
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00484-022-02388-x

ORIGINAL PAPER

Malaria metrics distribution under global warming: assessment 
of the VECTRI malaria model over Cameroon

Amelie D. Mbouna1  · Alain T. Tamoffo1,2  · Ernest O. Asare3 · Andre Lenouo4 · Clement Tchawoua1

Received: 20 January 2022 / Revised: 30 June 2022 / Accepted: 11 October 2022 
© The Author(s) under exclusive licence to International Society of Biometeorology 2022

Abstract
Malaria is a critical health issue across the world and especially in Africa. Studies based on dynamical models helped to 
understand inter-linkages between this illness and climate. In this study, we evaluated the ability of the VECTRI community 
vector malaria model to simulate the spread of malaria in Cameroon using rainfall and temperature data from FEWS-ARC2 
and ERA-interim, respectively. In addition, we simulated the model using five results of the dynamical downscaling of the 
regional climate model RCA4 within two time frames named near future (2035–2065) and far future (2071–2100), aim-
ing to explore the potential effects of global warming on the malaria propagation over Cameroon. The evaluated metrics 
include the risk maps of the entomological inoculation rate (EIR) and the parasite ratio (PR). During the historical period 
(1985–2005), the model satisfactorily reproduces the observed PR and EIR. Results of projections reveal that under global 
warming, heterogeneous changes feature the study area, with localized increases or decreases in PR and EIR. As the level of 
radiative forcing increases (from 2.6 to 8.5 W.m−2), the magnitude of change in PR and EIR also gradually intensifies. The 
occurrence of transmission peaks is projected in the temperature range of 26–28 °C. Moreover, PR and EIR vary depending 
on the three agro-climatic regions of the study area. VECTRI still needs to integrate other aspects of disease transmission, 
such as population mobility and intervention strategies, in order to be more relevant to support actions of decision-makers 
and policy makers.
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Introduction

The World Health Organization (WHO report 2015) reports 
that malaria remains one of the most important killer dis-
eases in the world. Eighty-two percent of the cases and 94% 
of deaths are recorded in Africa. Malaria, therefore, is the 
primary cause of mortality and morbidity in Africa (WHO 

report 2008). This disease is endemic in tropical and sub-
tropical areas, and sub-Saharan African countries continue 
to be the most affected. Specifically in Cameroon, the illness 
is the leading cause of mortality and morbidity with chil-
dren under five and pregnant women being the most affected 
(Bandolo 2012). In 2006, there were approximately 5 million 
cases of malaria in the country (WHO report 2008), making 
the disease the country’s priority health issue.

Malaria is caused by a parasite which is a protozoan from 
the genus plasmodium and transmitted to people through 
the bites of infected female mosquitoes. A single bite by a 
malaria-carrying mosquito can lead to extreme sickness or 
death. Malaria starts with extreme cold, followed by a high 
fever and severe sweating. These can be accompanied by 
joint pain, abdominal pain, headaches, vomiting and extreme 
tiredness.

Malaria disease is very sensitive to climatic conditions, 
and in tropical areas, the disease is prevalent (Bomblies 
and Eltahir 2009), because of the abundance of mosqui-
toes’ breeding sites and favourable weather conditions. The 
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link between climate and malaria is well documented. In 
fact, rainfall and temperature influence the life cycles of the 
anopheles’ mosquito vector as well as the malarial para-
site plasmodium falciparum (Lindsay et al. 2000; Abiodun 
et al. 2018). Temperature determines the length of the mos-
quito cycle and the sporogonic cycle of the malarial para-
site within the mosquito (Hajison et al., 2017; Egbendewe-
Mondzozo et al. 2011). Rainfall provides suitable temporary 
water bodies (breeding sites) for mosquitoes to grow and 
develop (Komen et al 2015; Garske et al. 2013). But extreme 
rainfall appears to be harmful to mosquito development, as 
it flushes out mosquitoes from their aquatic habitat and kills 
them (Paaijmans et al., 2007).

The disease sensitivity to climate can also be demon-
strated using models. In fact, considerable efforts are made 
by scientists by constructing some mathematical models to 
forecast malaria distribution. For instance, Ayanlade et al. 
(2020) demonstrated the modulator effect of rainfall and 
temperature indices on malaria propagation with a high 
Spearman correlation coefficient for rainfall as well as tem-
perature. Ermert et al. (2012) using the Liverpool malaria 
model (LMM) demonstrated the strong influence of changes 
in rainfall and temperature on the malaria distribution in 
various ecological African zones. Diouf et al. (2017) also 
established with the LMM that the risk of malaria trans-
mission is mainly associated with variability in rainfall and 
temperature.

Among studies related to climate change and malaria, Ye 
et al. (2007) found that rainfall and temperature significantly 
influence the malaria’s incidence with emphasis on tempera-
ture. In some West African countries, Diouf et al. (2020) 
demonstrated that the malaria’s high transmission periods 
are directly linked to heavy rainfall events. Malaria ende-
micity would be little affected by climate change (Beguin 
et al. 2011). This suggests that warm temperatures (due 
to global warming) are likely to increase or/and decrease 
malaria in endemic areas. In fact, high temperatures could 
significantly impact growing conditions of the mosquito. 
However, the temperature might not be the only factor as 
the WHO’s report in 1975 highlighted the migration’s effect 
of population from endemic zones to free malaria areas on 
the dynamics of the malaria disease. This aspect is supported 
by previous work by Ngarakana-Gwasira et al. (2016). In 
addition, the impact of global warming on the health is not 
expected to be homogenous across regions as Costello et al. 
(2009) argued.

Numerous studies across Africa (e.g. Peterson 2009, 
Yamana et al. 2016) project a gradual southward shift of 
malaria from the Sahelian zones of the West African, includ-
ing northern Cameroon. This may suggest unfavourable con-
ditions for malaria proliferation by the 2080s (Caminade 
et al. 2014). Other studies demonstrated inconsistencies 
between projected changes in malaria spread and global 

warming, especially over the Sahel (Beguin et al. 2011; 
Escobar et al. 2016).

A study conducted by Asare and Amekudzi (2017) using 
the Abdus Salam International Centre for Theoretical phys-
ics (ICTP) vector borne disease model (VECTRI) also simu-
lated malaria transmission dynamics at both national and 
local scales in Ghana and specified the predominant role of 
rainfall. Mbouna et al. (2019) modelled the malaria distri-
bution over Cameroon using the VECTRI malaria model. 
They showed that malaria prevalence is maximum at tem-
peratures of 24 to 26 °C and rainfall rates of approximately 
4 to 6 mm/day. This rainfall amount features a smaller rate 
in locations far from water bodies and where the transmis-
sion seasonality is close to that of rainfall with a lag of 1 to 
2 months (also found by Diouf et al. 2020), satisfactorily 
simulated by the VECTRI model. The particularity of the 
VECTRI model is that apart from temperature and rainfall, 
it pays particular attention to the human population density’s 
modulator effect on the malaria transmission and distribu-
tion (Caminade et al. 2014).

Although several studies demonstrated the performances 
of VECTRI coupled with temperature and rainfall to simu-
late malaria metrics, studies conducted under global warm-
ing are still needed. Yet, such analyses might contribute to a 
long-term plan for disease prevention, adaptation and miti-
gation of the transmission. Therefore in the present study, 
we use the VECTRI model with the atmospheric regional 
climate model RCA4 (VECTRI-RCA4) to address the issue. 
The goal of the study is twofold: first, assess the ability of 
the combination VECTRI-RCA4 to model malaria metrics 
over Cameroon and, second, explore the impact of global 
warming under the Representative Concentration Pathway 
(RCP) 2.6 and 8.5 on malaria distribution. Through exami-
nation of projections, we hope to portray preliminary aspects 
of malaria propagation in a warmer world over Cameroon, 
as well as alerting decision-makers to the challenges and 
opportunities for mitigation. The paper is organized as fol-
lows: the “Data and methods” section describes the data and 
methods used. The “Results and discussion” section presents 
the obtained results and discusses the key findings. A sum-
mary concludes this work in the “Conclusion” section.

Data and methods

Study area

Our study domain is Cameroon, located over Central Africa 
within latitudes 1.5°N–13°N and longitudes 8°E–17°E, an 
area covering other neighbouring countries as presented in 
Fig. 1.

Cameroon’s climate varies from humid in the south to 
arid and hot in the north. Cameroon’s climate is particularly 
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influenced by the Harmattan and the Atlantic Monsoon 
winds and is then characterized by two climatic domains, 
namely the tropical and the equatorial domain (Zaroug 
and Reynolds 2006; Molua and Lambi 2007). The area has 
also been subdivided into three agro-climatic sub-regions, 
namely the North Cameroon (NCAM), West Cameroon 
(WCAM) and East Cameroon (ECAM).

VECTRI malaria model

The model used in this work is an open-source, the Abdus 
Salam International Centre for Theoretical Physics (ICTP) 
vector borne disease model (VECTRI). VECTRI is a grid 
distributed dynamical model that couples a biological 
model for the vector and parasite life cycles, to a simple 

Fig. 1  Map of Cameroon and neighbouring countries. Highlighted in blue are the three agro-climatic sub-regions: North Cameroon (NCAM), 
West Cameroon (WCAM) and East Cameroon (ECAM)
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compartmental Susceptible-Exposed-Infectious-Recovered 
(SEIR) representation of the disease progression in the 
human host. VECTRI has the particularity to incorporate 
interactions between the human host (H) and vectors using 
the human biting rate (hbr) expressed as presented in Eq. 1 
as follows (Tompkins and Ermert 2013).

The factor 1-exp(-H/τz00) represents the level of vector 
zoophily. The exponential factor reflects this, with the 
e-folding population density for the effect set to 
τzoo = 50  km−2. The vector status is also bin resolved, con-
sisting of two properties: the gonotrophic and sporogonic 
cycles. It is thus represented as a two dimensional array 
V(Ngono, Nsporo). All vectors in the first gonotrophic bin 
∑Nsporo

j=1
V(1, j) are in the meal-searching step of the model.

The probability of transmission of an infectious vector 
to the host after a single bite is noted as  Pvh. If its value 
is assumed constant, then the probability of transmission 
for an individual receiving n infection bites is given by 
1 − (1 −  Pvh)n. The daily overall transmission probability 
per person is then expressed as in Eq. 2 (Tompkins and 
Ermert 2013):

GEIR is the Poisson distribution for mean entomological 
inoculation rate (EIR). EIR, which is the daily number of 
infectious bites by infectious vectors, is calculated as the 
product of human biting rate (hbr) and circumsporozoite 
protein rate (CSPR). Equation 2 is subject to modification 
if factors such as the use of mosquito nets, which cause 
fluctuations in the biting rate, are to be taken into account. 
Generally, a population host has about 20 days after infec-
tion to assume the infective status (Day et al. 1998). The 
calculation of parasite ratio (PR) and EIR relies on both 
Eqs. 1 and 2 of the VECTRI model. Further information 
on the physical and mathematical formulation is available 
in the supplementary material.
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Data used

Climate inputs for VECTRI, specifically rainfall and temper-
ature data at 0.44° grid spacing,are taken from the results of 
dynamical downscaling of the fourth version of the Rossby 
Centre Atmospheric (RCA) model (RCA4), participating in 
the Coordinated Regional Climate Downscaling Experiment 
(CORDEX) project. RCA4 was forced with five global cli-
mate models (GCMs) involved in the Coupled Model Inter-
comparison Project phase 5 (CMIP5; Taylor et al. 2012). 
Details of downscaled GCMs are provided in Table 1.

Observed malaria PR data are obtained from the Malaria 
Atlas Project programme (MAP) that collects results of indi-
viduals researchers or organizers already published in the 
literature while EIR is obtained from a recent database for 
Africa (Yamba et al. 2020).

VECTRI was first integrated from January 1985 through 
December 2005 using historical data from the downscaled 
GCMs which is compared against simulations when VEC-
TRI is forced by the observation FEWS-ARC2, Famine 
Early Warning Systems Network ARC version 2 (Love 
2002) for rainfall and the reanalysis ECMWF ERA-Interim 
(Dee et al. 2011) for temperature. Secondly, the model is 
integrated under global warming using two Representa-
tive Concentration Pathway scenarios: the high-mitigated, 
low-emission RCP2.6 and the low-mitigated, high-emission 
RCP8.5 scenarios (Vuuren et al. 2011). Using these two 
contrasted scenarios enables us to get an insight into the 
way each warming level might impact the malaria metrics’ 
distribution over Cameroon. Therefore, this offers the pos-
sibility to stimulate discussion about the opportunity or not 
to mitigate the changing climate.

Population density is taken from AFRIPOP (Linard 
et al. 2012) for each grid cell point in order to account for 
the growth of the population in the malaria simulations. 
We set the population growth parameter in VECTRI to be 
equal to the annual population growth rate in Cameroon, 
which is 2.6 according to the results of the third National 
Population Census (Mbarga 2010) taking advantage of the 
fact that the model is dynamic. VECTRI’s simulations are 
performed with a 0.1° × 0.1° horizontal resolution. Driv-
ing data are statistically downscaled to the land model 

Table 1  Details of GCMs used 
to force RCA4 in this study

Model name Institution Native resolution References

EC-EARTH-ES European community Earth-System 
Model Consortium

1.125◦ × 1.125◦ Hazeleger et al. (2010)

MPI-ESM-LR Max Planck Institute for Meteorology 1.9◦ × 1.9◦ Popke et al. (2013)
MIROC-5 Atmosphere and Ocean Research Insti-

tute (University of Tokyo)
1.40◦ × 1.40◦ Watanabe et al. (2011)

NorESM1-M Norwegian Climate Centre 2.5◦ × 1.9◦ Bentsen et al. (2013)
HadGEM2-ES Met Office Hadley Centre 1.875◦ × 1.25◦ Collins et al. (2011)
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resolution assuming a lapse rate of 6.5 K  km−1 to adjust 
to the high-resolution topography.

Results and discussion

Models’ evaluation

This section aims at evaluating the ability of the RCA4 
model to reproduce the climatology of the study area as 
well as the VECTRI model to simulate malaria (malaria 
metrics) observed data.

RCA4 model evaluation

We started by investigating whether the atmospheric regional 
climate model RCA4 satisfactorily reproduces the mean cli-
matology of Cameroon rainfall and temperature. To this, 
we investigated the three agro-climatic sub-regions termed 
North Cameroon (NCAM), West Cameroon (WCAM) and 
East Cameroon (ECAM) (see Fig. 1). Only the results based 
on the ensemble mean of RCM experiments (RCA-EnsMean 
thereafter) are presented in the main document, whereas out-
comes from individual RCM simulations are shown in the 
supplementary material.

Figure 2 shows the seasonality of rainfall (left panels) 
and temperature (right panels) over the three agro-climatic 
regions. The grey shade band is the standard deviation 

Fig. 2  Seasonality of mean (1985–2005) rainfall (in mm/day, left 
panels) and temperature (in °C, right panels). The study area is subdi-
vided into three agro-climatic regions: a, b North Cameroon (NCAM, 
row 1), c, d West Cameroon (WCAM, row 2) and e, f East Came-

roon (ECAM, row 3). Data used are from RCA4 simulations and the 
ensemble mean of RCM runs (RCA-EnsMean) and from observed 
rainfall FEWS-ARC2 (red), CHIRPS2 (blue). The temperature refer-
ence is extracted from the ERA-Interim (cyan) reanalysis dataset
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obtained from the FEWS-ARC2 for precipitation and from 
the reanalysis ERA-Interim for the temperature. For a given 
month, a mean rainfall value greater than the corresponding 
standard deviation is considered as a clear failing of the con-
sidered experiment. Two peaks are observed for rainfall in 
WCAM (Fig. 2a) and ECAM (Fig. 2e) in May and October 
(highest peak at ∼12 mm/day and ∼9 mm/day respectively), 
while NCAM experiences a unimodal rainfall regime, with 
the peak (~ 9 mm/day) occurring during August to Septem-
ber months (Fig. 2c). Although some divergences in terms 
of rainfall magnitude are noticed between datasets (more 
pronounced in NCAM), they all nevertheless vary within the 
range of the observed standard deviation. The seasonality of 
temperature is also well captured with the highest values in 
March and the ones in December for WCAM (Fig. 2b) and 
ECAM (Fig. 2f). Two obvious peaks are observed within 

April to May (up to 30 °C) and within November to Decem-
ber (up to 28 °C) for NCAM (Fig. 2d). RCA-EC-EARTH 
failed to simulate the temperature for NCAM from April to 
June (Fig. 2d); from April to June and from November to 
December over ECAM (Fig. 2f). Overall, the climatological 
annual cycle of both rainfall and temperature are realisti-
cally captured over all subregions. The RCA-EnsMean is 
quite similar to individual RCM runs and is well contained 
in the natural variability of observations. This suggests that 
the ensemble mean of experiments is representative of indi-
vidual simulations and can be used without changing the 
conclusion.

Statistical performance measures are summarized in 
Fig. 3, through the Taylor diagram. Three statistical met-
rics are used, including the root-mean-square difference 
(RMSD), the pattern correlation (r) and the standard 

Fig. 3  Taylor diagrams display-
ing the statistics of daily precip-
itation and comparing RCA4’s 
experiments and the ensemble 
mean (RCA-EnsMean) with 
observations FEWS-ARC2 
(reference field for precipita-
tion). For temperature, the 
reanalysis ERA-Interim is used 
as a point of reference. The first 
row shows statistical param-
eters over NCAM, the second 
over WCAM and the third over 
ECAM. The first column dis-
plays statistical parameters for 
precipitation while the second 
does so for temperature
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deviation (STD), computed between downscaled results 
and FEWS-ARC2 for precipitation, and ERA-Interim for 
temperature used as a point of reference.

Regarding precipitation statistics, for NCAM and ECAM, 
RCA4’s experiments and FEWS-ARC2 clustered but not 
so close to the reference field with average performances 
(RMSD < 1; r ∼ 0.90 and STD < 0.75). There are fewer 
performances of RCA4’s model for WCAM compared 
to the reference field with 1 < RMSD < 1.5, r ∼ 0.90 and 
1 < STD < 1.5. For temperature, RCA4’s runs clustered and 
outperformed (compared to what was observed with precipi-
tation) over the three agro-climatic regions, with r ∼ 0.90, 
0.5 < RMSD < 1 and STD < 0.75.

VECTRI model evaluation

Figure 4 presents how observed PR and EIR (blue lines) fit 
with simulated values (red lines) over the different meas-
urement stations. Here, simulated values are results of the 
combination VECTRI-RCA-EnsMean, i.e. VECTRI driven 
by RCA-EnsMean. The PR and EIR observed and simulated 
values in Fig. 4 can be found in Table S1 and Table S2 in the 
supplementary material.

The results show that, although there are differences 
between the two experiments, the shapes of the curves 
are similar, meaning that the combination VECTRI-RCA-
EnsMean succeeds to detect the signal of individual stations. 
The differences can be attributed to differences in rainfall 
amount and temperature. VECTRI outperforms in simulat-
ing EIR (right panel) than PR (left panel). It is important to 
recall the challenge of assessing model performance over 
equatorial Africa given observational uncertainty. Some 
differences may be associated with inhomogeneities in sta-
tion measurements. The fact that the combination VECTRI-
RCA-EnsMean satisfactorily reproduces the signal of varia-
tion of PR and EIR in most stations makes its usage reliable 
for projection.

To get an insight into how the coupling VECTRI-RCA-
EnsMean simulates the spreading of malaria over the coun-
try, we showed in Fig. 5 the spatial distribution of the PR as 
modelled by VECTRI-RCA-EnsMean compared against the 
monthly observed PR over the period 1985–2005.

These spatial plots present a varied landscape of malaria 
PR over the country. There are some simulated biases in 
NCAM where PR values are above 0.5 (Fig. 5b) which is 
mostly dry and warm, whereas in the observation (Fig. 5a), 
the mean PR is lower. Such a difference could be probably 
related to the sensitivity of VECTRI to low rainfall. For 
ECAM, the differences in PR between observed and simu-
lated values are more obvious compared to WCAM. The 
model somehow outperforms better in these two areas com-
pared to the NCAM. 

Projected changes in the malaria metrics

In this section, we explore the impacts of global warming 
on the aforementioned malaria metrics under the optimistic 
(RCP2.6) and the pessimistic (RCP8.5) scenarios. Analy-
ses are conducted under two-time frames: the near future 
(2035–2065) and the far future (2071–2100), using the com-
bination VECTRI-RCA-EnsMean.

Changes in the parasite ratio (PR)

Figures 6 and 7 exhibit the monthly mean changes in PR 
over the near future and the far future under the high miti-
gated RCP2.6 (Fig. 6) and the low mitigated RCP8.5 (Fig. 7) 
scenarios.

Figure 6 presents the PR pattern obtained with RCA-
EnsMean, under RCP2.6 scenario. Results based on individ-
ual experiments are presented in the supplementary material 
as follows: Fig. S1 for RCA4-EC-EARTH-ES, Fig. S3 for 
RCA4-MPI-ESM-LR, Fig. S5 for RCA4-MIROC5, Fig. S7 
for RCA4-HadGEM2 and Fig. S9 for RCA4-NorESM1-M. 

Fig. 4  Results of combinations of VECTRI-observation (in blue) and 
VECTRI-RCA-EnsMean (in red) for PR (left panel) and EIR (right 
panel), function of rainfall (mm/day) and temperature (°C) over Cam-

eroon. The x-axis values represent the station number. The two panels 
show how VECTRI forced with observed station measurements com-
pares against VECTRI forced with RCA-EnsMean
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Fig. 5  Observed (left) and simulated (right) monthly mean of PR for the available data sites in Cameroon over the period 1985–2005. The PR 
values represent the average of all the points located within the same geographical areas of study

Fig. 6  Monthly mean changes in PR under RCP2.6 scenario. VECTRI model driven by RCA4-EnsMean for the period 2035–2065 (a) and 
2071–2100 (b)
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The PR tends to decrease when VECTRI is forced with 
RCA4-EC-EARTH-ES (Fig. S1) experiment with respect to 
other VECTRI-RCA4 runs. Contrastingly, increases instead 
are expected in the PR when VECTRI is driven by RCA4-
HadGEM2 (Fig. S7).

PR is then projected to increase throughout the year 
with emphasis from October to March over the near future 
(Fig. 6a). A similar pattern is observed over the far future 
(Fig.  6b), where the PR tends to mostly increase over 
WCAM and decreases during the April month in NCAM. 
The PR is projected to significantly decrease in the distant 
future than in the near future.

Figure 7 presents the PR pattern with RCA-EnsMean as 
forcing under RCP8.5 scenario. Results based on individual 
forcings of VECTRI by RCA4 experiments are highlighted 
in the supplementary material: Fig.  S2 for RCA4-EC-
EARTH-ES, Fig. S4 for RCA4-MPI-ESM-LR, Fig. S6 for 
RCA4-MIROC5, Fig. S8 for RCA4-HadGEM2 and Fig. S10 
for RCA4-NorESM1-M. The increase in the PR is strongest 
when VECTRI is coupled with RCA4-HadGEM2 (Fig. S8).

Under the high emission scenario RCP8.5 (Fig.  7), 
obvious differences between the near (Fig. 7a) and the far 
(Fig. 7b) future appear in the amplitude of changes in the 
PR. The PR generally tends to decrease from March to July, 
especially over NCAM, and increase during the rest of the 
year, especially over WCAM and ECAM.

The above results indicate that global warming would 
not much change the life cycles of the Anopheles mosquito 

and the malaria parasite plasmodium falciparum. Actually, 
rainfall creates suitable conditions (availability of ponds) 
for the mosquitoes’ breeding process. But extreme rain-
fall could negatively impact the productivity of mosquito 
breeding habitat by flushing effect which leads to high 
mosquito losses (Paaijmans et al. 2010). This is observed 
in Figs. 6 and 7 from April to September referring to rain-
fall patterns in Figs. S21 and S23 of the Supplementary 
material.

Moreover, PR tends to intensify with temperature val-
ues less than 32 °C (see Figs. S22 and S24 in the sup-
plementary material). This is associated with the fact that 
there is a range of temperatures that allows malaria trans-
mission. In fact, the temperature is able to create good 
conditions for malaria vectors to thrive. Generally, the 
increase in temperature accelerates vector life cycles and 
also decreases the incubation period of the parasite (Van-
Lieshout et al. 2004). This result is in line with previous 
studies conducted over Cameroon. They showed that the 
temperature suitability range for Anopheles gambiae and 
Anopheles funestus is between 20 and 29 °C (Tanga et al. 
2010). Similar results were reported over the Limpopo 
Province in South Africa (Komen et al. 2015). However, 
at a very high temperature, mortality is high thus reducing 
transmission (Ebi et al. 2005), which corresponds to the 
situation expected in NCAM (Fig. 7 from April to July) 
and previously reported by Chemison et al. (2021) and 
Caminade et al. (2014).

Fig. 7  Monthly mean changes in PR under RCP8.5 scenario. VECTRI model driven by RCA4-EnsMean for 2035–2065 (a) and 2071–2100 (b)
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Fig. 8  Monthly estimated changes in EIR indicating the number of infected bites per person per month (ib/p/m). This is obtained for the RCP2.6 
scenario from the coupling VECTRI-RCA4-EnsMean over the periods 2035–2065 (a) and 2071–2100 (b)

Fig. 9  Monthly estimated changes in EIR, indicating the number of infected bites per person per month (ib/p/m). Results obtained from the cou-
pling VECTRI-RCA-EnsMean under the RCP8.5 scenario and over 2035–2065 (a) and 2071–2100 (b) periods
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Changes in the entomological inoculation rate (EIR)

Figures 8 and 9 display maps of monthly mean changes in 
the EIR pattern when VECTRI is forced by RCA4-EnsMean 
under RCP2.6 and RCP8.5 respectively.

Broadly under RCP2.6, EIR is projected to decrease 
from April to July in NCAM and during March in WCAM 
(Fig. 8a). In the distant future, the EIR is expected to reduce 
from March to April, especially over NCAM (Fig. 8b). Over 
WCAM and ECAM subregions, an intensification of EIR 
is projected from April to November, whereas insignificant 
changes will occur for December and January.

For individual RCA4 model simulations, results are 
shown in the supplementary materials (Figs. S11, S13, S15, 
S17 and S19). EIR tends to gradually increase when VEC-
TRI is forced with RCA4-HadGEM2 (Fig. S17), from June 
(WCAM and ECAM) to November with a peak in August 
to September (NCAM). There is a decrease in projections 
using rainfall and temperature from RCA4-EC-EARTH-ES 
(Fig. S11), whereas fewer changes are expected in EIR with 
RCA4-NorESM1-M (Fig. S19).

Under RCP8.5, EIR is expected to decrease significantly 
over almost the entire study area during March and April 
months and especially over NCAM from May to June 
(Fig. 9a and b). Conversely, EIR is projected to increase 
over WCAM and ECAM from May to November and over 
NCAM from July to November. No particular changes are 
foreseen over almost the whole country from December to 
February, except for a small part of southern Cameroon 
where a strengthening of the EIR is noted in December and 
a weakening in February over the two projection periods.

Results with the coupling VECTRI-RCA4-EC-EARTH-
ES, VECTRI-RCA4-MPI-ESM-LR, VECTRI-RCA4-
MIROC5, VECTRI-RCA4-HadGEM2 and VECTRI-RCA4-
NorESM1-M are presented in Figs. S12, S14, S16, S18 and 
S19, respectively.

Changes in EIR presented in Figs.  8 and 9 can be 
explained by the suitable range of temperature of 18–33 °C 
(Bayoh and Lindsay 2003) of the study area as highlighted 
in Figs. S22 and S24 in the supplementary material. But it 
should be recalled that temperatures above 30 °C are preju-
dicial for anopheles’ development, therefore leading to a 
decrease in EIR as demonstrated in Béguin et al. (2011).

Changes in EIR are stronger in the far future than in the 
near future and vice-versa (Figs. 8 and 9). In general, the 
signal of change is stronger under RCP8.5 than RCP2.6, 
meaning an increased risk with the increased level of the 
radiative forcing. A similar study conducted by Chaturvedi 
and Dwivedi (2021) over India showed that under global 
warming, malaria transmission is expected to strengthen 
together with the duration of the transmission season. The 
EIR results also highlight the important role of changes in 
rainfall and temperature on malaria incidence and show the 

seasonality of the disease. Similar work also demonstrated 
that a decline in precipitation is beneficial for the growth of 
the mosquito population, which causes higher EIR (Ermert 
et al. 2012). Our study also attests to general expectations 
with regard to the impact of global warming on the spread 
of malaria. It is generally accepted that climate change will 
affect the spread of malaria as mentioned by Ogega and 
Alobo (2020), but it is also noted that malaria distribution 
is impacted by many factors in addition to climate change, 
including population mobility, changes in land use, changes 
in air and water temperatures and the systematic increase in 
preventive interventions, which VECTRI has not yet incor-
porated and which should prompt future work.

Conclusion

This work is an initial exploration of the relationship 
between climate and malaria in Cameroon using dynamical 
models under future climate scenarios of the CORDEX pro-
ject for Africa. The link between these parameters and two 
common malaria indicators, parasite ratio (PR) and entomo-
logical inoculation rate (EIR), was established. The results 
demonstrated that there is a close relationship between 
rainfall, temperature and malaria transmission in Cameroon 
under future climate change. For each of the models used 
under the two RCP scenarios, the impact of temperature on 
the evolution of malaria indicators is established, and the 
seasonality is highlighted for the PR and EIR metrics. The 
integration of VECTRI with future climate scenarios reveals 
a modulating effect of changes in temperature and rainfall 
on changes in malaria transmission, although factors such 
as population mobility and effective intervention strategies 
against malaria are likely to improve VECTRI results if 
implemented. The next step in line of this work is to ascer-
tain how best to incorporate such a model effectively into 
a national or regional decision-making process concerning 
health planning and interventions. If such a model should 
be used to aid operational decisions in Cameroon, using 
machine learning techniques for an effectiveness model’s 
calibration of parameters is required as recently introduced 
in Tompkins and Thomson (2018).
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tary material available at https:// doi. org/ 10. 1007/ s00484- 022- 02388-x.
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