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Abstract

Some studies have demonstrated that precipitation is an important risk factor of dengue epidemics. However, current studies
mostly focused on a single precipitation variable, and few studies focused on the impact of precipitation patterns on dengue
epidemics. This study aims to explore optimal precipitation patterns for dengue epidemics. Weekly dengue case counts and
meteorological data from 2006 to 2018 in Guangzhou of China were collected. A generalized additive model with Poisson
distribution was used to investigate the association between precipitation patterns and dengue. Precipitation patterns were defined
as the combinations of three weekly precipitation variables: accumulative precipitation (Pre_A), the number of days with light or
moderate precipitation (Pre LMD), and the coefficient of precipitation variation (Pre_CV). We explored to identify optimal
precipitation patterns for dengue epidemics. With a lead time of 10 weeks, minimum temperature, relative humidity, Pre_A, and
Pre_ LMD were positively associated with dengue, while Pre_CV was negatively associated with dengue. A precipitation pattern
with Pre A of 20.67-55.50 mm per week, Pre LMD of 3—4 days per week, and Pre CV less than 1.41 per week might be an
optimal precipitation pattern for dengue epidemics in Guangzhou. The finding may be used for climate-smart early warning and
decision-making of dengue prevention and control.
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Background

Dengue is transmitted to humans by Aedes mosquitoes, which
thrive in tropical and subtropical regions (Kraemer et al.
2015). In China, the areas affected by dengue have expanded
and dengue incidence has increased since 2012 (Lai et al.
2015). Guangdong Province is the hardest-hit province by
dengue due to subtropical climate, rapid urbanization, rising
international and domestic trade, and population movement.
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In 2014, the number of dengue cases was the highest on record
in Guangdong in the past 25 years, and Guangzhou, the capital
city of the province, had the highest cases, accounting for
82.7% of all cases in Guangdong province (Xiao et al.
2016). Therefore, dengue is a major public health concern in
Guangzhou, especially in the context of climate change and
rapid globalization.

As a mosquito-borne infectious disease, dengue is highly
sensitive to weather factors (Liao et al. 2015; Lu et al. 2009;
Phaijoo and Gurung 2017; Xiang et al. 2017). Temperature
and precipitation were the two most important meteorological
factors associated with dengue. They may impact survival,
maturation, and breeding of Aedes and ecology of dengue
virus (DENV) (Chen et al. 2010; Iguchi et al. 2018; Lowe
et al. 2018). Minimum temperature (Tmin) was found to be
closely related to dengue epidemics, with a certain lag impact
(Shen et al. 2015). Precipitation can influence mosquito pop-
ulation densities by providing or destroying breeding sites of
mosquitoes (Benedum et al. 2018; Chen et al. 2010).
Accumulative precipitation (Pre_A) represents the intensity
of precipitation during a certain period (Dibo et al. 2008;
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Guhathakurta and Rajeevan 2008; Pappachan et al. 2004).
Light and moderate precipitation do not destroy breeding sites
and may increase the usage of water containers, which may be
conducive to breeding sites for mosquitoes (Eastin et al. 2014;
Hii et al. 2009). As observed in a previous study, the number
of dengue cases increased sharply with the increase of 24-h
precipitation below 11.9 mm; but instead, a negative associa-
tion was observed above that (Xiang et al. 2017). The number
ofrainy days represents the frequency of precipitation and was
significantly associated with dengue epidemics (Kong et al.
2019; Xu et al. 2017). For instance, in Kong et al.’s study, the
number of rainy days was considered the greatest factor
among potential climatic factors (Kong et al. 2019). In addi-
tion, a recent research used coefficient of precipitation varia-
tion (Pre _CV) as an indicator to develop a prediction model
of dengue epidemics (Jacome et al. 2019).

However, current studies mostly focused on a single pre-
cipitation variable, and how precipitation patterns impact den-
gue epidemics remains unclear. The combination of accumu-
lative precipitation (Pre_A), number of precipitation days, and
coefficient of precipitation variation (Pre_CV) represents pre-
cipitation patterns. Several studies have reported that precipi-
tation pattern may be a better risk indicator for mosquito-
vector diseases, such as malaria and dengue (Pappachan
et al. 2004; Wu et al. 2017). Hence, it is important to identify
optimal precipitation patterns of dengue epidemics, which can
provide deep insights for dengue early warning and timely
control.

In the present study, we combined dengue and weather data
during 2006-2018 in Guangzhou of China to investigate the
association between precipitation and dengue, and further ex-
plore optimal precipitation patterns for dengue epidemics. Our
findings would be helpful to develop dengue early warning
system in Guangzhou.

Methods
Study site

Guangzhou, the capital of Guangdong province, is the politi-
cal, economic, cultural, technological, and transportation cen-
ter of southern China. At the end of 2018, the population in
Guangzhou reached 14.94 million. The humid subtropical cli-
mate with heavy precipitation and high temperature in
Guangzhou makes it one of the most suitable cities for dengue
epidemics in China (Guo et al. 2014).

Dengue data
Dengue case counts in Guangzhou from 1 January 2006 to 31

December 2018 were retrieved from the Chinese
National Notifiable Infectious Disease Reporting Information
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System (NNIDRIS). All dengue cases were confirmed accord-
ing to the unified diagnosis criteria (National Health
Commission of the People’s Republic of China 2018).
Information of dengue cases included age, gender, occupation,
date of onset, clinic-confirmed or laboratory-confirmed cases,
local case, or imported case. The criteria of local or imported
cases used in the study are from Lai’s report (Lai et al. 2015). In
our study, we only investigated the association between weath-
er factors and local dengue cases. All local cases were
anonymized and finally arranged into weekly time-series data.

Meteorological data

Daily meteorological data was obtained from the China
Meteorological Data Service Center (http://data.cma.cn/) and
arranged into weekly time-series data. There were five weath-
er monitoring stations in Guangzhou, and we used the average
value of the five stations in the study. Weather variables in-
cluded weekly average minimum temperature (Tmin, °C),
weekly average relative humidity (Rh, %), weekly accumula-
tive precipitation (Pre_ A, mm), number of days with light or
moderate precipitation per week (Pre LMD, days), and coef-
ficient of precipitation variation per week (Pre_CV). The light
or moderate precipitation is defined as 24-h accumulative pre-
cipitation ranging from 0.1 to 25 mm according to the national
standard of precipitation grade (China Meteorological
Administration 2013). In our initial analyses, we observed that
the model incorporating Pre. LMD showed a lower general-
ized cross validation (GCV) score than that incorporating
number of precipitation days (see Table S1), so we used the
Pre LMD to represent the precipitation frequency in our
study. Pre_ CV is the coefficient of precipitation variation in
a certain week, which is calculated as the ratio of the standard
deviation (SD) and mean (* x) of precipitation, and used as a
measurement of fluctuation of precipitation in a week.

Statistical analysis

We implemented a three-stage analysis in the study. First, we
described the distribution of dengue and weather variables.
Then, we estimated the impacts of weather variables on den-
gue. Finally, we investigated the association between precip-
itation patterns and dengue.

Spearman correlation analysis was firstly used to identify
the correlation between dengue and meteorological variables.
Previous studies conducted in Guangzhou reported lag time of
weather variables on dengue varying from 8 to 12 weeks (Li
et al. 2017a; Li et al. 2017b; Lowe et al. 2018). In our study,
similar trends were observed in 8—12-week lag for each me-
teorological variable in a preliminary analysis (see Fig. S1).
Thus, we considered weather variables with 10-week lag,
which is consistent with the sum time of development time
(days from hatching to adult ecdysis) of Aedes albopictus
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around 2 weeks (Costanzo et al. 2015; Ezeakacha and Yee
2019), survival time of adult female Aedes albopictus under
field conditions around 6 weeks (Brady et al. 2013), and in-
cubation time around 2 weeks (Chan and Johansson 2012; Li
etal. 2019).

Second, we applied generalized additive models (GAM) to
study the impacts of weather variables on dengue (Li et al.
2017b; Maindonald 2006). Quasi-Poisson distribution was
used in model because the Cullen and Frey graph indicated
the observed number of dengue cases followed a Poisson dis-
tribution (see Fig. S2), and the test for over-dispersion was
statistically significant (Delignette-Muller and Dutang 2015).
The model can be specified as follows:

Log(p,) = By + s(Presi—10,df) + s(Tmin,—19, df )
+ s(Rhy—10,df) + s{log(cases)t,lo, df}
+ s(time, df) (1)

where u, represents predicted local cases during week ¢, 5,
represents intercept; Pres, ;o denotes three precipitation fac-
tors (Pre_A, Pre LMD, Pre CV) in the previous 10 weeks;
Tmin, ;o represents minimum temperature in the previous 10
weeks; log (cases), ;o indicates auto-regressive term for local
dengue cases; time is used to control long-term trend; and s
and df indicate spline smoothing function and degree of free-
dom, respectively. Given the overfittings observed when df’
was above three, a df of three was used in the model that
was also used in a previous study (Xiao et al. 2018; Limper
et al. 2016).

Third, to better catch the impact of precipitation on dengue,
we investigated the association between precipitation patterns
and dengue in warm temperature (see Fig. S3). Here, we de-
fined 18 °C as the threshold of Tmin according to the previous
studies (Fan et al. 2014; Shen et al. 2015). Due to that the
fluctuation range of Pre_ A was almost same between years
(Fig. 1), Pre_ A was divided into two levels (high and low)
according to its median, as well as Pre. LMD and Pre CV. We
then created a new variable, groupl, to represent different
precipitation patterns of the combinations of the three precip-
itation variables. Here, the precipitation pattern of low Pre A
level, low Pre_ LMD level, and high Pre_CV level was select-
ed as the reference group because the pattern was not condu-
cive to dengue epidemics. Finally, groupl was taken as a
categorical variable to incorporate into model. Tmin, Rh and
dengue in the previous 10 weeks were used as control vari-
ables in the model. A new model can be specified as follows:

Log(u,) = By + 581Gl + s(Tminy—0, df’) + s(Rhi10,df)
+ s{log(cases), 1o, df } + s(time, df ) (2)

where [3; is the regression coefficient; G1 represents
the groupl; the other components are the same as that in Eq.
(1). Since the wide application of Pre_ A and number of pre-
cipitation days, we conducted stratified analyses to further
study the impact of Pre_ A and Pre LMD by two levels of
Pre CV, and the cutoff point of Pre CV was its median (see
Fig. S3 and Fig. S4). Pre_A and Pre LMD were then classi-
fied as low, medium, and high (26th—50th percentile; 51st—
75th percentile; 76th—100th percentile), respectively. As the
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Fig. 1 Time-series of weekly dengue case counts and weather variables in Guangzhou during the period from January 2006 to December 2018. The

dengue case counts were in logarithmic scale
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25th percentile was often defined as a lower threshold in stud-
ies of meteorology (Kirono et al. 2017; Martinez et al. 2007),
in our study, we excluded the lowest 25% of precipitation
(below 4.27 mm/week) to avoid potential complexity
resulting from too many combinations. In addition, very low
precipitation is not a main driving force of dengue epidemics.
Then, group2 was created to represent different precipitation
patterns of the combinations of Pre_ A and Pre LMD. For the
consistency of reference in the stratified analyses, we used the
precipitation pattern of medium Pre A level and medium
Pre LMD level as the reference group due to the fact that
some precipitation patterns were not existing. Likewise,
group2 was incorporated into the model as a categorical var-
iable. A new model can be specified as follows:

Log(p,) = By + £,G2 + s(Tmin,-10, df) + s(Rhs-10, df )
+ s{log(cases), o, df } + s(time, df ) (3)

where 3, is the regression coefficient; G2 represents the
group?2; the other components are the same as that in Eq.
(1). Finally, to test the accuracy of the model, we classified
the weekly dengue cases of each precipitation pattern for low
and high levels (according to the median of case counts), then
calculated the proportion of weeks of high level.

All statistical analyses were two-sided, and values of P <
0.05 were considered statistically significant. The “mgcv”
package in the statistical software R (Version 3.6.1) was used
to fit all models.

Sensitivity analysis

To test the robustness of our results, we changed lag time
(from 8 to 12 weeks) and df of the smoothing function for
all variables (from 3 to 5). We also conducted a sensitivity
analysis controlling imported cases as a potential impact factor
in the GAM. For different lag weeks, the reference is 10-week
lag and we compared the results of 8-, 9-, 11-,and 12-week lag
with 10-week lag, respectively; For df, the reference is df of 3,
and we compared the results of df of 4 and 5 with that df of 3,
respectively; we also compared the results of controlling
imported cases with that without controlling imported cases.

Results

From 1 January 2006 to 31 December 2018, a total of 41,932
local dengue cases were reported in Guangzhou. The descrip-
tive summary for dengue cases and weather variables is
shown in Table 1. There is a weekly average of 61 dengue
cases over the study period. The weekly mean Tmin, Pre_A,
Pre LMD, Pre CV, and Rh were 19.15 °C, 40.06 mm, 3.34
days, 1.49, and 76.40%, respectively. Figure 1 depicts the
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Table 1  Basic information of weekly dengue cases and meteorological
factors in Guangzhou during the period 20062018

Variables Min P,s Median P;s  Max  Mean + SD
Dengue cases 0 0 0 2 8136 61 £519
Tmin (°C) 5.05 1412 2038 24.78 27.66 19.15+5.96
Pre A (mm) 0.00 427 20.67 5550 348.14 40.06 +50.84
Pre_ LMD (day) 0.00 2.00 3.00 500 7.00 334+2.03
Pre CV 033 1.07 141 190 245 149+0.54
Rh (%) 44.14 71.64 7731 8286 9579 76.40+8.79

time-series of weekly dengue case counts and weather condi-
tions. The dengue epidemics fluctuated markedly during the
study period with the highest peak in 2014. Figure S5 depicts
the fluctuation of dengue cases and weather variables charac-
terized by seasonal patterns. The peak Tmin period was from
the 17th to the 37th week when Pre A and Pre LMD were
medium and Pre CV was low. The peak dengue epidemic
period was observed after 10 weeks (the 27th—47th weeks).
Spearman correlation analyses indicated that the associations
between dengue and Tmin, Pre A, and Pre LMD were all
positive (Table 2), while there was a negative association be-
tween Pre_ CV and dengue.

The exposure-response associations between weather vari-
ables and dengue are shown in Fig. 2. Nonlinear positive
associations were observed between weekly mean Tmin and
Rh in the previous 10 weeks and dengue. Linear positive as-
sociations were found between Pre A and Pre LMD in the
previous 10 weeks with dengue cases, and the association of
Pre_CV with dengue cases was nonlinear and negative. In Fig.
2b, the density of the distribution of the Pre_A values on the
X-axis dropped sharply when it rose above 200 mm. For the
association between Rh and dengue, the slopes of exposure-
response curves seemed to be flattened at high Rh (above
about 80%).

The associations between precipitation patterns (represent-
ed by group1 and group2) and dengue are presented in Fig. 3.
There was a greater dengue risk 10 weeks after precipitation
patterns with two or more high levels (i.e., when groupl is
HHL, LHH, HLH and HHH in Fig. 3 a). Figure 3 b and ¢

Table 2 Spearman correlation analyses between dengue and
meteorological factors (lag 10 weeks)

Variables Cases Tmin Pre A Pre LMD Pre CV
Tmin 0.64*

Pre_ A 0.34° 0.47°

Pre LMD  0.22° 0.33° 0.63"

Pre CV -0.22*  -031*  -0.56" -0.65%

Rh 0.33? 0.35° 0.68° 0.59° -0.53*
2P <0.05
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Fig. 2 Exposure-response curves between weekly weather variables (lag
10 weeks) and weekly dengue cases. Solid lines indicate the logarithmic
value of relative risks (log RRs) of the weather variables on dengue
epidemics, and the gray areas indicate the 95% CI of the weather

show the results of stratification analyses, and positive asso-
ciations between precipitation patterns and dengue risk were
found in low Pre_CV level. The risk of dengue was the
greatest (RR = 2.73, 95%CI: 1.20-6.20) 10 weeks after a pre-
cipitation pattern of medium Pre A and Pre LMD with low
Pre CV (i.e., when group2 is MM in Fig. 3 b). Figure 3 ¢
indicates that the associations between precipitation patterns
and dengue risk were weak when Pre_ CV was high. And we
found that estimates in “MM” (lag 812 weeks, see Table S2)
were statistically significant or the lower limits of the confi-
dence interval were close to 1. Table 3 showed that the num-
bers of weeks with high-level case counts were mostly in
“MM”, to some extent verifying this pattern’s contribution
to dengue epidemics.

Sensitivity analyses found that the impact estimates were rel-
atively robust when we used different lags for weather variables
(see Table S2 and Fig. S6 a). In addition, when df varied, or
imported cases were incorporated as a confounding factor in
the model, the results did not change substantially (see Fig. S6 b).

Discussion

In this study, we employed GAM to fit the associations between
precipitation variables and dengue epidemics. The results indi-
cated that a weekly precipitation pattern with Pre A of 20.67—
55.50 mm, Pre LMD of 3-4 days per week, and Pre CV less
than 1.41 with a lead time of 10 weeks might be an appropriate
weather condition for dengue epidemics in Guangzhou.

variables. Low dengue risks were seen at low Pre_A, low Pre_ LMD,
and high Pre_CV level so that a corresponding precipitation pattern was
selected as the reference group in the following process

Our research showed that the peak of dengue epidemic was
observed at the 10th week after favorable meteorological vari-
ables (see Fig. S5). For instance, the average weekly Tmin over
the 13 years (2006-2018) reached 18 °C at about the 13th week,
and the dengue occurred at about the 23rd week, which is con-
sistent with the setting of 10-week lag in several previous studies,
where the lag time was usually within 3 months (Kakarla et al.
2019; Kong et al. 2019; Li et al. 2017a; Xu et al. 2019). For
example, Kakarla et al. found that, for precipitation, a higher
transmission risk of dengue was observed between 8 and 15
weeks of lag (Kakarla et al. 2019). Li et al.’s study in
Guangzhou also reported that precipitation in the previous 3
months and temperature in the previous 2 months were strongly
related to dengue (Li et al. 2017a). The reason for varied length
of lag time may be due to the changes in the biology of mosqui-
toes and the incubation period of dengue viruses (Hii et al. 2012).

We observed that the exposure-response associations be-
tween weather variables and dengue are similar to the reports
of several previous studies (Benedum et al. 2018; Li et al.
2017b; Lu et al. 2009). There was a wide confidence interval
of dengue risk in high-level Pre_A. Specifically, the density
of the distribution of the Pre_A values on the X-axis
dropping sharply indicated uncertainty of the effect of heavy
precipitation on dengue, and caution is needed in explaining
its impact. Some researchers reported “flushing” events fol-
lowing excessive precipitation, directly destroying breeding
sites, and leading to larvae death (Benedum et al. 2018).
While other researchers in Taiwan found the relative risk of
dengue increased when the maximum 24-h precipitation exceeds
approximately 50 mm (Chien and Yu 2014). A probable reason
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Fig. 3 The impacts of different precipitation patterns on dengue at 10-
week lag (Tmin > 18 °C). Groupl: combinations of three precipitation
variables (Pre_A, Pre LMD, and Pre_CV), for example, LHL, represent
the combination of low Pre_A level, high Pre LMD level, and low Pre
CV level; group2: combinations of two precipitation variables (Pre_A
and Pre LMD) by two levels of Pre CV; for example, LM represents

for the discrepancy might be that the influence of precipitation
depends not only on the precipitation, but also on human

Table 3  The proportion of weeks with high dengue epidemic level

Group 2 Lag Lag Lag Lag Lag
(Rain_CV < 8 weeks 9 weeks 10 weeks 11 weeks 12 weeks
median)

LL* — — — —
LM® 0.44 0.50 0.38 0.31 0.31
LH* — — — — —
ML 0.60 0.40 0.40 0.20 0.00
MM 0.64 0.69 0.62 0.74 0.68
MH 0.57 0.57 0.54 0.49 0.54
HL 0.56 0.56 0.44 0.56 0.61
HM 0.60 0.60 0.52 0.52 0.54
HH 0.57 0.57 0.47 0.50 0.40

 Groups with no results because the corresponding precipitation patterns
were not existing

® Reference group
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the combination of low Pre_A level and medium Pre CV level, and the
cutoff point of Pre_CV is its median value; Pre CV = NA: weeks with no
rainfall; ref: reference group. LL/LH of b and LH/HH of c: groups with no
results were due to that the corresponding precipitation patterns were not
existing

activities, such as water usages and city drainage systems
(Chien and Yu 2014). A positive impact of Pre LMD on dengue
was also found in our study, which is consistent with Xu’s study
in Guangzhou. They found that adult mosquito density was
closely related to the number of days with precipitation in the
previous month (Xu et al. 2017), and our study further verified
that the number of precipitation days plays an important role in
dengue epidemics. We found a positive effect of Rh on dengue
below about 80%, which was consistent with a previous study
which reported a positive effect of low humidity (below 76%) on
dengue (Wu et al. 2018).

In the present study, we used Pre_CV as a measurement of
fluctuation of precipitation in a specific week. The fluctuation
in weather was associated with dengue transmission
(Campbell et al. 2013). Results of Spearman’s correlation
analysis and exposure-response analysis both showed
Pre_CV had a negative impact on dengue epidemics. Liao
et al. also found a negative association between dengue inci-
dence and coefficient of variation of precipitation at 2-month
and 3-month lags (Liao et al. 2015).
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In terms of precipitation patterns, the highest risks of den-
gue epidemic were observed at medium levels of Pre_ A and
Pre LMD (i.e., when group2 is MM in Fig. 3 b). The result
was consistent with the fact that an excessive amount of pre-
cipitation combined with too many rainy days was unfavor-
able to dengue epidemics, highlighting the impacts of light
and moderate precipitation (Eastin et al. 2014; Iguchi et al.
2018). In addition, though precipitation patterns of HM and
HH with low Pre_CV had a relatively high risk of dengue, we
should also be cautious about greater uncertainty of the actual
dengue risk at heavy precipitations.

Our study illustrated the weather variables less fluctuated
than dengue epidemics, while the latter displayed wide inter-
annual variation in seasonal epidemic size, especially in 2014.
Vector-borne diseases may present complex dependence on
environmental conditions and other factors. Oidtman’s re-
search suggested that dengue epidemics in most years were
limited by unfavorable conditions concerning one or more
factors; the epidemic in 2014 was made possible by the com-
bination of favorable conditions for all factors (Oidtman et al.
2019). Based on the assumption, we mainly focused on the
impacts of meteorological variables on dengue with control-
ling some covariables in this study.

To our knowledge, there is less knowledge about the impact
of combinations of several weather factors on dengue epidemics.
This is the first study to explore the associations between dengue
and precipitation patterns in Guangzhou after controlling temper-
ature and humidity, which may more precisely reflect the impact
of precipitation on dengue. Findings from this study may set an
example for further study on the precipitation-dengue
association.

The current study has some limitations. First, this was an
ecological study and it was not able to provide a causal inference.
Second, due to the unavailability of long-term and weekly scale
mosquito surveillance data, our study did not evaluate the direct
impact of weather variables on mosquitoes. But the association
between meteorological variables and dengue epidemics may
indirectly reflect the influence on vectors. Research based on
weekly vector surveillance data would further confirm the asso-
ciation of weather-dengue epidemics. Moreover, this study
only focused on one study area. Nevertheless, Guangzhou, due
to its specific features in climate and socio-economy, is the area
with the most dengue cases in China, and has continuous time-
series dataset of dengue, which made Guangzhou is an ideal
study area in China.

Conclusions

This study provided a more nuanced understanding of dengue
epidemics influenced by precipitation and identified optimal
precipitation patterns for dengue epidemics in Guangzhou.
Results may be helpful for climate-smart early warning and

decision-making of dengue prevention and control practice in
the future.
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Pre_CV, the coefficient of precipitation variation; Pre LMD, the number
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