 
forms were evaluated (Khaleghi & Aeinebeygi, 2016). In 
the 4-factor method, the factors of soil (with a score of 
0–20), percentage of vegetation (with a score of 0–10), 
plant composition (with a score of 0–10), and vigor and 
freshness (with a score of 0–10) were evaluated. The sum 
of the scores reflecting the status of the rangeland was 
categorized. At a score above 45 degrees, the condition of 
the rangeland was excellent, 45–38 was good, 37–31 was 
moderate, 30–21 was poor, and less than 20 was very poor 
(Friedel, 1991). In Khuzestan province, the situation of 
rangelands was measured to be good to very poor.

Satellite data

In the present study, to determine NPP, the MODIS 
satellite, Terra sensor, were used, which could be 
downloaded from /https:// earth explo rer. usgs. gov (Behnke 
& Doescher, 2015). The amount of NPP in two spatial 
scales were provided with MODIS images with a resolution 
of 250*250  m2. MODIS data included MOD13Q1 
products available on a 16-day scale (2000–2021). Using 
remote sensing, the relevant processing and calibration 
were performed (Pack, 2009), which included geometric 
correction on MOD13Q1 products (Antunes et al., 2011). 
Measurement of NDVI was performed on a monthly basis 
by averaging 16-day images (Li et al., 2015). The NDVI 
index was calculated using Eq. 2.

(1)A = P × (1 + 2L)

https://earthexplorer.usgs.gov
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Fig. 1  Location of the study area in the country and on rangeland type map

In Eq. 2, �NIR is the amount of reflection in the near-infrared 
band with a wavelength of 867–841 nm in the band 2 of 
MODIS and �red is as a reflection value in the red band with a 
wavelength of 670–620 nm in the band 1 of MODIS (Carlson 
& Ripley, 1997).

The prediction of NPP using CASA model

To implement the CASA model, meteorological parameters 
including precipitation, temperature, number of sunshine 
hours, NDVI index, and active photosynthetic adsorption 
ratio in 0.4—0.7 nm wavelength were considered. In doing 
so, land use and vegetation map (250,000 scale), which were 
validated by field observation, were used. The pixel size of 
all climate maps was determined to be 250*250  m2 in line 
with the images of NDVI Index (Hua et al., 2014). The NPP 
for different vegetation types was determined separately. The 
relationship between the measured and estimated NPP in the 

(2)NDVI =
�NIR − �red

�NIR + �red

study sites was calculated using linear regression analysis, 
and the value of the coefficient of explanation and its statisti-
cal significance were determined. The Eqs. 3 and 4 are used 
in the CASA model where NPP, Absorbed Photosynthetically 
Active Radiation (APAR), and ε are net primary production, 
absorbed photosynthetically active radiation and light use 
efficiency.

Equations  5–12 show the calculation of Fraction of 
Absorbed Photosynthetically Active Radiation (FPAR) and the 
LUE. In Eqs. 5, 6, and 8, FPAR and SOL show the fraction of 
absorbed photosynthetically active radiation and the amount 
of sunlight, respectively. In Eqs. 6 and 8, the values of FPAR 
min and FPAR max are 0.001 and 0.95, respectively, and the 
FPAR value was calculated according to the relationship 5 and 
α where α was determined as the value of 0.475 based on the 
average of FPAR1 and FPAR2 (Yu et al. 2009).

(3)NPP(x, t) = APAR(x, t) × �(x, t)

(4)APAR(x, t) = SOL(x, t) × FPAR(x, t) × 0.5
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Calculating the LUE

Determining the amount of effective solar radiation based on 
the thermodynamics law and the ratio of the output energy 
(NPP value) to the input (solar energy) is performed as the 
efficiency of light consumption (Eq. 18). The LUE value is 
considered as the line slope in the regression relationship 
between APAR (value x) and observational NPP (value y).

Effects of climatic and human factors on NPP

Vegetation type and cover in each region is the result of 
the interaction of climate and human activities. In the 
present study, the CASA model was used to measure the 
actual NPP using climatic and vegetative parameters.the 
Miami model was used to calculate potential NPP, which 
with the help of the least sum of regression squares, the 
amount of changes of potential NPP was calculated (Zhou 
et al. 2014).

The potential of NPP

The Miami model was used to determine the potential of 
NPP in the region. This model was first presented by Lieth at 
the Miami Conference (1972). In this model, with the help of 
meteorological data such as precipitation and temperature, 
the potential of NPP was determined in order to eliminate 
the effect of humans and other organisms on NPP. This 
model can be used for different climate conditions (Lieth 
1975). Equation 19 shows potential NPP.

where NPP is the amount of the potential of NPP, V is the 
average annual actual evapotranspiration, L is the average 
annual potential evapotranspiration, r is the total annual 
precipitation and t is the average annual temperature.

(16)
�(x) =

(

0.651 × I(x)3 − 77.1 × I(x)2 + 17920 × I(x) + 492390
)

× 10
−6

(17)I(X) =
∑12

i=1

(

Tai

5

)1.514

(18)LUE = NPP∕
APAR

(19)NPP = 3000 ×
[

1 − e0.0009695(v−20)
]

V =
1.05 × r

√

1 + (1 + 1.05 × r∕L)

L = 3000 × 25t + 0.05t3

In Eqs.  3 and 9 εmax indicates the maximum light 
utilization efficiency and ε is the light utilization efficiency. 
The top t value is the average monthly temperature at a 
time of year when the NDVI index has the highest value. 
Tε1 is the temperature at which the plant can perform its 
photosynthetic activity, Tε2 is the temperature at which 
the plant can make effective use of sunlight, and Wε is 
water stress coefficient in the effective use of radiation. 
The amount of Wε is determined by the moisture holding 
capacity of the soil, which was calculated based on the 
actual evaporation ratio on the potential evaporation. In the 
Eqs. 13, 14, and 15, E is the rate of evaporation in the region, 
Ep is the regional potential evapotranspiration, Eo is the 
local potential evapotranspiration, R is the effective radiation 
of the sun and I is the annual heat index (Rohli & Vega, 
2013). Therefore, the monthly NPP was calculated using 
Eqs. 3–17 and the annual values were obtained by summing 
the monthly values.

(5)FPAR(x, t) = � × FPARNDVI + (1 − �) × FPARSR

(6)
FPAR(x, t) =

(

NDVI(x, t) − NDVImin

)

×
(

FPARmax − FPARmin

)

(

NDVImax − NDVImin

)

+ FPARmin

(7)SR =

(

1 + NDVI(x, t)

1 − NDVI(x, t)

)

(8)

FPAR(x, t) =

(

SR(x, t) − SRmin

)

×
(

FPARmax − FPARmin

)

(

SRmax − SRmin

) + FPARmin

(9)�(x, t) = T
�1(x, t) × T

�2(x, t) ×W
�
(x, t) × �max

(10)T
�1(x, t) = 0.8 + 0.02Topt(x) − 0.0005 ×

[

Topt(x)
]2

(11)
T
�2(x, t) = 1.184∕

{

1 + ���

[

0.2 × (Topt(x) − 10 − T(x, t))
]}

× 1∕
{

1 + ���

[

0.3 × (−Topt(x) − 10 − T(x, t))
]}

(12)W
�
(x, t) = 0.5 + 0.5 ×

[

E(x, t)

P(x, t)

]

(13)

E(x, t) =

{

P × R(x, t) ×
[

P2 + (R(x, t))2 + P × R(x, t)
]}

{

[P + R(x, t)] ×
[

P2 + R(x, t)
]}

(14)P(x, t) =
[

E(x, t) + E0(x, t)
]

∕2

(15)E0(x, t) = 16 ×
[

10×T(x,t)
/

I(x)

]�(x)



1362 International Journal of Biometeorology (2024) 68:1357–1370

The investigation of RUE index

In order to determine the effects of rainfall and rangeland 
degradation on vegetation production, the RUE index was 
calculated based on the ratio between NPP values to the 
amount of rainfall received. For this purpose, the average 
NPP (annual) map was divided by the average annual rainfall 
(2000–2016) over a period of 17 years. It was extracted for 
different vegetation types (Zhang et al. 2014). Equation 20 
shows rain use efficiency.

Results

Evaluation of the CASA model in the study of NPP

Examination of the correlation between ground data and 
CASA model showed that there is a relatively good rela-
tionship in the study area between observed and simulated 

(20)RUE =
NPP

Rain

data (Tables 1, 2, 3 and 4). According to the results, the 
correlation between the measured data and the CASA model 
varies depending on the type of climate conditions. The 
highest correlation was observed in very humid climate and 
the lowest correlation was observed in ultra-dry climate. 
According to the observations, the correlation between 
CASA model and NPP was 0.81 to 0.15 in very humid to 
hyper-arid regions. In very humid regions, the highest corre-
lation between vegetation production and CASA model was 
in Amygdalus scoparia (0.81), while there was a decrease in 
rangeland types compared to forest areas.

In the humid climate region, the correlation between ter-
restrial data and the CASA model was reduced compared to 
the very humid climate. The highest correlation was found 
in Amygdalus scoparia (0.79) and the lowest was observed 
in Astragalus Spp.–Prennial grasses(0.61). The correla-
tion between plant types and CASA model decreased with 
climate drying. Thus, in semi-humid climates, Amygdalus 
scoparia (0.75) was calculated as the highest and Astragalus 
Spp.—Prennial grasses (0.43) as the lowest in Mediterra-
nean climates, Quercus brantii (0.74) was calculated as the 
highest and Stipa Spp. – Helianthemum Spp. (0.38) as the 

Table 1  The values of NPP, 
RUE, LUE, correlation between 
terrestrial data and CASA 
model  (R2) and percentage of 
NPP potential used in plant 
types of humid climate

NO Vegetation type Life form 
(range 
condition)

NPP
(gC/m2)

LUE RUE R2 NPP Change

1 Amygdalus scoparia Forest 65 0.139 0.130 0.79 39.6
2 Amygdalus scoparia—Pistacia atlanica Forest 60 0.128 0.120 0.71 35.7
3 Amygdalus scoparia—Pistacia khinj Forest 61 0.13 0.122 0.72 36.3
4 Amygdalus scoparia—Daphne Spp Forest 62 0.132 0.124 0.73 36.9
5 Cerasus Mahaleb – Cotoneaster Spp Forest 59 0.126 0.118 0.70 35.2
6 Lonicera nummularia—Cerasus mahale Forest 60 0.128 0.112 0.71 35.7
7 Pistacia atlantica—Cerasus mahaleb Forest 62 0.132 0.124 0.73 36.9
8 Lonicera nummularia—Cerasus mahale Forest 61 0.13 0.122 0.72 36.3
9 Pistacia atlantica—Cerasus mahaleb Forest 63 0.135 0.126 0.74 37.5
10 Pistacia atlantica—Fraxinus rotund Forest 60 0.128 0.120 0.71 35.7
11 Pistacia khinjuk Forest 58 0.124 0.116 0.78 39
12 Quercus brantii Forest 57 0.122 0.114 0.76 38
13 Quercus brantii—Acer monspessulanu Forest 61 0.13 0.122 0.72 36.3
14 Quercus brantii—Amygdalus scoparia Forest 58 0.124 0.116 0.69 34.6
15 Quercus brantii—Amygdalus Spp Forest 61 0.13 0.122 0.72 36.3
16 Quercus brantii—Ficus Spp Forest 63 0.135 0.126 0.74 37.5
17 Quercus brantii—Fraxinus rotundifo Forest 62 0.132 0.124 0.73 36.9
18 Quercus brantii—Pistacia atlantica Forest 64 0.137 0.128 0.76 38.1
19 Quercus brantii—Pistacia khinjuk Forest 62 0.132 0.124 0.73 36.9
20 Ziziphus spina christi Forest 57 0.122 0.114 0.79 39.5
21 Astragalus Spp.- Prennial grasses Range(Fair) 51 0.109 0.102 0.60 30.4
22 Astragalus Spp.– Stipa Spp Range(Fair) 55 0.118 0.110 0.65 32.8
23 Astragalus Spp.– Gundelia Spp Range(Fair) 53 0.113 0.106 0.63 31.6
24 Astragalus Spp.– Daphnae Spp Range(Fair) 65 0.139 0.130 0.77 38.7
25 Astragalus Spp.– Prangus Spp Range(Fair) 61 0.13 0.122 0.72 36.3
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lowest in semi-arid climates, Quercus brantii (0.40) was cal-
culated as the highest and Cornulaca Spp.- Annual grasses 
(0.30) as the lowest in dry climates, Popolus Spp.–Tamarix 
Spp. (0.35) was calculated as the highest and Scirpus Spp. 
(0.21) as the lowest, and in very arid climates, Phragmetis 
Spp. – Tamarix Spp. (0.33) was calculated as the highest 
and Halocnemum Spp.–Aeluropus Spp. (0.15) as the lowest.

NPP rate

The annual value of NPP in Khuzestan province was 0 
to 114.6 (gC/m2), which showed a downward trend from 
east to west and north to south (Fig. 2). The NPP map 
showed that vegetation production started in March and 
peaked in May (0 to 47.9 (gC/m2), but from June vegeta-
tion production declined and stopped. According to the 
results (Fig. 3), The amount of NPP in Amygdalus sco-
paria (68 gC/m2) was the highest in very humid climates 
and then reached the lowest in hyper-arid regions as in 
Halocnemum Spp.–Aeluropus Spp. (15 gC/m2) the lowest 
NPP was observed. In general, the NPP decreased with 
decreasing humidity and rainfall. Therefore, the amount of 

NPP in plant types was observed as follows: in very humid 
climates, the lowest and highest NPP levels were found in 
Amygdalus scoparia (68 gC/m2) and Acantholimon Spp. 
– Astargalus Spp. (59 gC/m2), respectively. In the humid 
region, the highest amount of NPP was found in Amyg-
dalus scoparia (65 gC/m2) with tree vegetative form and 
the lowest in Astragalus Spp.- Prennial grasses (51 gC/
m2) with plant vegetative form. In the semi-humid region, 
compared to the humid one, the amount of production was 
reduced so that the NPP reached 63 gC/m2 in the Amygda-
lus scoparia to 63 gC/m2 in the Annual grasses – Annual 
forb.With the decrease of humidity in Mediterranean cli-
mate, the amount of NPP in forested areas with tree cover 
decreased by about 9%, so that in Quercus brantii, the NPP 
value was about 54 gC/m2, which by changing the vegeta-
tive form from tree to grass in Annual grasses—Annual 
forbs decreased to 25 gC/m2.With decreasing humidity 
in the semi-arid region, the density of the tree vegetative 
form was observed relative to the rangeland and also the 
amount of NPP was observed from 49 gC/m2 (Quercus 
brantii) to 18 gC/m2 (Annual grasses—Annual forbs). In 
arid area, the vegetative form of the tree was only Popolus 

Table 2  The values of NPP, 
RUE, LUE, correlation between 
terrestrial data and CASA 
model  (R2) and percentage of 
NPP potential used in plant 
types of semi-humid climate

Vegetation type Life form 
(range 
condition)

NPP
(gC/m2)

LUE RUE R2 NPP Change

1 Amygdalus scoparia Forest 63 0.135 0.158 0.74 37.5
2 Amygdalus scoparia—Pistacia khinjuk Forest 59 0.126 0.148 0.70 35.2
3 Amygdalus scoparia—Acer monspessul Forest 58 0.124 0.145 0.69 34.6
4 Amygdalus scoparia—Daphne Spp Forest 55 0.118 0.138 0.65 32.8
5 Amygdalus scoparia—Ficus Spp Forest 54 0.115 0.135 0.64 32.2
6 Cerasus mahaleb – Cotoneaster Spp Forest 55 0.118 0.138 0.65 32.8
7 Lonicera nummularia—Cerasus mahale Forest 53 0.113 0.133 0.63 31.6
8 Pistacia atlantica—Fraxinus rotund Forest 58 0.124 0.145 0.69 34.6
9 Pistacia khinjuk Forest 60 0.128 0.150 0.71 35.7
10 Quercus brantii Forest 61 0.13 0.153 0.72 36.3
11 Quercus brantii—Crataegus Spp Forest 59 0.126 0.148 0.70 35.2
12 Quercus brantii—Acer monspessulanu Forest 57 0.122 0.143 0.67 34
13 Quercus brantii—Amygdalus scoparia Forest 54 0.115 0.135 0.64 32.2
14 Quercus brantii—Amygdalus Spp Forest 55 0.118 0.138 0.65 32.8
15 Quercus brantii—Ficus Spp Forest 53 0.113 0.133 0.63 31.6
16 Quercus brantii—Fraxinus rotundifo Forest 57 0.122 0.143 0.67 34
17 Quercus brantii—Pistacia atlantica Forest 56 0.12 0.140 0.66 33.4
18 Quercus brantii—Pistacia khinjuk Forest 53 0.113 0.133 0.63 31.6
19 Ziziphus spina christi Forest 52 0.111 0.130 0.73 36.5
20 Annual grasses—Annual forbs Range(Poor) 30 0.064 0.075 0.53 26.5
21 Astragalus Spp.– Daphnae Spp Range(Fair) 58 0.124 0.145 0.69 34.6
22 Astragalus Spp.– Gundelia Spp Range(Fair) 48 0.103 0.120 0.57 28.6
23 Astragalus Spp.– Prangus Spp Range(Fair) 51 0.109 0.128 0.60 30.4
24 Astragalus—Prennial grasses Range(Fair) 36 0.077 0.090 0.42 21.5
25 Astragalus Spp. – Stipa Spp Range(Fair) 56 0.12 0.140 0.66 33.4
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Spp.–Tamarix Spp. with the NPP amount of 30 gC/m2, 
which by changing the vegetative form and condition of 
the pasture was reduced to 12 gC/m2 in Annual grasses—
Annual forbs. In the hyper-arid regions, the vegetation pro-
duction showed a downward trend so that the NPP value 
was found from 32 gC/m2 (Hammada Spp.) to 11 gC/m2 
(Suaeda Spp.–Seidlitzia Spp.).

Investigation of light consumption 
and precipitation in plant types

Calculation of LUE and RUE indices showed that the 
efficiency of consumption in plant types is not the same 
in different climates, so that in a very humid area, the 
efficiency of light consumption and the effect of pre-
cipitation were higher than ultra-dry. In the very humid 
area, in Amygdalus scoparia the highest (0.145) and in 
Suaeda Spp. – Seidlitzia Spp. the lowest (0.035) LUE 
value was observed. The highest and lowest RUE values 
were found in Amygdalus scoparia and Suaeda Spp.– Sei-
dlitzia Spp. The LUE index decreased with decreasing 
rainfall in different climates, so that the LUE value range 
was from 0.145 in Amygdalus scoparia to 0.059 in Astra-
galus Spp.–Gundelia Spp. in very humid area, from 0.139 
in Amygdalus scoparia to 0.102 in Astragalus Spp.- Per-
ennial grasses in humid area, from 0.135 in Amygda-
lus scoparia to 0.064 in Annual grasses—Annual forbs 

in semi-humid area, from 0.119 in Quercus brantii to 
0.054 in Annual grasses—Annual forbs in Mediterranean 
area, from 0.108 in Quercus brantii to 0.039 in Annual 
grasses—Annual forbs in semi-dry area, from 0.064 in 
Popolus Spp.–Tamarix Spp. to 0.026 in Annual grasses—
Annual forbs in dry area and from 0.068 in Hammada 
Spp. to 0.038 in Suaeda Spp.– Seidlitzia Spp. in ultra-dry 
area.

RUE values varied depending on the type of vegetation, 
the climate of the region as well as the topographic con-
ditions. So that more RUE values were observed in very 
humid areas than dry and ultra-dry ones. In very humid 
climates, the RUE index was higher in forest areas than 
in rangelands. The RUE value range was from 0.114 in 
Amygdalus scoparia to 0.075 in Astragalus Spp.–Gun-
delia Spp.in very humid area, from 0.139 in Amygdalus 
scoparia to 0.102 in Astragalus Spp.- Perennial grasses 
in humid area, from 0.158 in Amygdalus scoparia to 
0.075 in Annual grasses—Annual forbs in semi-humid 
area, from 0.19 in Quercus brantii to 0.085 in Annual 
grasses—Annual forbs in Mediterranean area, from 0.196 
in Quercus brantii to 0.075 in Annual grasses—Annual 
forbs in semi-dry area, from 0.177 in Popolus Spp.–Tam-
arix Spp. to 0.071 in Annual grasses—Annual forbs in dry 
area and from 0.246 in Hammada sp. to 0.138 in Suaeda 
Spp. – Seidlitzia Spp. in ultra-dry area.

Table 3  The values of NPP, 
RUE, LUE, correlation between 
terrestrial data and CASA 
model  (R2) and percentage of 
NPP potential used in plant 
types of Mediterranean climate

Vegetation type Life form 
(range 
condition)

NPP
(gC/m2)

LUE RUE R2 NPP Change

1 Quercus brantii Forest 56 0.119 0.190 0.74 30
2 Amygdalus scoparia Forest 55 0.118 0.184 0.74 30.6
3 Amygdalus scoparia—Pistacia atlantica Forest 51 0.109 0.170 0.60 28.4
4 Amygdalus scoparia—Pistacia khinj Forest 53 0.113 0.177 0.63 29.5
5 Amygdalus scoparia—Acer monspessul Forest 52 0.111 0.174 0.61 28.9
6 Amygdalus scoparia—Ficus Spp Forest 54 0.115 0.180 0.64 30
7 Amygdalus Spp.—Quercus brantii Forest 53 0.113 0.177 0.63 29.5
8 Cerasus mahaleb – Cotoneaster Spp Forest 51 0.109 0.177 0.60 28.4
9 Quercus brantii—Acer monspessulanu Forest 51 0.109 0.170 0.60 28.4
10 Quercus brantii—Amygdalus scoparia Forest 53 0.113 0.177 0.63 29.5
11 Quercus brantii—Pistacia atlantica Forest 55 0.118 0.184 0.65 30.6
12 Quercus brantii—Pistacia khinjuk Forest 52 0.111 0.174 0.61 28.9
13 Ziziphus spina christi Forest 54 0.115 0.180 0.67 30
14 Annual grasses—Annual forbs Range(Fair) 25 0.054 0.084 0.69 13.9
15 Astragalus Spp.– Bromus Spp Range(Poor) 35 0.075 0.117 0.41 19.5
16 Astragalus Spp.– Daphnae Spp Range(Fair) 48 0.103 0.160 0.57 26.7
17 Astragalus Spp.– Gundelia Spp Range(Fair) 45 0.096 0.150 0.53 25
18 Astragalus Spp.– Peganum Spp Range(Poor) 38 0.081 0.127 0.45 21.2
19 Astragalus Spp. – Stipa Spp Range(Fair) 41 0.088 0.137 0.48 22.8
20 Stipa Spp.– Helianthemum Spp Range(Poor) 32 0.069 0.107 0.38 17.8
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Table 4  The values of NPP, RUE, LUE, correlation between terrestrial data and CASA model  (R2) and percentage of NPP potential used in 
plant types of semi-dry, dry, and ultra-dry climate

Climate Type Vegetation type Life form (range 
condition)

NPP
(gC/m2)

LUE RUE R2 NPP Change

1 semi-dry Amygdalus scoparia—Ficus Spp Forest 46 0.098 0.184 0.54 38.4
2 semi-dry Amygdalus Spp.—Quercus brantii Forest 45 0.096 0.180 0.53 37.5
3 semi-dry Amygdalus Spp Forest 47 0.100 0.188 0.68 39.2
4 semi-dry Quercus brantii Forest 49 0.105 0.196 0.65 40.9
5 semi-dry Quercus brantii—Acer monspessulanu Forest 47 0.100 0.188 0.55 39.2
6 semi-dry Quercus brantii—Amygdalus scoparia Forest 43 0.092 0.172 0.51 35.9
7 semi-dry Quercus brantii—Pistacia atlantica Forest 44 0.094 0.176 0.52 36.7
8 semi-dry Ziziphus spina christi Forest 40 0.086 0.160 0.47 33.4
9 semi-dry Annual grasses—Annual forbs Range(Fair) 18 0.039 0.072 0.50 15
10 semi-dry Astragalus – Bromus Spp Range(Poor) 28 0.06 0.112 0.33 23.4
11 semi-dry Astragalus Spp. – Centaurea Spp Range(Poor) 36 0.077 0.144 0.42 30
12 semi-dry Astragalus Spp.– Daphnae Spp Range(Fair) 44 0.094 0.176 0.52 36.7
13 semi-dry Astragalus Spp. – Euphorbia Spp Range(Fair) 41 0.088 0.164 0.48 34.2
14 semi-dry Astragalus Spp.– Gundelia Spp Range(Fair) 43 0.092 0.172 0.51 35.9
15 semi-dry Astragalus Spp.– Peganum Spp Range(Fair) 38 0.081 0.152 0.45 31.7
16 semi-dry Astragalus Spp. – Stipa Spp Range(Fair) 37 0.079 0.148 0.44 30.9
17 semi-dry Cornulaca Spp.- Annual grasses Range(Poor) 26 0.056 0.104 0.30 21.7
18 semi-dry Gymnocarpus Spp.– Astragalus Spp Range(Poor) 32 0.069 0.128 0.38 26.7
19 semi-dry Stipa Spp.– Helianthemum Spp Range(Fair) 29 0.062 0.116 0.55 24.2
20 dry Popolus Spp.– Tamarix Spp Forest 30 0.064 0.177 0.35 30
21 dry Annual grasses—Annual forbs Range(Poor) 12 0.026 0.071 0.30 12
22 dry Artemisia sieberi – Cornulaca Spp Range(Poor) 22 0.047 0.130 0.26 22
23 dry Artemisia sieberi – Gymnocarpus Spp Range(Poor) 26 0.056 0.153 0.31 26
24 dry Artemisia sieberi – Scariola Spp Range(Poor) 23 0.049 0.136 0.27 23
25 dry Astragalus Spp.– Euphorbia Spp Range(Fair) 25 0.054 0.148 0.30 25
26 dry Astragalus Spp.- Prennial grasses Range(Fair) 23 0.049 0.136 0.27 23
27 dry Astragalus Spp. – Stipa Spp Range(Poor) 20 0.043 0.118 0.24 20
28 dry Atriplex Spp. – Salsola Spp Range(Poor) 28 0.06 0.165 0.33 28
29 dry Cornulaca Spp.- Annual grasses Range(Poor) 26 0.056 0.153 0.31 26
30 dry Cornulaca Spp.– Artemisia Spp Range(Poor) 24 0.052 0.142 0.28 24
31 dry Gymnocarpus Spp.– Astragalus Spp Range(Poor) 22 0.047 0.130 0.26 22
32 dry Halocnemum Spp. – Aeluropus Spp Range(Poor) 27 0.058 0.159 0.32 27
33 dry Halocnemum Spp.– Salsola Spp Range (Very poor) 20 0.043 0.118 0.24 20
34 dry Hammada Spp Range(Poor) 29 0.062 0.171 0.34 29
35 dry Phragmetis Spp. – Tamarix Spp Range(Poor) 16 0.035 0.095 0.30 16
36 dry Platychaete Spp. – Cymbopogon Spp Range(Poor) 24 0.052 0.142 0.28 24
37 dry Salsola Spp.– Helianthemum Spp Range(Poor) 19 0.041 0.112 0.22 19
38 dry Salsola Spp Range(Poor) 20 0.043 0.118 0.24 20
39 dry Scirpus Spp Range(Poor) 18 0.039 0.106 0.21 18
40 dry Seidlitzia Spp Range(Poor) 20 0.043 0.118 0.38 20
41 dry Stipa Spp.– Bromus Spp Range(Poor) 15 0.032 0.089 0.35 15
42 dry Stipa Spp.– Helianthemum Spp Range(Poor) 19 0.041 0.112 0.22 19
43 dry Suaeda Spp.– Seidlitzia Spp Range(Poor) 27 0.058 0.159 0.32 27
44 ultra-dry Halocnemum Spp. – Aeluropus Spp Range (Very poor) 23 0.053 0.192 0.15 31.3
45 ultra-dry Halocnemum Spp.– Salsola Spp Range(Poor) 30 0.063 0.230 0.30 37.5
46 ultra-dry Hammada Spp Range(Poor) 32 0.068 0.246 0.31 40
47 ultra-dry Phragmetis Spp.– Tamarix Spp Range(Fair) 28 0.059 0.215 0.33 35
48 ultra-dry Scirpus Spp Range(Poor) 20 0.042 0.153 0.29 25
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Potential of NPP

The produced map showed that the potential of NPP in this 
region is between 51 and 250 gC/m2.Therefore, the differ-
ence between NPP and climatic potential varied depend-
ing on climatic conditions and topography.According to 
the obtained results (Fig. 4), the difference between the 
values in very humid climates was 27.2% (Amygdalus sco-
paria) to 14% (Astragalus Spp.–Gundelia Spp.) in very 
humid climate conditions, 39.6% (Amygdalus scoparia) up 
to 30% (Astragalus Spp.–Gundelia Spp.)in humid climate 
conditions, 37.5% (Amygdalus scoparia) to 26% (Annual 
grasses—Annual forbs) in semi-humid climate conditions, 

30% (Quercus brantii) to 13.9% (Annual grasses—Annual 
forbs) in Mediterranean climate conditions, 38% (Quercus 
brantii) to 15% (Annual grasses—Annual forbs) in semi-arid 
climate conditions, 30% (Popolus Spp.- Tamarix Spp.) to 
12% (Annual grasses—Annual forbs) in dry climate condi-
tions and40% (Hammada sp.) up to 25% (Scirpus Spp.) in 
ultra-dry climate conditions. Many changes were observed 
in plant types depending on the type of vegetative form.

Discussion

Although NPP at the level of arid climates in Central 
Iran can not be assessed with MODIS sensor data such as 
MOD17A3H, the results of the present study showed that 
this feature can be modeled with the help of MODIS images. 
However, the degree of correlation between terrestrial and 
simulated data was different based on climatic conditions 
and plant type (Tables  1, 2, 3 and 4). In humid areas, 
there was the highest correlation between terrestrial and 
simulated data, which can be attributed to the existence of 
suitable conditions in terms of soil moisture and soil humus 
(Churkina et al. 1999; Frolking et al. 1998) (Table 1). In 
these areas, the rate of leaf area index and photosynthesis, 
and consequently the amount of NPP, increases. With soil 
dryness, the amount of leaf area index, photosynthetic 
reflection of plants and its relationship with plant indices 
(NDVI) and simulated models such as CASA also 
decrease while it has been proven in various observations 
(Coughenour 1999; Hunt Jr et al. 2003). In addition, the 
comparison of plant types in a similar climate showed 
that the production of plant types with medium rangeland 
condition has a higher correlation with CASA model than 
poor rangeland condition which has been stated by Hadian 
et al. (2019) due to reduced fertility, leaf area and greenness. 
Temperature, precipitation and solar energy factors play 
major role in plant production (Yaghmaei et al. 2020). Zarei 
et al (2021) also presented that temperature, precipitation 
and evapotranspiration effect on the estimation of NPP. At 
the beginning of the season, there is a temperature limit on 
plant growth, so compared to the middle of the growing 
season, the vegetation production rate was lower (Table 1). 
As the weather warms, the amount of NPP also increases, 
so that in June it rises from 0–47 gC/m2 to 0–11 gC/m2. By 
reducing the amount of soil moisture, vegetation production 

Table 4  (continued)

Climate Type Vegetation type Life form (range 
condition)

NPP
(gC/m2)

LUE RUE R2 NPP Change

49 ultra-dry Seidlitzia Spp Range(Poor) 21 0.044 0.161 0.28 26.3
50 ultra-dry Suaeda Spp.– Seidlitzia Spp Range(Poor) 11 0.038 0.138 0.26 22.5

Fig. 2  Spatial distribution of NPP in Khuzestan province in 2000–
2021
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Fig. 3  The monthly spatial and 
temporal variation of NPP in 
2000–2021
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almost stops. Therefore, the two factors of temperature and 
precipitation can be expressed as determining elements 
of NPP in the early and late growing season, respectively, 
which has also been confirmed by Xing et al. 2021. Xiao 
et al. (2022) also presented that the increased precipitation 
and temperature would enhance the vegetation growth. It 
seems that in arid and semi-arid regions, soil moisture from 
the middle of the growing season is the most important 
factor in NPP, which is also affected by the type of soil in 
the region (Jha and Srivastava 2018). In degraded areas, soil 
erosion reduces the amount of soil pores and the amount of 
moisture in it decreases (Ibrahim et al. 2015). Therefore, in 
rangelands with poor and very poor rangeland condition, 
with eroded soil, the length of plant growth and production 
period decreases (Francis et al. 1986).

According to the results (Table 2) Amygdalus scoparia 
with tree vegetative form,   had the highest NPP value (68 
gC/m2) because due to specific climatic conditions, the 
depth of the fertile layer in humid and semi-humid areas 
was higher compared to arid and semi-arid areas and this 
creates the conditions for the growth of tree plants with 
deeper roots. Therefore, in humid areas, there is a greater 
ability to produce vegetation rather than arid and semi-arid 
areas. This matter has been demonstrated by Thorne and 
Frank (2009). Moreover, having deep roots in trees allows 
them to use deeper water and increase their resistance to 
drought changes (Yanagisawa and Fujita 1999). However, 
the possibility of using the moisture of the lower layers of 
the soil is reduced in shrubs due to their root structure, as 
the amount of NPP per plant decreases, which has been 
confirmed by Kizito et al. 2006. In addition, plant types 
in different climates from humid to dry, do not have the 
same conditions in terms of production per unit area, and 

different densities of vegetation were observed based on 
the amount of moisture. Astragalus Spp. were different 
in terms of production per unit area in humid and ultra-
dry areas. Geographical location and climatic diversity 
in the study area has led to the emergence of different 
plant types (Han et al. 2023a, b). The plant species of 
Amygdalus scoparia and Suaeda Spp.–Seidlitzia Spp. were 
observed from east to west with the NPP values of 68 
gC/m2 and 11 gC/m2, respectively. Comparison of topo-
graphic and NPP maps showed that topographic changes 
play an important role in vegetation production, which 
can be attributed to rainfall fluctuations due to topography 
and soil moisture, so that in various observations, rainfall 
changes due to topography have been mentioned (Navale 
and Singh 2020). As the amount of precipitation increases, 
the NPP values also increase, so it is possible to express 
the changes in NPP values in the region due to rainfall 
fluctuations as the result of physiographic conditions of 
the region (Han et al. 2023a, b). Limiting temperature and 
precipitation in the early and late growing season reduces 
LUE (Wang et al. 2022), so in each plant type, depend-
ing on the climate and type of plant, different amounts of 
LUE were observed (Wen et al. 2019). In degraded plant 
types, the amount of LUE was also reduced compared to 
rangelands with good and average condition. Of course, 
this factor also varies depending on the type of vegetative 
form. According to the present observations (Table 3), 
plant types with tree vegetative form had higher LUE val-
ues than rangelands, which is also due to their deep roots 
and reduced soil moisture at the end of the season. In 
rangelands, shrub types had higher LUE values than annu-
als and grasses (Del Grosso et al. 2008).

Fig. 4  a) The map of climatic 
potential of NPP map and b) the 
percentage of NPP to climatic 
potential
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According to other studies (Yang et al. 2003; Suseela 
et al. 2012), in each climate condition, depending on tem-
perature and humidity conditions, there is a certain amount 
of production potential, but soil conditions and rangeland 
degradation cause that lower percentage of production 
potential be used. The results of the present study showed 
that in humid areas with mountainous topography and high 
slope, a large part of the rainfall received as runoff is lost, 
which increases with the destruction of vegetation and a 
decrease in the percentage of vegetation. Therefore, in 
humid and mountainous areas (Table 4) less percentage of 
climatic potential is used. However, in arid and hyper-arid 
regions, due to the adaptation of plants, such as increasing 
root length to phytomass, the efficiency of using the mois-
ture in the soil depth and as a result, the production potential 
increases. Therefore, in different climates, the percentage of 
use of climatic potential (Table 4) was different, which was 
also confirmed by Bonfante, Terribile, and Bouma (2019). 
In this region, the values of RUE index were also different. 
So that in the degraded types compared to the average plant 
types, the rainfall efficiency decreased (Table 4) which can 
be attributed to factors such as erosion and destruction of 
soil structure (Wessels et al. 2007). However, in arid and 
hyper-arid regions, biological strategy causes plants to make 
maximum use of soil moisture with the development of root 
structure, while minimizing the amount of evapotranspira-
tion by morphological changes (Li et al. 2015). In this area, 
the degradation is high and data with an accuracy of 250  m2 
has been used. Landsat images with an accuracy of 30  m2 
can be used in future studies to increase the accuracy. On the 
other hand, the possibility of errors in rainfall data as well 
as the limited number of stations in some areas increases 
the uncertainties.

This research has been done with the help of MODIS 
satellite images to separate plant types in climatic classes, 
which include factors of rangeland status, vegetation 
conditions and soil. Also, in this study, by calculating the 
climatic potential of plant production, the degradation 
status of vegetation has been shown, which has rarely been 
considered in previous studies. This study was conducted in 
a coastal area, which also shows the effects of topography 
in determining the existing climatic classes and vegetation, 
which has not been done before in similar areas.

Conclusion

The present study was conducted to investigate and model 
the NPP in plant types in the rangelands of Khuzestan 
province with the help of MODIS images and to evaluate 
the efficiency of plant photosynthesis in different climates 
of this region. This study was conducted specifically to 
map NPP of Khuzestan province with the CASA model 

over a 21-year period from 2000–2021 along with its 
accuracy evaluation adopting field data on the scale of the 
climate zones. However, the degree of correlation between 
terrestrial and simulated data was different based on climatic 
conditions and plant type.

The changes in climatic regions play an important 
role in vegetation production of the area. Therefore, the 
climate condition from very humid and cold to ultra-dry 
in Khuzestan province has led to the emergence of various 
plant species with different vegetative forms that have good 
to very poor rangeland status. The comparison of plant types 
in a similar climate showed that the production of plant types 
with medium rangeland condition has a higher correlation 
with CASA model than poor rangeland condition. 
Temperature, precipitation and evapotranspiration effect 
on the estimation of NPP, while the increased precipitation 
and temperature would enhance the vegetation growth. In 
addition, plant types in different climates from humid to dry, 
do not have the same conditions in terms of production per 
unit area.

This study presented that modeling and up-to-date 
satellite images have a high capability in estimating and 
investigating the spatial and temporal distribution of 
production in vegetative climates. Early knowledge of the 
process of changes in actual production and potential can 
inform managers of the rangeland situation and its negative 
or positive trend and changes in the status of important 
rangeland species and make better decisions for the region's 
future.
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