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Abstract
Thermal stress has a direct effect on various types of DNA damage, which depends on the stage of the cell cycle when the 
cell is exposed to different climate conditions. A literature review was conducted to systematically investigate and assess 
the overall effect of heat stress and DNA damage following heat exposure. In this study, electronic databases including 
PubMed, Scopus, and Web of Science were searched to find relevant literature on DNA damage in different ambient tem-
peratures. Outcomes included (1) measurement of DNA damage in heat exposure, (2) three different quantification methods 
(comet assay, 8-hydroxy-2-deoxyguanosine (8-OHdG), and γ-H2AX), and (3) protocols used for moderate (31) and high 
temperatures (42). The evidence shows that long exposure and very high temperature can induce an increase in DNA dam-
age through aggregate in natural proteins, ROS generation, cell death, and reproductive damage in hot-humid and hot-dry 
climate conditions. A substantial increase in DNA damage occurs following acute heat stress exposure, especially in tropical 
and subtropical climate conditions. The results of this systematic literature review showed a positive association between 
thermal stress exposure and inhibition of repair of DNA damage.
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Introduction

The effect of global warming on climate change has been 
noticeable throughout the increase in heat strain among 
humans. Health risks due to heat stress have become a 

major concern for experts (Golbabaei et al. 2020). The 
direct effects of thermal stress on human health include 
fatigue (Kjellstrom et  al. 2014), reduced psychomotor 
performance (Xiang et  al. 2014), reduced alertness, 
increased core body temperature (Habibi et  al. 2015), 
increased sweat rate (Vanos et al. 2019), and dehydration. 
It is well known that thermal stress at the workplace can 
cause occupational health hazards, and climate change 
can aggravate the effects of these hazards and create new 
risks (Habibi et al. 2021a). Thus, maintaining safety and 
health promotion in warm workplaces will keep being 
an important challenge (Habibi et al. 2021b). Heat stress 
(heat shock, hyperthermia) is considered an important 
factor for biological effects, damage to cellular structures, 
interference with important functions, and disturbance of 
vital enzymes activity (Lepock and Borrelli 2005). Cell 
injury such as genotoxicity, oxidative stress, and DNA 
damage is induced by hot-dry and hot-wet environments in 
several workplaces including steel industry and agriculture. 
Cellular responses to thermal stress such as various cellular 
compartments and enzymes such as activating signaling 
pathways induce the transient heat shock proteins (Hsps) 
expression (Nasr et al. 2019; Richter et al. 2010). Heat 
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radiosensitization is a physical hazard in which cells are 
exposed to thermal stress and ionizing radiation (IR) that 
can increase double-stranded DNA breaks (DSBs) and 
other agents. In addition, heat stress can inhibit some DNA 
repair pathways including base excision repair (BER) and 
nucleotide excision repair (NER) (Kantidze et al. 2016). 
The damaged DNA, the opposite of lipids and proteins, 
cannot be removed through cell mechanisms and must 
be repaired, otherwise, it can lead to lethal mutations 
and cancer cells (Evans et al. 2004). Physical (heat stress 
and radiation (ultraviolet (UV) and IR radiation)) and 
chemical agents can inhibit DNA repair mechanisms 
and act as exogenous DNA damage factors (Mohammadi 
et al. 2021). In summary, high and moderate temperature 
directly results in DNA damage and effect on cellular 
macromolecules functions, respectively (Milani and 
Horsman 2008). Interestingly, the type of the heat stress-
induced DNA damage depends on the stage of the cell 
cycle, such as S phase (which leads to top 1 dependent 
single-stranded DNA breaks (SSBs)) or G1–G2 stage 
(which induces DSB formation), when the cell is exposed 
to different climate conditions (Kantidze et  al. 2016). 
Although some studies have investigated the effect of heat 
stress on DNA damage, no comprehensive study has been 
done to evaluate the effect of different temperatures and 
humidity on DNA damage. DNA damage in response to 
exposure to thermal stress and whole-body hyperthermia 
(WBH) in mammals has not been investigated thoroughly 
in a systematic literature review. The aim of this study 
was to systematically investigate data reporting DNA 
damage following heat stress exposure, and explore their 
relationships. There are inconsistencies about thermal 
stress-induced oxidative DNA damage in exposure to 
very hot and warm climate conditions, and this review 
will aim to clear this subject. Furthermore, the possible 
physiological and pathological responses to heat stress-
induced DNA damage need to be investigated in different 
climate conditions.

Materials and methods

Bibliography search strategy

A systematic review was performed according to the Pre-
ferred Reporting Items for Systematic Reviews (PRISMA) 
statement (Shamseer et al. 2015). Databases such as Pub-
Med, Scopus, and Web of Science were searched for articles 
published from 2000 to 18.04.2020. All the search terms 
related to “heat stress” were found by the PubMed Mesh sys-
tem, and also a specialist’s opinion about synonyms of terms 
in a combination with “DNA damage.” The search syntax 
was produced using keywords and synonyms searched in 
the title, abstract, or keyword fields in the databases. In 
addition, to find relevant studies, the reference lists of the 
included studies were manually searched. Databases were 
investigated using the following search syntaxes to find the 
relevant studies.

Scopus

TITLE-ABS-KEY(“Heat shock” OR “heat stress” OR “IR 
radiation” OR Hyperthermia OR “DNA injury” OR (DNA 
AND injury*)) AND TITLE-ABS-KEY(“DNA damage” 
OR (DNA AND damage*) OR “DNA repair” OR (DNA 
AND repair*) OR “DNA replication” OR (DNA AND 
replicate*)).

At first, all titles and abstracts were checked for inclusion 
by two reviewers (PH and AH). Then, the full texts of the 
articles were reviewed (n = 15). Two articles were included 
from the reference lists and one article was included from 
an additional search in the Google Scholar.

Eligibility criteria

The “PICO” strategy for systematic exploratory review was: 
P (humans and animals), I (heat stress), C (DNA), and O 
(DNA damage). The inclusion/exclusion criteria are shown 
in Table 1. In addition, the full-text articles and conference 
papers that were not available were excluded from the study.

Table 1   Inclusion/exclusion criteria for systematic review of the effect of heat stress on DNA damage

* SBs strand breaks, 8-OHdG 8-hydroxy-2’–deoxyguanosine, PBMC peripheral blood mononuclear cells, γ-H2AX H2A histone family member X

Criteria Include Exclude

Participants In vivo, in vitro Microorganisms
Exposure Whole-body hyperthermia, climate conditions, heat strain Therapeutic approaches
Sample White blood cells (leukocytes, lymphocytes, mitochondrial, PBMC), 

tissues, human embryonic stem cells
Urine, muscle, red blood cell (RBC) count

Outcome measure SBs (%), tail damage (%), tail length, tail moment, 8-OHdG, HSPs, 
γ-H2AX, DSBs (%), inflammation

Cell carcinoma, tumorigenic, acute injury
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Inclusion/exclusion criteria

All published studies were checked for the following criteria: 
(1) the study assessed humans and animals; and (2) combining 
keywords used heat stress, heat shock, heat strain, IR radiation, 
DNA damage, DNA repair, and DNA replication. Note that 
for this review, we used the term DNA damage to encompass 
SSBs, DSBs, and nucleotide base oxidation. One investigator 
initially reviewed records extracted from all databases and 
applied the inclusion/exclusion criteria to identify eligible 
studies for inclusion in agreement with at least three authors. 
The inclusion/exclusion criteria are shown in Table 1. The 
ambient temperature was defined as hot temperature (over 
41) and moderate temperature (around 31–33) (Golbabaei 
et al. 2020; Prandini et al. 2005). To minimize the limitation 
of various biological samples, studies using urine samples, 
RBC count, and muscle cells were also excluded. In addition, 
mathematical models and dynamics of the heat stress response 
of the cells were excluded. We concentrated on studies with 
clear and direct effects of thermal stress exposure on DNA 
damage and did not include the studies in which physical and 
chemical hazards were a byproduct of exposure to other agents 
(e.g., air pollution, cancer therapy, and acute injury) (Table 1).

Data extraction and quality assessment

After conducting screening and selection, two checklists 
were applied for data extraction. The first checklist included 
the characteristics of the studies such as the first author’s 
name, publication year, location, participants, biomarkers, 
protocols, techniques, findings, and quality scores. 
Two independent reviewers (PH and AH) assessed the 
methodological quality of included studies using the 16-item 
quality assessment tool for studies with diverse designs 
(QATSDD) (Sirriyeh et al. 2012). The characteristics of the 
participants (humans and animals such as the sample size, 
age, and sex) for in vivo studies, type of cells for in vitro 
studies, climate conditions (ambient temperature, relative 
humidity, etc.), assayed biomarkers, and methods of DNA 
quantification were extracted by two investigators.

The outcome measure of DNA damage was expressed 
using multiple descriptors, and about the comet assay tech-
nique including DNA in the tail (%), tail moment, and the 
length of DNA migration (tail length) (Evans et al. 2004). In 
this study, 8-OHdG, γ-H2AX, and HSPs were as considered 
biomarkers and tRNAs sensors. In addition, the analytical 
approach including high-performance liquid chromatogra-
phy (HPLC), enzyme-linked immunosorbent assay (ELISA), 
fluorescent in situ hybridization (FISH), 8-OHdG (pg/ml), 
and 8-OHdG/105 dG was also reported [8-OHdG (ng/ml) 
or (pg/ml) and 8-OHdG/105 dG correspond to HPLC and 
ELISA methods, respectively].

Results

Search results

Figure 1 presents a detailed list of search results. The initial 
electronic search yielded 36,902 papers. Then, after remov-
ing duplicate records, 31,683 papers were screened through 
reviewing their titles and abstracts. In total, 47 articles were 
excluded. After title and abstract screening, 15 articles were 
considered eligible for full-text evaluation. Subsequently, 
17 articles were included in the qualitative analysis. Table 2 
summarizes the characteristics of the included studies.

Descriptive analysis

Our review identified 17 relevant studies out of 36,902 were 
eligible for data extraction, of which 12 presented in vitro 
studies in different climate conditions and cells including 
human HeLa cells, human fibroblasts, and human ESC. Five 
were in vivo studies in animal and human cells including 
lymphocytes, germ cells, cerebellum and hippocampus, and 
spermatozoa. The results of these studies showed that the 
effect of thermal stress on DNA damage had the greatest 
impact. Most of the studies have also emphasized the 
impacts of thermal stress including the spread of negative 
impacts on oxidative DNA damage in the future, how high 
temperatures and humidity creates hyperthermic cell killing 
risks and inhibit the repair of DNA damage challenges; how 
thermal stress will affect the integrity of the genome, and 
how these are often intertwined with heat shock responses. 
Four publications came from Russia, three from the USA, 
two from Japan, two from Canada, one from Australia, 
one from India, one from Taiwan, one from Italy, one from 
Ukraine, and one from Scotland. To measure DNA damage, 
five studies used comet assay, two used FISH, three used 
ELISA kit, two used surviving fraction, one used MN assay, 
one used gene chip system and bioinformatics tools, one 
used gel electrophoresis (EMSA), one used PFGE, and one 
used immunofluorescence. Concerning the biomarker and 
the techniques used to quantify DNA damage, 2 studies 
used 8-OHdG (Houston et al. 2018; Liu et al. 2015) with 
either comet assay or ELISA kit. A total of 4 studies used tail 
moment, tail length, and tail DNA (%), with the comet assay 
technique (Roti Roti et al. 2010; Ryabchenko et al. 2013; 
Velichko et al. 2012, 2015), one used HSF with FISH or 
surviving fraction (Bettaieb and Averill-Bates 2015), and 3 
studies used γ-H2AX with immunofluorescence (molecular 
probes), PFGE, and comet assay (Hunt et al. 2007; Laszlo 
and Fleischer 2009; Velichko et al. 2012). Of the studies 
using different climate conditions, all of the studies were 
conducted in a range of (33–50) mild to hot temperatures.
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Discussion

In our review, we explored the effects of heat stress on DNA 
damage in various cells. Heat stress triggers active and pas-
sive cellular reactions that depend on environmental condi-
tions as an important factor and the dominant response. High 
temperatures can induce the denaturation of thermal proteins 
and impose adverse effects on local proteins, disrupting pro-
tein synthesis and inducing DNA damage via affecting intra-
cellular metabolic pathways and components (Lepock and 
Borrelli 2005). On the other hand, DNA repair suppression 
and complications such as cellular apoptosis are triggered 
by exposure to physical stressors such as radiation, thermal 
stress, and cytotoxic agents. Heat stress can lead to a variety 
of DNA damages, depending on the cell cycle phase and the 
ambient temperature. Regarding the global warming trend, 
it is necessary to understand the genetic damages caused by 
thermal stress, the pathogenic mechanisms of heat-related 

illnesses (HRIs), and related physiological and perceptual 
responses at molecular levels to develop preventive and 
therapeutic strategies in the future.

Sensitive molecular markers of DNA damage

HSPs belong to a family of the proteins produced by cells 
in response to stress. These proteins were first recognized 
in relation to heat shock, but now, they are known to be 
expressed in response to other stresses such as exposure 
to cold and UV radiation, during wound healing and tis-
sue regeneration, and in diseases that are directly related 
to inflammation. The upregulation of these proteins under 
these conditions is regulated at the transcriptional level. 
The tight regulation of the expression of heat shock pro-
teins is an important part of the heat shock reaction and 
is primarily induced by the heat shock factor. These pro-
teins are responsible for preserving cellular integrity and 

Fig. 1   Flow diagram of screen-
ing process of included studies 
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regulating the signaling pathways that are essential for cell 
survival. HSPs include a combination of groups known 
as HSP27 (also named HSPB), HSP60 (HSPD), HSP70 
(HSPA), HSP90 (HSPC), and HSP110 (also called HSPH), 
which have been recognized as highly preserved guardians 
of molecules and have remained highly protected through-
out evolution (Dubrez et al. 2020). In a study conducted by 
Yang et al., it was suggested to use HSP70 as a biomarker 
for heat-induced DNA damage (Yang et al. 2008). Wu et al. 
also reported that HSPs could provide useful biomarkers 
for assessing cellular damages among those working in 
hot environments (Wu et al. 2001). The quantification of 
γ-H2AX was recommended as a primary marker to assess 
cellular responses and a sensitive tool for detection of DNA 
DSBs, resolution, and recognizing DNA damage initiation 
(Mah et al. 2010). Lazlo et al., however, revealed no role 
for heat stress-induced γ-H2AX in assessing DSBs and cell 
death (Laszlo and Fleischer 2009). In this regard, the mecha-
nisms by which γ-H2AX is induced following thermal stress 
should be further investigated.

Heat stress and gene response

There are a few studies on the effects of delayed heat stress 
on gene expression regulation and cellular function. Heat 
stress has been noted to trigger p21-dependent cell aging 
only in the early S phase, which is similar to cell cycle arrest 
that induces DNA SSBs (Velichko et al. 2015). Harrouk 
et al. showed that the exposure of sperms to heat during 
fertilization could alter the expression of DNA repair genes 
in the early stages of embryonic development (Harrouk 
et al. 2000). In an animal model, exposure to thermal stress 
could reduce the expression of polyADP ribose polymerase 
(PARP) through two pathways, including BER and NER, 
which contribute to the detection of SSBs (Tramontano et al. 
2000; Van’t Veer et al. 2002). Also, exposure to heat stress 
(the range of 39–42 °C) increased DNA damage in Sertoli 
cells and significantly boosted oxidative stress-induced 
damages in the exposed cells compared to the control group 
(Nezhad et al. 2013). Cryptorchidism can lead to thermal 
stress, in which the expression of the repair genes acting 
in the final stages of DNA repair is reduced, such as DNA 
polymerase beta, which promotes the recruit of DNA ligase 
III (Tramontano et al. 2000). An in vitro study showed that 
cigarette smoking could enhance the formation of micronu-
clei in the human lymphocytes exposed to heat stress (Feng 
et al. 1998). The formation of heat-induced γ-H2AX foci 
is dependent on ataxia-telangiectasia mutated (ATM) pro-
tein, which is known as a DNA damage sensor. Moreover, 
thermal stress, by activating a subset of ATM proteins, can 
interfere with IR-induced signaling pathways involved in 
the repair of chromosomal DNA DSBs. Hunt et al. showed 
that high temperatures could enhance cells’ sensitivity to 

radiation (Hunt et al. 2007). Heat stress was also shown to 
induce partial DNA replication, boost cellular DNA content, 
and cause excessive centrosome growth in the early S phase, 
triggering an aging-like phenotype in human HeLa cells 
(Petrova et al. 2016). Further investigations are warranted 
to divulge the molecular mechanisms underlying the exit 
of tumor cells from the aging stage under various thermal 
stressors. Heat stress can stimulate different DNA damage 
responses (DDRs) in the S phase, leading to the suppres-
sion of DNA replication (the S phase) and the formation of 
DNA DSBs (in the interphase at the stages of G1 and G2), 
which depend on H2AX phosphorylation and γ-H2AX foci 
formation, respectively (Velichko et al. 2015). Heat stress-
induced DSBs and DNA damage depend on the cell type, 
cell cycle phase, and ambient temperature (Kantidze et al. 
2016). Nevertheless, more studies are needed to confirm the 
role of hyperthermia in inducing DSBs. The combination 
of heat stress and infrared radiation was shown to exag-
gerate genotoxic effects and DNA damage in cells (Ryab-
chenko et al. 2013). A study revealed a link between heat 
stress-induced tRNA depletion and motility in HeLa cells. 
Research has suggested that heat stress-induced tRNA gran-
ules in the nucleus may be applicable as important sensors 
for detecting DNA damage (Miyagawa et al. 2012). Tabuchi 
et al. mentioned that mild heat stress (41 °C for 30 min) 
could induce the differential expression of common genes in 
normal human fibroblasts (Tabuchi et al. 2013). Some stud-
ies have negated a direct role for heat stress in creating DSBs 
(Hunt et al. 2007; Laszlo and Fleischer 2009); however, 
others have reported that heat stress can provoke DSBs via 
inducing γ-H2AX (Nam et al. 2013; Velichko et al. 2012).

Heat stress and HSPs

In the cells exposed to various climatic conditions, especially 
hot-dry and hot-humid, HSPs (HSP27, HSP70, and HSP90) 
can promote cell death and inflammatory responses (Magh-
sudlu and Yazd 2017; Nam et al. 2013). Yan et al. asserted 
the main role of HSPs in cellular responses to heat stress and 
protecting cells against heat stress by regulating the body’s 
temperature and facilitating the intracellular trafficking of 
repair proteins, as well as inducing either the refolding of 
denatured proteins or their degradation following stress or 
injury. Therefore, HSPs can prevent the adverse metabolic 
effects of incorrect protein folding and subsequently prote-
otoxic-induced cell death (Yan et al. 2006). Stocker et al. 
noted that heat shock could affect cellular proliferation by 
blocking the entry of precursors into the cell cycle; however, 
further studies are needed to clarify this issue (Stocker et al. 
2006). After exposure to heat stress, HSP70 levels alter in 
lymphocytes and plasma, suggesting these proteins as bio-
markers to investigate protective responses. Nevertheless, 
other factors regulating the production of intracellular and 
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extracellular stress proteins remain completely unknown 
(Yang et al. 2008). A close relationship has been noted 
between HSP70 expression and DNA damage in peripheral 
blood lymphocytes (Venugopal et al. 2018). Heat stress can 
also increase HSP72 plasma level, a biomarker of cardiovas-
cular disease (Tang-Chun et al. 1995). In the lymphocytes 
exposed to acute heat stress, there was a good association 
between positive autoantibodies (respective to negative anti-
bodies) and increased DNA damage (Yili et al. 1997). The 
expression of HSP70 was reported as a sensitive biomarker 
for a wide range of detrimental physical and chemical stress-
ors in cultured cells (Bierkens 2000). Thermal stress induces 
a wide range of complex cellular responses, the most impor-
tant of which is the induction of HSPs, ROS production, 
disruption of proteins, DNA and RNA damage, abnormal 
protein homeostasis, imbalanced cell cycle progression, and, 
finally, cell death (Tabuchi et al. 2013). Nasr et al. indicated 
that mitochondrial proteins, especially HSP70 proteins, 
could protect DNA-binding proteins and oxidative stress-
scavenging systems following exposure to thermal stress up 
to 52 °C (Nasr et al. 2019).

Heat stress exposure and effect on male fertility 
and pregnancy outcome

Normal testicular function depends on the temperature of 
the body and the ambient environment. A rise in testes tem-
perature may occur in the men residing in tropical and sub-
tropical countries, especially during summer and in those 
working in hot outdoor environments. Exposure to occupa-
tional heat stress happens in various professions requiring 
working in hot environments, such as bakery, construction, 
municipal services, farming, mining, and welding. Also, 
heavy workload, prolonged exposure to heat, reduced air 
movement around the skin, and wearing personal protective 
equipment (PPE) can lead to an increase in the core body 
temperature and alteration in other physiological parameters 
in hot and humid environments (Habibi et al. 2021b; Paul 
et al. 2008). Thermal stress significantly affects spermato-
genesis in mammals, inflicting damage to DNA damage in 
germ cells and increasing apoptosis in these cells, culminat-
ing in infertility due to processes such as hypoxia, oxida-
tive stress, and apoptosis (Paul et al. 2009). Heat stress can 
increase the temperature in testes, increasing the production 
of abnormal and immature sperms and leading to infertil-
ity and ejaculation. In the mice kept in hot environments, 
there were reports of alterations in DNA integrity, reduced 
sperm quality, and loss of germ cells with normal chromatin 
packaging. Exposure to thermal stress (up to 40 °C) led to 
the premature loss of the fetus, spermatocytes, and sperma-
tids. In the thermal range of 40 to 42 °C, there was a report 
of testicular dysfunction, as well as changes in testicular 
weight, increased apoptotic biomarkers, and increased rate 

of death in germ cells (MacLachlan et al. 1995; Paul et al. 
2008). Rockett et al. described an increased rate of apopto-
sis and the upregulation of heat-induced proteins, Hsp70-1 
and Hsp70-3, in spermatocytes after exposure to 43 °C for 
20 min. Also, heat can increase DNA SB in Pachytene stage 
spermatocytes via inducing primary cellular responses lead-
ing to the overexpression of γ-H2AX, a highly specific and 
sensitive molecular marker (Rockett et al. 2001). The abil-
ity to reproduce is affected by exposure to extreme heat, as 
evidenced by the abnormal growth of germ cells and reduced 
sperm quality. Exposure to heat stress increases mitochon-
drial ROS levels in sperms and induces oxidative DNA dam-
age and DNA SSBs in germ cells in men (Houston et al. 
2018). Heat stress also upregulates the mRNA expression 
of the hypoxia-inducible factor 1 alpha (Hif1a) gene and 
promotes mild testicular hyperthermia and the translocation 
of the HIF1A protein to the nucleus in germ cells (Paul et al. 
2009). As well, Pena et al., in a study on boars, showed that 
heat stress increased DNA damage in sperms and decreased 
sperm quantity in a hot summer. It has been suggested that 
DNA integrity assessment in the sperm nucleus can be a 
good indicator of sperm quality in exposure to hot weather 
(Peña et al. 2019), especially in tropical and subtropical 
areas where changes in temperature are beyond the thermal 
comfort zone of animals and humans (Penã et al. 2017). In a 
female animal model exposed to heat stress (36 °C for 24 h), 
a decrease in the number of embryos and an increase in heat 
stress responses were observed (Zhu and Setchell 2004). In 
male mice, the whole-body temperature was shown to affect 
sperm count, with a decrease in fertility rate within 10 to 
14 days after exposure to thermal stress (36 °C for 24 h) 
(Yaeram et al. 2006). In an investigation on the effects of 
thermal stress on mice sperm count, the results showed a 
reduction in fertility rate, altered fetal weight, and changes 
in the expression of the repairing genes involved in embry-
onic growth before implantation and in the single-cell stage 
(Harrouk et al. 2000). Alekseenko et al. showed that heat 
stress could induce apoptosis via different mechanisms in 
human embryonic stem cells (ESC) and their differentiating 
daughter cells (Alekseenko et al. 2012).

Limitations and current research gaps 
and future directions

Due to gaps in our knowledge about the effects of expo-
sure to heat stress on DNA damage, there is a need for fur-
ther investigations. As mentioned before, two studies have 
addressed these effects in animal models, and one study 
has been conducted on human workers. Other studies have 
examined these effects in vitro (Table 1). In addition, there 
are no epidemiological studies on the epidemiological 
aspects of diseases and the effects of heat stress on DNA 
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alterations in men and women exposed to heat in different 
work environments, which should be addressed in upcom-
ing studies. In addition, the effects of heat stress on fertility 
(spermatozoa) observed in male animal models should also 
be evaluated in humans (Houston et al. 2018). We also need 
to scrutinize the effects of heat stress at the cellular level on 
the reproductive organs of both females and males. Animal 
and human studies are needed to discover all the mecha-
nisms behind heat stress-induced formation of DNA DSBs.

This is important considering that the outcomes of 
studies can be variable depending on parameters such as 
study design, the animal used, ambient temperature, rela-
tive humidity, the number of animals, and the duration of 
exposure to heat. So, these determinants should be taken 
into mind when generalizing results to humans (Kamp-
inga et al. 2005). Such new approaches can help charac-
terize the concepts related to thermal stress biology and 
its molecular indicators and investigate their relationships 
with epidemiological parameters, such as the incidence and 
prevalence of diseases. In addition, some studies have iden-
tified the adverse effects of heat stress (e.g., inducing cell 
damage, altering cellular function, and triggering apopto-
sis) on immune cells such as monocyte-derived dendritic 
cells (DCs) in vitro; however, these effects have not been 
validated in vivo that should be considered in future stud-
ies (Beachy and Repasky 2011). Climate change and global 
warming have potentially exposed millions of humans and 
animals to hot-humid and hot-dry environments. Therefore, 
it is essential to characterize the cellular damages caused 
by this phenomenon and its relationship with HSPs’ levels 
in tissues and organs so that we can implement preventive 
interventions, management strategies, and protective instruc-
tions in different societies and countries according to climate 
conditions (Habibi et al. 2021b; Venugopal et al. 2018). 
Finally, if a link between heat stress and DNA damage is 
established, it will be necessary to review and adjust the 
regulations of working in hot-humid and hot-dry environ-
ments so that the health of employees is warranted.

Conclusion

Heat stress induces DNA DSBs in human and animal mod-
els, which is one of the deadliest types of DNA damage. 
Nonetheless, the effects of heat stress on the molecular 
mechanisms involved in DNA damage are not well-under-
stood. Although cellular and molecular responses to heat 
stress have been extensively studied in recent decades, in 
this systematic review of the literature, we found that a few 
studies have been conducted to scrutinize the effects of heat 
stress on DNA damage, DNA replication, and nucleic acid 
repair mechanisms. Studying the physiological responses 
to heat stress and their molecular mechanisms can help 

understand the biological effects of heat stress, especially 
in tropical and subtropical countries. As well, identifying 
the main biomarkers of molecular responses to heat stress, 
including HSPs and other related biomarkers, can help early 
detect heat-induced cellular damages and destructive effects, 
especially in people working in hot environments. Finally, 
it is required to implement appropriate interventions, such 
as technical-engineering, managerial, and therapeutic meas-
ures, and to design and develop standard preventive guide-
lines to avoid the rise of heat-induced diseases.
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