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Abstract
Leptospirosis is a zoonosis that has been linked to hydrometeorological variability. Hydrometeorological averages and 
extremes have been used before as drivers in the statistical prediction of disease. However, their importance and predictive 
capacity are still little known. In this study, the use of a random forest classifier was explored to analyze the relative impor-
tance of hydrometeorological indices in developing the leptospirosis model and to evaluate the performance of models based 
on the type of indices used, using case data from three districts in Kelantan, Malaysia, that experience annual monsoonal 
rainfall and flooding. First, hydrometeorological data including rainfall, streamflow, water level, relative humidity, and 
temperature were transformed into 164 weekly average and extreme indices in accordance with the Expert Team on Climate 
Change Detection and Indices (ETCCDI). Then, weekly case occurrences were classified into binary classes “high” and 
“low” based on an average threshold. Seventeen models based on “average,” “extreme,” and “mixed” indices were trained 
by optimizing the feature subsets based on the model computed mean decrease Gini (MDG) scores. The variable impor-
tance was assessed through cross-correlation analysis and the MDG score. The average and extreme models showed similar 
prediction accuracy ranges (61.5–76.1% and 72.3–77.0%) while the mixed models showed an improvement (71.7–82.6% 
prediction accuracy). An extreme model was the most sensitive while an average model was the most specific. The time 
lag associated with the driving indices agreed with the seasonality of the monsoon. The rainfall variable (extreme) was the 
most important in classifying the leptospirosis occurrence while streamflow was the least important despite showing higher 
correlations with leptospirosis.

Keywords Leptospirosis · Hydrometeorological indices · Cross-correlation analysis · Random forest · Variable importance · 
Feature selection

Introduction

Leptospirosis is a zoonotic disease caused by pathogenic 
spirochetes of the genus Leptospira (Picardeau 2013). 
The bacteria infect humans directly through contact with 
the urine of an infected host or indirectly through con-
tact with a contaminated environment, entering via an 
injured skin and/or mucous membrane (Ansdell 2017). 
The disease exists in both temperate and tropical coun-
tries, although higher incidence rates are reported in the 
latter (10–100 compared to 0.1 to 1 per 100,000 popula-
tion per year, WHO 2003). The higher incidence rates in 
tropical regions could be due to their year-round warm 
and humid climate, which is favorable to the survivabil-
ity and dynamics of leptospires (Adler and de la Peña 
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Moctezuma 2010). Furthermore, heavy rainfall and con-
sequent flooding events have contributed to more wide-
spread infections (Barcellos & Sabroza 2001; Mohd Radi 
et al. 2018; Togami et al. 2018; Sehgal et al. 2002; Ding 
et al. 2019). Climate change and the associated increase 
in the frequency of hydrometeorological extreme events 
are expected to further aggravate the risk of infection (Lau 
et al. 2010; Picardeau 2013).

To better understand the mechanism behind leptospiro-
sis transmission, several different approaches in its statisti-
cal modelling have been explored. While many have con-
sidered the spatial dependency (Lau et al. 2012; Schneider 
et al. 2012; Suwanpakdee et al. 2015; Vega-Corredor & 
Opadeyi 2014; Zhao et al. 2016; Mayfield et al. 2018; 
Mohammadinia et al. 2017; Sánchez-Montes et al. 2015), 
fewer studies have analyzed the drivers behind the occur-
rence, transmission, and outbreak using the time series 
(Chadsuthi et al. 2012; Desvars et al. 2011; Joshi et al. 
2017; Weinberger et al. 2014). Additionally, most have 
employed conventional statistical modelling techniques, 
which inadequately handled the nonlinearity between lep-
tospirosis and its risk factors (Dhewantara et al. 2019). The 
complex mechanism of leptospirosis transmission due to 
the involvement of multiple variables impedes the mod-
els’ ability of explaining the disease trends (WHO 2011). 
Machine learning models, in contrast, can capture more 
complex patterns and therefore predict the output with 
higher accuracy (Carvajal et al. 2018; Guo et al. 2017; 
Hu et al. 2018; Ahangarcani et al. 2019). However, they 
are often treated as black boxes when the objective is to 
optimize predictive performance as opposed to gaining 
process insights.

Nevertheless, knowledge extraction is possible with the 
use of interpretable machine learning algorithms. Random 
forest machine learning (Breiman 2001, overview in the 
subsection “Structure and algorithm”) is one that allows 
insight into feature importance. Unlike the neural network 
and support vector machine, the random forest algorithm 
uses tree-based decision-making and can rank the features 
involved during the model training based on how well they 
contribute to the classification of output classes. It has 
been applied for predicting water-borne and vector-borne 
diseases, such as cholera (Campbell et al. 2020), dengue 
(Carvajal et al. 2018; Khan et al. 2017; Zhao et al. 2020), 
malaria (Barradas-Bautista 2020), and tick-borne encepha-
litis (Uusitalo et al. 2020). It has also been used to model 
animal leptospirosis based on annual precipitation and tem-
perature as well as socio-economic and landscape factors 
(Zakharova et al. 2021). In Zakharova et al. (2021), inde-
pendent variables were ranked based on the important metric 
of Gini that reflects the variable’s responsibility in splitting 
the output. However, the study did not further optimize 
the model by removing the less important (lower ranked) 

variables. Eliminating less important or irrelevant variables 
can reduce the complexity of the model, which improves its 
run time, comprehensibility, and performance (Kumar and 
Minz 2014).

In this study, cross-correlation analysis was used, and the 
capabilities of the random forest algorithm were leveraged 
to answer the following research questions:

(1) What hydrometeorological indices are highly cross-cor-
related with leptospirosis and important in classifying 
the disease occurrence?

(2) Does prediction capacity change according to the type 
of index used as model features, whether in the form of 
average or extreme indices or their combination?

Hydrometeorological variability in the form of averages 
and extremes has been used as drivers in past modelling stud-
ies. For example, simple average and extreme hydrometeoro-
logical indices, i.e., mean, sum, minimum, and maximum, 
have been investigated (Chadsuthi et al. 2012; Cunha et al. 
2022; Desvars et al. 2011; Gómez et al. 2022; Kupek et al. 
2000; Mohd Radi et al. 2018; Rahmat et al. 2019; Schnei-
der et al. 2012; Sumi et al. 2017; Weinberger et al. 2014), 
while more elaborate covariates that represented extreme 
dry and wet conditions have also been used (Tassinari et al. 
2008; Sánchez-Montes et al. 2015; Rahayu et al. 2018; Ding 
et al. 2019; Ehelepola et al. 2019). However, none of the 
studies have systematically analyzed and compared the 
effects of different variables and their average and extreme 
indices on case predictions. In this study, 17 random forest 
classification models of leptospirosis occurrence were imple-
mented to identify the predictive performance of different 
indices (“average,” “extreme,” and “mixed” indices, defined 
in “Model configuration based on classes of indices”) used. 
Additionally, variable importance was assessed based on an 
analysis of correlation that considered the lag, as well as the 
mean decrease Gini (MDG, defined in “Feature subset selec-
tion”) score from the random forest model.

Materials and methods

Study area

The case study is in Kelantan, a northeastern state of Penin-
sular Malaysia that experiences extreme monsoonal rainfall 
annually, often leading to extended periods of floods (Ismail 
and Haghroosta 2018). The state consists of 10 districts bor-
dering Thailand in the northwest, Perak in the southwest, 
Pahang in the south, and Terengganu in the southeast. The 
state recorded the highest incidence rate in 2015 following 
a massive flooding event in December 2014. The study area 
is three flood-prone (Department of Irrigation and Drainage 
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Malaysia [DID] 2017) Kelantan districts with the highest 
incidence rates (per 100,000 population) for the 10-year 
period from 2011 to 2020, i.e., Pasir Mas (638.0), Tumpat 
(344.5), and Kota Bharu (310.6). The location of the study 
area is depicted in Fig. 1.

Data collection and processing

Leptospirosis case data

Leptospirosis is considered endemic in Malaysia with cases 
occurring throughout the year (Benacer et al. 2016). The 
weekly number of probable and lab-confirmed leptospirosis 
cases from January 2011 to November 2020 was retrieved 
upon request from the Kelantan State Department of Health. 
In total, 6895 cases were reported throughout the period for 
the entire state. Nearly half of the total number of cases came 
from the selected districts, i.e., Pasir Mas, Tumpat, and Kota 
Bharu. These three districts were grouped into one model 
which resulted in 517 weekly records of case numbers. Each 
week contains the total number of cases aggregated over the 

three districts. Since the number of cases for these districts 
was used in a single lumped model, the spatial variability in 
the study area was not explicitly considered.

Hydrometeorological data

Five types of hydrometeorological data were used in this 
study, i.e., rainfall, streamflow, water level, relative humid-
ity, and temperature. They are daily data which span the 
10-year period between 01/01/2011 and 31/12/2020. Rain-
fall, streamflow, and water level data were obtained upon 
request from the Department of Irrigation and Drainage 
Malaysia (DID) who is responsible for hydrological moni-
toring, while temperature and relative humidity data were 
available with purchase from the Malaysian Meteorologi-
cal Department (MetMalaysia), who monitors the weather 
conditions of the country. For temperature, three levels of 
data were collected including daily minimum (N), mean 
(M), and maximum (X) temperature. MetMalaysia also 
provides rainfall data from the weather stations.

Fig. 1  The location of the study area, hydrometeorological stations, and flood-prone areas
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Hydrometeorological index calculation

The study adopts hydrometeorological indices prescribed 
by the Expert Team on Climate Change Detection and 
Indices (ETCCDI), a program that was working on char-
acterizing the climate variability and change (Peterson 
et al. 2001). These indices are derived from daily data to 
represent the frequency, intensity, and duration of hydro-
meteorological events. Although the ETCCDI has been 
recently discontinued, the indices are still valid and usable. 
The use of externally defined thresholds, with a few excep-
tions, was particularly intended to reduce subjectivity. In 
this study, average and extreme indices were produced, 
each of which with three subsets of indices, i.e., simple, 
fixed, and relative (Zhang et al. 2011):

 i. A simple extreme index was calculated based on the 
maximum and minimum values of the week.

 ii. A fixed extreme index is the number of days of the 
week with values exceeding beyond a specified limit. 
The specified limits are those defined by ETCCDI, 
DID, and local studies.

 iii. A relative extreme index is the number of days of the 
week with values exceeding an extreme percentile.

 iv. A simple average index was calculated based on the 
mean value of the week.

 v. A fixed average index is the number of days of the 
week with values between the same extreme limits 
used for deriving the fixed extreme indices.

 vi. A relative average index is the number of days of the 
week with values between the same extreme percen-
tiles used for deriving the relative extreme indices.

Tables 1 and 2 summarize the indices calculated for the 
hydrometeorological variables of this study. The rainfall 
and temperature indices followed the naming convention 
used by ETCCDI. The indices of relative humidity, stream-
flow, and water level were named similarly for consistency. 

Average indices that are not defined by the ETCCDI 
were named similarly as the extreme indices. ETCCDI 
prescribes the relative and fixed thresholds for rainfall 
and temperature but not for streamflow, water level, and 
relative humidity. The derivation of indices was adapted 
according to the following:

The relative thresholds for streamflow, water level, and 
relative humidity were selected using trial-and-error 
based on the percentile value that resulted in the highest 
correlation of the index to leptospirosis cases. This only 
involved the percentile values that were used by ETCCDI 
for rainfall and temperature, which include the 90th, 95th, 
and 99th percentiles.
The fixed threshold for streamflow was determined by 
averaging the streamflow values during a known flood-
ing event.
The fixed threshold for water level was taken from the 
danger limit provided by the DID.
The fixed thresholds of temperature defined by ETCCDI 
could not be applied to the study due to different climates. 
Thus, the thresholds were taken from the local studies 
(Jamaludin et al. 2015).
Relative humidity was not aggregated into fixed average 
and extreme days since there was no literature found to 
support a suitable threshold for this study.

The naming structure of indices starts with the abbrevia-
tion of hydrometeorological data followed by the index used 
and ends with the station’s ID that is separated by an under-
score. For example, the weekly mean (index) rainfall (RF) 
from 6121067 station was named as “RFmean_6121067.”

Cross‑correlation analysis for lag identification

Cross-correlation (Equation S1) was analyzed between the 
weekly aggregated hydrometeorological indices and lepto-
spirosis cases at multiple temporal lags. This is to select the 

Table 1  The index ID of weekly 
aggregated average and extreme 
hydrometeorological indices for 
each class of index. For a full 
explanation of the annotation, 
refer to Table 2

Condition Index class Variable

Rainfall Temperature Humidity Streamflow Water level

Average Simple Mean Mean Mean Mean Mean
Fixed d1mm.d50mm d23.d34 dnotFlood dnotDanger
Relative d5p.d95p d10p.d90p d10p.d90p d1p.d99p d1p.d99p

Extreme Simple Maximum Maximum
Minimum

Maximum
Minimum

Maximum Maximum

Fixed d50mm d34
d23

dFlood dDanger

Relative d95p d90p
d10p

d90p
d10p

d99p d99p
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lag at which the correlation is highest and adjust the indices 
time series accordingly in the model setup, as lag has been 
demonstrated to be an important factor in the hydromete-
orological controls of leptospirosis (Rahmat et al. 2020). 
The maximum lag allowed was 52 weeks to observe the 
correlation patterns of up to a year between leptospirosis 
and the lagged hydrometeorological indices. This resulted 
in 465 weeks of complete case (lagged) and indices records. 
A detailed explanation of the cross-correlation analysis can 
be found in Supporting Information.

Binary classification of leptospirosis

A threshold was selected to classify the number of leptospi-
rosis cases into high and low, based on the average weekly 
cases. The average number of weekly cases over the period 
of the study was six cases, and the classification resulted in 
171 (37%) weeks with high cases (more than six) and 294 
(63%) weeks with low cases (six and below).

Model configuration based on classes of indices

There were 17 configurations of models in total based on 
classes of indices (see Fig. 3). Filter method (Kumar and 

Minz 2014) was used to select the features for models A5 
and E5. This method selects the features based on the high-
est correlation to the dependent variable without involving 
the model’s learning algorithm. The random forest models 
were developed using the caret package, short for classifi-
cation and regression training (Kuhn 2008), within the R 
computing environment. The normalized datasets of final 
models and R code for training and testing the models are 
available on GitHub (link: https:// github. com/ Veian thanJ 
ayara mu/ Kelan tan_ lepto spiro sis_ model ling).

Random forest classification model development

Structure and algorithm

Random forest (Breiman 2001) is an ensemble of trees 
grown from the bagging method that derives resampled 
datasets with records duplicated from the original training 
set. In each tree, the nodes containing the response variable 
are split recursively by the selected features (from random 
subsets) until they meet a specified node size. The random-
ness in the feature subsets decorrelates the trees, which 
reduces the algorithm’s sensitivity to multicollinearity 
effects. Finally, the outputs are aggregated across the trees 

Table 2  The description of each index ID of weekly aggregated average and extreme hydrometeorological indices

Index ID Description

Average
  Mean Mean rainfall, streamflow, water level, relative humidity, or temperature of the week
  d1mm.d50mm The number of days of the week with an average rainfall between 1 and 50 mm
  d23.d34 The number of days of the week with an average temperature between 23 and 34 °C
  dnotFlood The number of days of the week with an average streamflow of not exceeding the flooding threshold
  dnotDanger The number of days of the week with an average water level of not exceeding the danger limit
  d5p.d95p The number of days of the week with an average rainfall between the 5th and 95th percentiles of the base period
  d10p.d90p The number of days of the week with an average relative humidity or temperature between the 10th and 90th percentiles of 

the base period
  d1p.d99p The number of days of the week with an average streamflow or water level between the 1st and 99th percentiles of the base 

period
Extreme

  Maximum Maximum rainfall, streamflow, water level, humidity, or temperature of the week
  Minimum Minimum relative humidity or temperature of the week
  d50mm The number of days of the week with an extreme rainfall exceeding 50 mm
  d34 The number of days of the week with an extreme maximum temperature exceeding 34 °C
  d23 The number of days of the week with an extreme minimum temperature not exceeding 23 °C
  dFlood The number of days of the week with an extreme streamflow exceeding the flooding threshold
  dDanger The number of days of the week with an extreme water level exceeding the danger limit
  d95p The number of days of the week with an extreme rainfall exceeding the 95th percentile of the base period
  d90p The number of days of the week with an extreme relative humidity or temperature exceeding the 90th percentile of the base 

period
  d10p The number of days of the week with an extreme relative humidity or temperature not exceeding the 10th percentile of the 

base period
  d99p The number of days of the week with an extreme streamflow or water level exceeding the 99th percentile of the base period

https://github.com/VeianthanJayaramu/Kelantan_leptospirosis_modelling
https://github.com/VeianthanJayaramu/Kelantan_leptospirosis_modelling
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to finalize them based on majority voting. The splitting rule 
used in this study was based on the Gini impurity, which 
measured the probability of misclassification as a result of 
the splitting of features at the nodes. The Gini impurity of 
a node (Gn) was calculated as one minus the summation of 
the squared probabilities of the classified outputs, high (Oh) 
and low (Ol). More specifically (Eq. 1):

The total Gini impurity  (Gsn) for the following right (Gr) 
and left (Gl) sub-nodes is the probability weighted from the 
fractions (p) of data sent by the splitting node (Eq. 2).

Tuning hyperparameters

mtry, ntree, and nodesize are the hyperparameters that govern 
the growth and density of trees in the forest. The mtry parameter 
controls the number of randomly selected candidate predictors 
at each splitting node, while the ntree parameter determines the 
number of trees the forest should have. The nodesize parameter 
limits the depth of individual trees with a specified minimum 
number of observations for the terminal node. The optimal set of 
hyperparameters was determined using the grid search method 
that ran the models under all the possible combinations of the 
tuning parameters. mtry parameter was set to range from one to 
the total number of features present in the model input datasets 
while ntree was set to range between 200 and 700 trees at the 
interval of 50 trees. The nodesize was searched from one to 10 
minimum records in the terminal node.

Data partitioning

The model input data was split into 80% for the training 
set and 20% for the testing set, which is an acceptable split 
per Ucar et al. (2020). A higher training ratio was used to 
obtain a more reliable relative importance measure that 
gets calculated during model training. The split was done 
in such a way that preserved the proportion of binary case 
classes in both training and testing sets. The training set 
contains 137 (37%) weeks with a high number of cases 
and 236 (63%) weeks with low cases. On the other hand, 
the testing set contains 34 (37%) weeks with high cases 
and 58 (63%) weeks with a low number of cases. Addi-
tionally, a 10 k-fold cross-validation was conducted for 
all the models to prevent overfitting (Santos et al. 2018). 
It is an internal model fitting procedure within the train-
ing set that was carried out a total of 10 times, each of 
which on a sub-training set that consisted of 90% of the 

(1)G
n
= 1 −

(

O
h

O
h
+ O

l

)2

+

(

O
l

O
h
+ O

l

)2

(2)Gsn = prGr + plGl

total training data selected at random. The remaining 10% 
was then used for the validation. The performance metrics 
reported are thus the average results of 10 training and 
testing processes. This 10 k-fold cross-validation proce-
dure was repeated thrice to reduce noise in the estimation 
of model performance.

Feature subset selection

The random forest algorithm computed a score called mean 
decrease Gini (MDG) during the model training, which indi-
cated the importance of each predictor to the model. The 
MDG measured the total decrease (ΔG, Eq. 3) in Gini score 
before (Gn) and after (Gsn) the node split, which was then 
averaged across the trees (Zhang et al. 2019). The higher 
the MDG score, the more important the variable was to the 
model since it contributed more towards the good classi-
fications of high and low outputs. Therefore, this feature 
is considered more important compared to other features 
with lower MDG values. The preliminary models devel-
oped based on the configurations in “Model configuration 
based on classes of indices” were optimized by retaining the 
highly important hydrometeorological indices. Essentially, 
the indices of the preliminary models were ranked based on 
the MDG scores. Then, to obtain an optimal subset of the 
training data, the models underwent a sequential forward 
selection that consecutively added the ranked features to the 
subset one by one, starting from the most important varia-
ble. The training accuracy of each subset was evaluated, and 
when it started to deteriorate, the feature space was selected 
for the final model development. Some of the models’ accu-
racy fluctuated with large differences over the increasing 
size of subsets. In this case, several subsets with relatively 
higher accuracy were selected and used to train the final 
models. Among the models, the subset that exhibited the 
highest training accuracy was selected. The selected subset 
was then tuned for the best model parameters and tested with 
the 20% holdout set to calculate the prediction accuracy.

Model performance measurement

The models were evaluated using the testing set accuracy, 
sensitivity, and specificity. Accuracy is the percentage of 
correct classification of both high and low cases; sensi-
tivity is the percentage of predicted high cases over the 
actual high cases; and specificity is the percentage of pre-
dicted low cases over the actual low cases (Van Stralen 
et al. 2009; Glaros and Kline 1988). The formulae used to 

(3)ΔG = Gn − Gsn
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calculate these metrics are presented in Table S1 of Sup-
porting Information.

Receiver operating characteristic (ROC) analysis

ROC analysis was conducted to produce a curve that aids in 
finding the optimal operating points for best separating the 
outputs into a high and low number of case predictions. Each 
operating point that varied between 0 and 1 separated the 
binary outputs based on their probability values. The sensi-
tivity and specificity of the outputs were calculated at each 
operating point, and a curve of sensitivity against 1-specific-
ity was plotted. The classifier that gives the curve closer to 
the top-left corner (maximized sensitivity and specificity) 
indicates a better performance based on accuracy in clas-
sifying the high and low cases of leptospirosis.

Results

Cross‑correlation analysis (CCA)

A total of 164 hydrometeorological indices were derived to 
develop 17 models. Of these, 155 predictors were weakly 
correlated, and one predictor (SFmean_5721442) was mod-
erately correlated with leptospirosis cases. Eight predic-
tors were considered negligible according to Schober et al. 
(2018) since their correlations were below 0.1. However, 
out of eight, only two hydrometeorological indices, i.e., 
TMd23.d34_KB48615 and TMd23.d34_GK48617, were not 
included in the models since their correlations were insig-
nificant (p > 0.05). The result of cross-correlation analyses 
is presented in Supplementary Information Figures S1-S5.

The rainfall indices were positively correlated with lepto-
spirosis cases at shorter lags of up to 15 weeks and negatively 
correlated at longer lags especially at the 35 weeks lag and 
higher. The highest positive correlations between the d50mm 
and d95p of rainfall (i.e., the number of days of extreme rain-
fall exceeding the 50 mm and 95th percentile thresholds) 
and leptospirosis cases were at an earlier lag of 3 weeks. The 

highest positive correlations between the d1mm.d50mm and 
d5p.d95p of rainfall (i.e., the number of days of average rainfall 
between the lower and upper extreme limits) and leptospirosis 
cases were instead at a later lag of 9 weeks.

Meanwhile, the streamflow indices were correlated with 
leptospirosis cases up to 16 weeks lag. The dFlood and 
d99p of streamflow (i.e., the number of days of extreme 
streamflow exceeding the flooding and the 99th percentile 
thresholds) were moderately and positively correlated with 
leptospirosis cases. In comparison, the dnotFlood and d1p.
d99p of streamflow (i.e., the number of days of average 
streamflow not exceeding the flooding threshold and occur-
ring between the 1st and 99th percentile thresholds) were 
weakly and negatively correlated with leptospirosis cases. 
Water level indices exhibited very similar cross-correlation 
patterns as the streamflow indices.

The d90p of relative humidity (i.e., the number of days 
of extreme relative humidity exceeding the 90th percentile 
threshold) demonstrated positive correlations with lepto-
spirosis cases at 7–13-week lag. Meanwhile, the d10p of 
relative humidity (i.e., the number of days of extreme rela-
tive humidity not exceeding the 10th percentile threshold) 
displayed positive correlations with leptospirosis cases at 
21–52-week lag.

The d23 and d10p of temperature (i.e., the number of 
days of extreme temperature not exceeding the 23℃ and 10th 
percentile thresholds) were positively correlated at shorter 
lags of up to 6 weeks. Meanwhile, the d34 and d90p of tem-
perature (i.e., the number of days of extreme temperature 
exceeding the 34℃ and 90th percentile thresholds) were 
positively correlated with leptospirosis cases at longer lags 
of 29–43 weeks.

Overall, extreme streamflow exhibited the highest corre-
lation whereas average relative humidity exhibited the lowest 
correlation with leptospirosis cases (Table 3). The correla-
tion of hydrometeorological variables was stronger under the 
extreme condition than the average condition. Most of the 
hydrometeorological extreme variables were positively cor-
related with leptospirosis cases compared with the average 
variables, which were negatively correlated with the disease.

Table 3  Summary of the value 
and direction of correlation 
between hydrometeorological 
indices and leptospirosis 
cases. + indicates a positive 
correlation, and − indicates 
negative correlation 

Condition Variable Highest correla-
tion

Short-term 
(1–13 weeks)

Long-term 
(27–52 weeks)

Average Rainfall 0.29  +  − 
Streamflow/water level 0.30  − Insignificant
Relative humidity 0.26 Insignificant  − 
Temperature 0.30  −  − 

Extreme Rainfall 0.34  +  − 
Streamflow/water level 0.36  + Insignificant
Relative humidity 0.35  +  + 
Temperature 0.33  +  + 
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Model optimization based on MDG

Table 4 shows the most and least important hydrometeoro-
logical indices to the preliminary models based on the mean 
decrease Gini (MDG) score. A5, E5, and M5 are excluded 
from Table 4 since MDG is biased towards the data with a 
large number of possible values, which could discriminate 
against the importance of indices with fewer possible val-
ues ranging from 0 to 7 days, i.e., relative and fixed days of 
hydrometeorological occurrence, that are features for these 
models. Overall, the rainfall indices appeared to have the 
highest importance in all models except in A1, whereas 
streamflow indices showed the least importance in most 
models including A3, E2, E3, E4, M2, M3, M4, M23, and 
M32 despite showing higher correlations with leptospirosis 
cases in “Cross-correlation analysis (CCA)”. In the mixed 
models, the extreme rainfall indices produced the highest 
MDG scores informing their high importance in classifying 
the leptospirosis occurrence.

The results of feature subset selection for A1 and M1 
models are demonstrated in Fig. 2a and b respectively. The 
hydrometeorological features of the A1 model were ranked 
in descending order (from left to right in Fig. 2a) based 
on the MDG score obtained from the preliminary model. 
The most important feature was WLmean_5721442 since 
it exhibited the highest MDG (15.7) among the other fea-
tures in the model. This feature was used to build the ini-
tial model. The initial model showed a training accuracy of 
63.5%. Then, the accuracy increased from 63.5 to 66.4% 
when the initial model was incorporated with the second 
most important feature (RHmean_GK48617). However, 
the accuracy started to decrease when the weekly mean 
streamflow from station 5721442 and rainfall from station 

5920012 was added to the previous model. Then, the train-
ing accuracy increased from 64.6 to 74.1% with the consecu-
tive inclusion of lower important mean indices, i.e., from 
TXmean_GK48617 to RHmean_KB48615 despite showing 
a slight reduction when TNmean_KB48615 was added to 
the previous subset. Afterwards, the accuracy deteriorated 
gradually from 74.1 to 69.2% as more indices with lower 
MDG values were added to the subset for model training. 
Similarly, Fig. 2b displays the feature subset selection for 
the M1 model. The training accuracy of the model increased 
with the addition of features from RFmax_5920012 (57.7%) 
to TXmin_KB48615 (74.4%) but started to decrease after-
wards. These features were selected for the final model 
development.

The results of the retraining of models based on the 
MDG other than the A1 model are summarized in Fig. 3. 
All models managed to reduce their input data size by 
removing between three and 40 indices from the prelimi-
nary input dataset based on the ranking of MDG scores. 
The average number of features in the preliminary dataset 
was 44 but was reduced by 50% to 22 by the feature subset 
selection process. The only exception was A2 as it retained 
all the indices of its preliminary model. Nine to 12 models 
out of the 16 models showed an improvement in each met-
ric after removing less important features based on MDG. 
On average, the training accuracy slightly increased from 
67.0 to 68.9%, sensitivity increased from 37.0 to 39.3%, 
and specificity increased from 84.4 to 86.2%. The average 
specificity of models showed an acceptable range that lies 
between 80 and 90% while the average accuracy of the 
models was sufficient, which ranges from 60 to 70%. How-
ever, the average sensitivity of the models was below 50%, 
which could be due to the imbalance of output class in the 

Table 4  The most and least important hydrometeorological indices to each preliminary model based on MDG

Model Most important indices Least important indices

Station Variable Index MDG Station Variable Index MDG

A1 5721442 Water level Mean 15.7 6122064 Rainfall Mean 2.9
A2 6120014 Rainfall d1mm.d50mm 11.1 5721442 Water level dnotDanger 0.4
A3 6022001 Rainfall d5p.d95p 9.9 5721442 Streamflow d1p.d99p 0.4
A4 6120014 Rainfall d1mm.d50mm 7.0 5721442 Water level dDanger 0.1
E1 5920012 Rainfall Maximum 19.9 6122064 Rainfall Maximum 2.5
E2 5920012 Rainfall d50mm 11.2 5721442 Streamflow dFlood 0.1
E3 5920012 Rainfall d95p 10.1 6019411 Streamflow d99p 0.4
E4 5920012 Rainfall d95p 5.9 5721442 Streamflow dFlood 0.1
M1 5920012 Rainfall Maximum 8.3 GK48617 Minimum temperature Maximum 1.6
M2 5920012 Rainfall d50mm 8.2 5721442 Streamflow dFlood 0
M3 5920012 Rainfall d95p 6.7 6019411 Streamflow d99p 0.2
M4 5920012 Rainfall d95p 3.4 5721442 Streamflow dFlood 0
M23 5920012 Rainfall d95p 12.9 6019411 Streamflow d99p 0
M32 5920012 Rainfall d50mm 11.6 5721442 Streamflow dFlood 0.1
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Fig. 2  a The training accuracy 
of A1 model with respect to 
increasing subset size of ordered 
training set based on MDG. b 
The training accuracy of M1 
model with respect to increasing 
subset size of the ordered train-
ing set based on MDG
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dataset. This resulted in the models performing poorly in 
detecting the high cases.

Predictive performance of models

The performance metrics were computed based on the opti-
mal operating points selected from the ROC analysis. The 
ROC plot is presented in Figure S6 of Supporting Infor-
mation. M1 (mixed model) showed the highest prediction 
accuracy of 82.6% indicating the ability of the model in 
correctly predicting both the high and low cases (Fig. 3). 
Meanwhile, A3 (average model) showed the lowest predic-
tion accuracy of 61.5%. Generally, the sensitivity of the 
models was low. However, the E2 model displayed a sen-
sitivity of 76.5%, which was the highest compared to the 
rest. This model was the most sensitive in correctly antici-
pating the high cases than the other models. The highest 
specificity of the A2, A3, and M1 (96.6%) models implied 
that the model was the most specific in correctly predicting 
the low cases than other models. When comparing between 
the average and extreme models, the most sensitive model 
(E2) was found among the extreme models while the most 
specific model (A2 and A3) was found among the average 
models. Overall, the average (61.5–76.1%) and extreme 
models (72.3–77.0%) showed similar prediction accuracy 
ranges while the mixed model (71.7–82.6%) showed an 
improvement.

Discussion

Cross‑correlation analysis

The cross-correlations between hydrometeorological indi-
ces and leptospirosis cases appeared to be influenced by the 
monsoon seasons of the country. This finding supported 
previous studies that observed hydrometeorological factors 
to be critical to the seasonal development of leptospirosis 
(Joshi et al. 2017; Chadsuthi et al. 2012; Péres et al. 2019; 
Batchelor et al. 2012; Desvars et al. 2011).

The Malaysian climate showed distinctive control by 
two monsoons, i.e., the Northeast (November to March) 
and Southwest (May to September) monsoons. Usually, the 
former brings heavier rainfall, which often leads to flooding 
events in the east coast regions of the Peninsular Malay-
sia. In contrast, the Southwest monsoon is characterized by 
lower rainfall and higher temperatures. Positive correlations 
were observed between rainfall indices and leptospirosis up 
to the 15-week lag. During the wet season, leptospires can 
mobilize in the rain and floodwaters, subsequently infecting 
humans. The shorter time lag of 15 weeks could be related to 
their incubation period (Haake & Levett 2015). Additionally, 
it could account for the time taken for humans to be exposed 
to the bacteria. Similarly, a higher rainfall, a higher stream-
flow and relative humidity, and a lower temperature were 
associated with higher leptospirosis cases at shorter lags.

Fig. 3  Training performance 
metrics of models before and 
after selecting the reduced 
subsets and testing performance 
metrics of models with reduced 
subset
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Meanwhile, negative correlations were observed between 
rainfall indices and leptospirosis at a 35–52-week lag. Simi-
lar findings were reported in Chadsuthi et al. (2012). Cor-
respondingly, a lower rainfall, a lower relative humidity, and 
a higher temperature were associated with higher leptospi-
rosis cases at longer lags. This period could be related to 
the Southwest monsoon season, and the negative correla-
tion could be due to a consequence of the higher number 
of cases found immediately after the Northeast monsoon. 
Furthermore, Hacker et al. (2020) have reported that although 
rainfall is strongly associated with leptospirosis, the disease 
tends to occur throughout the year. This could be due to other 
risk factors which could be indirectly related to hydrome-
teorological events. For instance, the increased mobility of 
humans during dry weather could lead to infection as they 
might interact with the environment contaminated by lepto-
spires (Joshi et al. 2017).

Besides that, the positive correlation of extreme rain-
fall indices peaking at an earlier lag of 3 weeks, as com-
pared to a latter lag for the corresponding average indi-
ces, was attributed to the immediate infection following 
flooding events caused by heavy rainfall. Floods could 
cause a more rapid infection by bringing leptospires 
closer to humans within a short period (Sehgal et  al. 
2002). The moderate positive correlation of extreme 
streamflow indices suggested that leptospirosis is better 
driven by extreme streamflow events compared to the 
average events. The latter are represented by the aver-
age indices, which demonstrate weaker correlations. 
Overbank inundation could pose a higher risk of infec-
tion among those residing in the vicinity of the river. 
Former studies observed that leptospirosis cases were 
more prevalent around rivers and when the river levels 
exceeded the danger limit; this was attributed to the river 
overflow that disperses leptospires towards the residen-
tial area (Hayati et al. 2018; López et al. 2019).

The correlation between simple indices of hydrometeorolog-
ical variables and leptospirosis was similar for both average and 
extreme conditions. This is because the simple indices returned 
the mean and extremum (maximum and minimum) values for 
each week. To a certain extent, the mean contained information 
from the extreme values, as it redistributed the values among 
the number of days in the week. This is unlike the fixed and 
relative indices, which isolated the extreme values from the 
average values, and vice versa.

Lastly, the fixed thresholds used in this study may not have 
sufficiently represented the extreme limits of hydrometeoro-
logical events. The extreme thresholds tend to vary from one 
location to another depending on the regional climatic and 
geographical factors. Different levels of rainfall events would 
contribute to different levels of flooding at different locations.

Model optimization based on MDG

MDG tends to be biased towards the predictors with more 
possible values or categories compared to those with less 
possible values or categories in their data (Strobl et al. 
2007). In this study, such biases were observed in the mod-
els (A5, E5, and M5) that incorporated both the indices 
with many and a few possible values. The higher the num-
ber of possible splits, the more often the index gets selected 
as the candidate predictor for the node split. Therefore, 
the MDG score of the frequently selected index tends to 
be larger as the score is summed up in each individual tree 
and averaged across the random forest.

Overall, the highest MDG scores of the rainfall indices in 
all models with the exception of A1 indicated that they con-
tributed the most in decreasing the heterogeneity of nodes. 
This suggests the importance of rainfall in determining lep-
tospirosis occurrence. This is in line with other studies that 
established a strong correlation between rainfall and lepto-
spirosis (Hacker et al. 2020; Kupek et al. 2000; Cunha et al. 
2022; Ghizzo Filho et al. 2018; Chadsuthi et al. 2012). On the 
other hand, the lowest MDG scores for the streamflow indices 
indicated that this variable contributed the least in decreas-
ing the heterogeneity of nodes when growing the individual 
trees. This is despite streamflow having shown higher cross-
correlations with leptospirosis. In cross-correlation analysis, 
each hydrometeorological index was analyzed individually 
assuming a one-to-one relationship between the features and 
leptospirosis. However, the MDG score of a hydrometeoro-
logical index was computed in consideration of other hydro-
meteorological indices during the model development. The 
rainfall feature would be frequently selected as the predictor 
for the nodes, which would reduce the participation of the 
streamflow feature in the model development. It may also be 
the case that there was less information from the streamflow 
time series which are more sparsely available as compared 
to the rainfall time series.

The less important hydrometeorological indices based on 
MDG can be characterized as noisy variables or variables with 
less information or possible values. The noisiness of features 
could be due to the random errors present in the data, which 
would lead to overfitting problems when the models attempt 
to conform closely to the existing data. The models tend to 
perform poorly when they see a different set of data that was 
not used during the model training. Apart from that, the less 
informative features would make the classification worse as 
there would not be sufficient possible values that would become 
the thresholds for splitting the outputs. However, subsetting the 
important features with decreasing MDG scores up to a certain 
number improved the model’s accuracy since their combination 
recognized the signals better.
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Predictive performance of models

The higher prediction accuracy of mixed models indicated 
that leptospirosis cases take place under the occurrence of 
both average and extreme hydrometeorological events. Usu-
ally, a higher number of cases (outbreak) occur during the 
extreme hydrometeorological events such as heavy rainfall 
and flood (Cann et al. 2013). Flooding events cause changes 
to human movements, which could ultimately reduce the 
distance and time of leptospirosis transmission. During nor-
mal (average) hydrometeorological events, humans are still 
infected with leptospirosis but probably lower in number 
(endemic) (Ghizzo Filho et al. 2018). The effect of average 
hydrometeorological events may not be as severe as extreme 
events. The socio-economic and rodent activities, which are 
influenced by the occurrence of hydrometeorological events, 
probably contribute to this infection.

Additionally, the similar ranges of prediction accuracy 
of the respective average and extreme models implied that 
these two conditions equally play their roles in the total 
leptospirosis occurrence. The normal hydrometeorological 
events might ensure the endemicity of leptospirosis, which 
records the lower number of cases throughout the year (Soo 
and Khan 2020). On the other hand, the extreme hydrome-
teorological events cause the disease to break out for a par-
ticular time (WHO 2001). Thus, the similar prediction accu-
racy ranges of average and extreme models reflected that the 
total number of cases has almost equal contributions by the 
respective average and extreme hydrometeorological indices.

The highest sensitivity of the extreme model showed that 
the extreme hydrometeorological indices incorporated in the 
model predicted the weeks with high cases better. Mean-
while, the highest specificity of the average model showed 
that the average hydrometeorological indices used to develop 
the model better predicted the weeks with low cases.

Conclusion

The ultimate aim of the work is to illustrate the impor-
tance of feature selection, i.e., the selection of the most 
relevant and non-redundant input, among average and 
extreme hydrometeorological indices in the construction 
of a classification model for leptospirosis. In response 
to the research objectives, which are to (1) identify the 
hydrometeorological indices highly cross-correlated with 
leptospirosis and important in classifying the disease 
occurrence and (2) to observe the prediction capacity 
change in response to the average, extreme indices, and 
their combination used as model features, the main conclu-
sions are as follows:

• Rainfall was the most important, while streamflow was 
the least important variable based on mean decrease 
Gini despite showing higher cross-correlations with 
leptospirosis.

• Random forest models performed similarly with aver-
age and extreme hydrometeorological indices while 
their accuracy improved with both average and extreme 
hydrometeorological indices as features.

• The temporal lag between the hydrometeorological indices 
and leptospirosis followed the seasonality of the monsoon.

Future research can address the following research gaps. 
Firstly, a less biased approach such as the mean decrease 
accuracy (MDA) can be explored to measure the importance 
of hydrometeorological indices. A more reliable variable 
importance can help improve the model’s accuracy. Agnostic 
machine learning methods such as SHapley Additive exPla-
nations (SHAP) (Lipovetsky and Conklin 2001) can be use-
ful for this goal. Next, the analysis of extreme indices based 
on multiple thresholds that represent a varying severity of 
the hydrometeorological and their possible links to higher 
leptospirosis occurrences should be explored.
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