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Abstract
The aim of the present investigations was to simulate the annual risk of bunch rot (Botrytis cinerea) on Vitis vinifera L. cv.
Riesling grapes based on three long-term (n = 3 × 7 = 21 cases) assessment data sets originating from three Central European
grape-growing regions. Periods when meteorological parameters were significantly (p < 0.01) correlated with the cumulative
degree day (CDD7;18;24) reaching 5% disease severity were determined byWindow Pane analysis. Analyses revealed five critical
weather constellations (“events”) influencing annual epidemics: relatively low temperatures after bud break, dry conditions
during flowering, high temperatures after flowering, and low temperatures and high precipitation sums during/after veraison
were all associated with thermal-temporal early epidemics. Meteorological data in each of the five events served as input for the
bunch rot risk model “BotRisk.” The multiple linear regression model resulted in an adjusted coefficient of determination (R2

adj.)
of 0.63. BotRisk enables (i) the simulation of the thermal-temporal position of the annual epidemic and, based on this, (ii) the
classification of the annual bunch rot risk into three classes: low, medium, or high risk. According to leave-one-out cross-
validation, 11 of 21 case studies were correctly classified. No systematic bias caused by location was observed, indicating that
the transfer of the model into other locations with comparable climatic conditions could be possible. BotRisk (i) represents a
novel viticultural decision support tool for crop cultural and chemical measures against bunch rot and (ii) enables an estimation of
the bunch rot risk under changing environmental conditions.
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Introduction

Grape bunch rot caused by Botrytis cinerea is a major fungal
disease on grapevines (Vitis vinifera L.) worldwide, threaten-
ing both grape yield and wine quality (Kassemeyer and
Berkelmann-Löhnertz 2009; Smart and Robinson 1991).

Under the climatic conditions of many traditional grape-
growing regions, grape bunch rot appears virtually every sea-
son (Molitor et al. 2016).

Recent statistical investigations into the epidemics of
B. cinerea in the Vitis vinifera cultivar Riesling recorded in
Geisenheim/Germany enabled (i) the simulation of the epi-
demic disease progress and (ii) the identification of weather
conditions with predictive value for annual grape bunch rot
epidemics (Molitor et al. 2016). Here, the annual disease prog-
ress as a function of thermal time (summation of the physio-
logically effective temperature (Trudgill et al. 2005) reflecting
the phenological development) turned out to be well described
by sigmoidal curves (0.97 < R2) with comparable slope factors
in all years, while the thermal-temporal position of the epi-
demic strongly varied (Molitor et al. 2016). Window Pane
analysis carried out according to Coakley and Line (1982)
showed that annual weather conditions greatly affected the
timing of the annual bunch rot epidemic, which is linked to
the potential wine quality (Molitor et al. 2016).
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Grape bunch rot models have already been developed under
different climatic conditions in the past, such as in themodels of
Broome et al. (1995), Nair andAllen (1993), and the “Bacchus”
model (Agnew et al. 2004). Common to all of them is that they
advise botryticide applications based on the interactions be-
tween temperature and wetness duration. All three models as-
sume that the effects of temperature-dependent wetness dura-
tions on the infection level are constant during berry develop-
ment. However, recent results (Molitor et al. 2016) demonstrat-
ed that wetness-based models might not be suitable to guide
botryticide treatments in the case of the cultivar Riesling and in
cool climate viticulture conditions.

The significant links established between annual weather
conditions in specific periods of grape development and the
seasonal bunch rot risk (Molitor et al. 2016) provide an excel-
lent starting point to model the annual thermal-temporal posi-
tion of the bunch rot epidemic (i) to quantify the annual bunch
rot risk and (ii) to potentially support grape growers’ decisions
concerning bunch rot control measures.

To broaden the database for such a bunch rot risk model
and make it more robust for local conditions or effects, in the
present investigations, we analyzed a data set of 21 cases of
annual bunch rot assessment series originating from three
Central European grape-growing regions and their corre-
sponding daily meteorological records.

The investigation aimed to (i) develop a bunch rot risk
model simulating the annual risk in terms of the annual posi-
tion of the bunch rot epidemic on the cultivar Riesling based
on the output of Window Pane analysis and (ii) validate the
model output to test its general suitability as a decision support
tool for practical viticulture.

Materials and methods

Assessment and meteorological data

The progress of the grape bunch rot disease on the white Vitis
vinifera L. cultivar Riesling was monitored between 2007 and
2013 (Geisenheim, Germany) and between 2010 and 2016
(Remich, Luxembourg; Deidesheim, Germany) at weekly to
bi-weekly intervals between veraison and harvest. The
Riesling vineyards under observation were trained in a vertical
shoot positioning system and are described in detail in
Table 1. No fungicides with known activity against
B. cinerea (botryticides) were applied.

In the case of Geisenheim and Remich, visually observed
disease severities were classified into seven classes (0%; 1–
5%; 6–10%; 11–25%; 26–50%; 51–75%; 76–100%) follow-
ing the EPPO guideline PP1/17. In Deidesheim, visually ob-
served disease severities were classified into four classes (0%,
0.1–5%, 5.1–25%, 25.1–100%). One hundred randomly se-
lected clusters were assessed in three (Deidesheim) or four

(Geisenheim, Remich) replicated plots of the experimental
vineyards. Average disease severities per plot were generally
calculated by summing up the number of observations per
class multiplied by the arithmetic mean of the class interval
and dividing this sum by the total number of observations (n =
100). Overall averages (whole observation vineyard) are the
averages of the three or four plots, respectively.

For all locations, the daily average air temperatures (mea-
sured 2 m above the ground) and precipitation sums (mea-
sured 1 m above the ground) of the closest weather station
were used. Distances between experimental vineyards and
respective weather stations are given in Table 1. In the case
of Deidesheim, weather data originated from Neustadt-
Mussbach (Table 1). Key meteorological data from the three
locations in the respective observation years are shown in
Table 2.

Disease progress curves

Sigmoidal curves have been demonstrated to be well adapted
to the annual bunch rot epidemic under Central European
conditions (Molitor et al. 2015, 2016, 2017, 2018, 2019;
Porsche et al. 2018). Such sigmoidal curves were fitted to
the disease severity data of each year and for each location
plotted against the thermal time (summation of the physiolog-
ically effective temperature (Trudgill et al. 2005)) reflecting
the phenological development using SigmaPlot 13 (Systat
Software Inc., San Jose, CA, USA). This thermal time is
expressed as the cumulative degree days CDD7;18;24 after
BBCH 65 (Molitor et al. 2016; Molitor et al. 2014b) using
Eq. (1) following Molitor et al. (2016):

y ¼ 100

1þ e− x−x0ð Þ=að Þ ð1Þ

where y is the disease severity, x the cumulative degree day
CDD7;18;24, x0 the inflection point of the curve, and a the slope
factor of the curve in the inflection point.

For each of the year-location combination, parameters de-
scribing the disease progress curve were determined.
Coefficients of determination (R2) and significance levels (p)
were determined to quantify the adaptation of the fitted curves
to the observation data.

Based on Eq. (1), the cumulative degree day CDD7;18;24,
reaching a disease severity of 5% (x5%), was computed for
every season. The threshold of 5% was selected following
Beresford et al. (2006) and Evers et al. (2010).

Window Pane analysis

To detect critical periods during the season (relative to the date
of BBCH 65), when environmental variables were related
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with the thermal-temporal position of the epidemic, Window
Pane analysis was conducted following the approach of
Coakley and Line (1982), as described by Kriss et al.
(2010). Window Pane analyses determine the length and the
starting time of temporal windows during which average
values of environmental variables are significantly correlated
with plant disease levels at a specific time point (target) such
as at the end of a season (Kriss et al. 2010;Molitor et al. 2016).
In the present study, the impact of the environmental vari-
ables, i.e., the daily average air temperature and daily precip-
itation sum, on the cumulative degree day CDD7;18;24

reaching a disease severity of 5%, was examined based on
all 21 cases. Linear correlations between the summary envi-
ronmental variables (average values of environmental vari-
ables in the different time windows) and the cumulative de-
gree day CDD7;18;24 reaching a disease severity of 5% (target)
were calculated for the window widths 5, 10, 20, 30, 50, and
100 days. Pearson correlation coefficients (r values) and sig-
nificance levels (p values) were determined for each summary
environmental variable. Significant correlations were declared
when individual p values were below 0.05 and highly signif-
icant correlations when p < 0.01.

Table 2 Key annual and growing
season (April–October)
meteorological variables in the
three observation locations

Location Year Mean annual
temperature
(°C)

Mean growing
season temperature
(°C)

Annual
precipitation
sum (mm)

Growing season
precipitation sum
(mm)

Geisenheim 2007 11.5 15.7 509 274

2008 10.9 15.2 535 339

2009 10.8 16.1 583 311

2010 9.7 14.9 658 426

2011 11.3 16.0 469 305

2012 10.8 15.3 531 330

2013 10.4 15.5 557 397

Average 10.8 15.5 549 340

Remich 2010 10.0 15.0 695 388

2011 11.4 15.5 533 287

2012 10.3 14.4 700 449

2013 9.9 14.7 813 576

2014 11.8 15.9 722 444

2015 11.5 15.6 540 347

2016 10.9 15.9 760 462

Average 10.8 15.3 680 422

Deidesheim 2010 10.1 15.3 742 462

2011 11.7 16.4 566 379

2012 11.3 15.9 593 377

2013 10.4 15.6 644 465

2014 12.2 16.4 524 350

2015 11.8 16.2 400 216

2016 11.3 16.1 582 383

Average 11.3 16.0 578 376

Table 1 Features of the
experimental vineyards Location Geisenheim, Germany Remich, Luxembourg Deidesheim, Germany

Coordinates 49.98 N, 7.95 E 49.54 N, 6.35 E 49.42 N, 8.19 E

Year of plantation 1982 1994 1980

Cultivar Riesling Riesling Riesling

Clone Gm 239 unknown N 90

Rootstock 5C SO4 5C

Weather station Geisenheim Remich Neustadt-Mussbach

Distance to weather station (km) 0.1 0.1 5.1

Observation years 7 (2007–2013) 7 (2010–2016) 7 (2010–2016)
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Model development and validation

Window Pane analysis identified five critical meteorologi-
cal constellations, hereafter referred to as “events,” with
highly significant correlations between the summary envi-
ronmental variables and the CDD7;18;24 values when
reaching 5% disease severity (x5%). A multiple linear re-
gression model based on one summary environmental var-
iable in each of the five events was developed to simulate
the x5% value using the open access software tool R. The
selection of potential input variables for the novel bunch rot
risk model—hereafter referred to as “BotRisk”—took place
in the following order:

1. Summary environmental variables causing a local maxi-
mum of the absolute r values in a series of highly signif-
icant Pearson correlation coefficients (p < 0.01) in
Window Pane analysis were selected in the different win-
dow widths.

2. Of these selected potential input variables, one summa-
ry environmental variable per event was included in the
multiple linear regression model. The best model was
selected based on the highest adjusted R2 value of the
model.

According to their calculated CDD7;18;24 values, annual
bunch rot risk classes were declared as follows:

– Class 1—“low” annual bunch rot risk:

predicted CDD7;18;24 values reaching 5% disease severity >
1000

– Class 2—“medium” annual bunch rot risk:

predicted CDD7;18;24 values reaching 5% disease severity >
900 and < = 1000

– Class 3—“high” annual bunch rot risk:

predicted CDD7;18;24 values reaching 5% disease severity
were < = 900.

Class ranges were defined to achieve (i) approximately
equal numbers of observed cases in each of the three classes
as well as (ii) class boundaries that were as round as possible
for practical applications.

The predictive value was tested by leave-one-out
cross-validation according to Ladenbruch and Mickey
(1968). Predicted CDD7;18;24 values reaching 5% disease
severity values (as simulated by BotRisk) were calculat-
ed by averaging all but one (n - 1) data sets and com-
pared with observed CDD7;18;24 values (retrieved from
disease progress curves). Coefficients of determination

(R2
adj.), mean bias errors (MBE), and mean absolute

errors (MAE) of the cross-validated model were calcu-
lated. The validation of correct risk classification in the
cross-validated model took place based on observed and
predicted CDD7;18;24 values reaching 5% disease
severity.

Results

Disease progress as a function of thermal time

Disease severities at the different assessment dates and loca-
tions are shown in Table 3.

Sigmoidal curves of the type y ¼ 100

1þe− x−x0ð Þ=að Þ fitted the dis-

ease progress curves precisely (r2 ≥ 0.87, p ≤ 0.069)
(Supplementary Table 1; Fig. 1).

Disease severities of 5% were reached between 781
(Geisenheim 2010) and 1112 (Deidesheim 2012) cumulative
degree days CDD7;18;24.The average CDD7;18;24 reaching 5%
disease severity were 972 (Geisenheim), 931 (Remich), and
961 (Deidesheim) with no significant differences between lo-
cations according to the analysis of variance (p = 0.05)
(Supplementary Table 1).

Impact of environmental conditions

Supplementary Figs. 1 and Fig. 2 show the results of Window
Pane analysis for the summary environmental variables’ daily
average temperatures and daily precipitation sum using all six
tested window widths (5, 10, 20, 30, 50, 100 days). Pearson
correlation coefficients as result of the Window Pane analysis
are (as defined by Kriss et al. (2010)) generally depicted at the
end of the respective summary period.

The following summary environmental variables were
highly significantly (p ≤ 0.01) and positively (high value ➔

late epidemic) correlated with the thermal-temporal position
of the epidemic (x5% value):

& Summary environmental variable daily average air
temperature

& Bbetween − -42 and − -39, between 72 and 76 days as well
as 91 days after BBCH 65 (D65) (window width:, 5 days),

& Bbetween − -39 and − -35 as well as between 75 and 80
D65 (window width:, 10 days),

& Bbetween − -30 and − -28 as well as between 75 and 90
D65 (window width,: 20 days),

& aAt − -19 and − -18, between 73 and 85 as well as between
88 and 99 D65 (window width:, 30 days),

& Bbetween 88 and 108 D65 (window width,: 50 days)
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Table 3 Botrytis cinerea disease severities at the different assessment dates in the different observation years in Geisenheim, Remich, and Deidesheim

Year Date DOY * D65 CDD7;18;24 after BBCH 65 Disease severity

Geisenheim 2007 22.08. 234 86 850.9 0.4

2007 28.08. 240 92 914.4 0.6

2007 04.09. 247 99 975.5 3.3

2007 24.09. 267 119 1120.5 9.6

2007 09.10. 282 134 1211.5 44.4

2008 27.08. 239 81 829.9 0.2

2008 10.09. 253 95 967.9 1.7

2008 09.10. 282 124 1111 32.3

2009 15.09. 258 98 999.4 0.5

2009 22.09. 265 105 1074.4 6.7

2009 01.10. 274 114 1149.6 12.1

2009 08.10. 281 121 1200 38.0

2010 31.08. 243 70 724.2 2.2

2010 10.09. 253 80 801 4.1

2010 14.09. 257 84 836.4 18.6

2010 23.09. 266 93 894.1 41.7

2010 29.09. 272 99 921.4 48.2

2010 07.10. 280 107 980.5 80.8

2010 14.10. 287 114 1009.5 92.4

2011 29.08. 241 89 884.5 7.7

2011 05.09. 248 96 952.9 19.2

2011 13.09. 256 104 1034.4 60.7

2011 19.09. 262 110 1077.1 82.3

2012 05.09. 248 83 862.2 0.8

2012 12.09. 255 90 929.1 1.0

2012 18.09. 261 96 973.6 2.7

2012 25.09. 268 103 1012.7 6.8

2012 02.10. 275 110 1048.6 11.9

2012 08.10. 281 116 1080.2 20.9

2012 12.10. 285 120 1090.5 25.0

2013 09.09. 252 77 791.9 0.2

2013 16.09. 259 84 842.4 0.7

2013 23.09. 266 91 886.1 2.9

2013 30.09. 273 98 932 7.1

2013 08.10. 281 106 975 13.1

2013 14.10. 287 112 988.7 37.0

2013 21.10. 294 119 1029.1 65.7

Remich 2010 09.09. 252 74 743.8 0.6

2010 21.09. 264 86 830.0 1.4

2010 28.09. 271 93 869.9 2.9

2010 06.10. 279 101 935.9 12.3

2010 13.10. 286 108 980.2 30.9

2011 10.08. 222 67 623.1 0.0

2011 24.08. 236 81 775.4 0.1

2011 06.09. 249 94 890.8 1.6

2011 14.09. 257 102 965.5 3.1

2011 22.09. 265 110 1020.4 7.7

2011 28.09. 271 116 1075.9 13.1

2012 17.09. 260 88 865.7 0.0
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Table 3 (continued)

Year Date DOY * D65 CDD7;18;24 after BBCH 65 Disease severity

2012 01.10. 274 102 929.1 0.4

2012 08.10. 281 109 959.5 2.3

2012 15.10. 288 116 974.6 5.8

2012 24.10. 297 125 1038.8 20.4

2013 17.09. 260 75 726.1 0.5

2013 01.10. 274 89 816.2 4.9

2013 08.10. 281 96 858.4 7.0

2013 14.10. 287 102 869.5 14.7

2014 01.09. 244 79 779.0 1.1

2014 16.09. 259 94 928.4 3.1

2014 22.09. 265 100 988.9 5.1

2014 30.09. 273 108 1047.1 10.3

2014 07.10. 280 115 1105.2 22.8

2015 31.08. 243 76 738.1 0.0

2015 17.09. 260 93 871.5 5.5

2015 23.09. 266 99 910.8 23.6

2015 30.09. 273 106 956.3 38.8

2016 05.09. 248 71 733.2 0.4

2016 19.09. 262 85 879.1 0.6

2016 28.09. 271 94 956.0 2.8

2016 05.10. 278 101 1000.4 5.9

2016 12.10. 285 108 1017.0 17.1

2016 18.10. 291 114 1039.6 22.1

Deidesheim** 2010 16.09. 259 92 907.1 2.3

2010 23.09. 266 99 950.8 4.7

2010 01.10. 274 107 990.6 8.6

2011 05.09. 248 99 1001.9 9.7

2011 12.09. 255 106 1075.1 20.0

2012 03.09. 246 82 862.9 0.0

2012 10.09. 253 89 937.0 0.1

2012 17.09. 260 96 993.2 0.4

2012 24.09. 267 103 1041.1 1.1

2012 01.10. 274 110 1078.8 2.4

2013 26.08. 238 60 629.8 0.2

2013 02.09. 245 67 703.2 0.4

2013 09.09. 252 74 777.3 0.4

2013 16.09. 259 81 827.4 1.1

2013 23.09. 266 88 871.8 6.2

2013 30.09. 273 95 918.4 13.3

2013 07.10. 280 102 949.6 24.6

2014 18.08. 230 71 746.9 0.0

2014 25.08. 237 78 801.0 0.4

2014 01.09. 244 85 869.5 1.5

2014 08.09. 251 92 942.4 3.2

2014 15.09. 258 99 1004.9 7.1

2014 22.09. 265 106 1072.5 13.5

2015 17.08. 229 69 676.5 0.0

2015 24.08. 236 76 748.4 0.1

2015 31.08. 243 83 819.3 0.9
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& Summary environmental variable daily precipitation sum

& At 4 D65 (window width, 5 days)
& Between 6 and 8 D65 (window width, 10 days)
& At 17 D65 (window width, 20 days)
& At 38, 47 as well as between 41 and 44 D65 (window

width, 50 days)

On the other hand, the following summary environmental
variables were significantly and negatively (low value ➔ late
epidemic) correlated with the thermal-temporal position of the
epidemic (x5% value):

& Summary environmental variable daily average air
temperature

& Between 32 and 34 D65 (window width, 5 days)
& Between 38 and 40 D65 (window width, 50 days)

& Summary environmental variable daily precipitation sum

& At 77 as well as between 80 and 87 D65 (window width,
20 days)

& Between 81 and 87 D65 (window width, 30 days)

& Between 100 and 108 as well as between 110 and 123 D65

(window width, 50 days) (Supplementary Fig. 1, Fig. 2)

Analyses revealed five critical meteorological “events”
where summary environmental variables were highly signifi-
cantly (p ≤ 0.01) correlated with the thermal-temporal position
of the epidemic (x5% value) in different window widths:

– Temperatures around 40 days prior to flowering (event 1)
– Temperatures around 30 days after flowering (event 2)
– Temperatures around 70 days after flowering (event 3)
– Precipitation around flowering (event 4)
– Precipitat ion around 70 days after flowering

(precipitation) (event 5)

BotRisk model to simulate the position of the annual
bunch rot (Botrytis cinerea) epidemic

Multiple linear regression kept the following input variables
for the BotRisk model:

– Event 1: summary environmental variable temperature on
day − 38 D65 (window width, 10 days) = variable a

CDD7;18;24 after BBCH 65
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Fig. 1 Disease progress curves in
Remich and Deidesheim in the
different seasons as functions of
the thermal time (CDD7;18;24 after
BBCH 65). Disease progress
curves of Geisenheim are
illustrated in Molitor et al. (2016)

Table 3 (continued)

Year Date DOY * D65 CDD7;18;24 after BBCH 65 Disease severity

2015 07.09. 250 90 876.9 8.6

2015 14.09. 257 97 938.6 14.0

2016 22.08. 234 71 740.8 0.0

2016 29.08. 241 78 813.7 0.0

2016 05.09. 248 85 890.7 0.7

2016 12.09. 255 92 967.6 2.3

2016 19.09. 262 99 1038.3 7.9

2016 26.09. 269 106 1093.3 12.4

DOY, day of the year; D65, days after BBCH 65; CDD7;18;24, cumulative degree days according to Molitor et al. (2016). Assessment data from
Geisenheim were originally published in Molitor et al. (2016)

*29 February was not considered in leap years

**Assessment data from Deidesheim were kindly provided by DLR Rheinpfalz, Neustadt/Weinstraße
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– Event 2: summary environmental variable temperature on
day 33 D65 (window width, 5 days) = variable b

– Event 3: summary environmental variable temperature on
day 74 D65 (window width, 5 days) = variable c

– Event 4: summary environmental variable precipitation
on day 17 D65 (window width, 20 days) = variable d

– Event 5: summary environmental variable precipitation
on day 87 D65 (window width, 30 days) = variable e

Based on this model, the CDD7;18;24 reaching 5% disease
severity can be calculated as follows:

951.476
+ 7.2173 * summary environmental variable temperature

on day − 38 D65 (window width, 10 days)
– 16.317 * summary environmental variable temperature

on day 33 D65 (window width, 5 days)
+ 10.793 * summary environmental variable temperature

on day 74 D65 (window width, 5 days)
+ 21.986 * summary environmental variable precipitation

on day 17 D65 (window width, 20 days)
+ 2.512 *summary environmental variable precipitation on

day 87 D65 (window width, 30 days)
R2 of the model is 0.7244, R2

adj. (model accuracy) 0.6325,
and the p value of the model 0.0008.

Leave-one-out cross-validation resulted in a coefficient of
determination (R2cv) of 0.51. The mean bias errors (MBE) in
the leave-one-out cross-validation were − 10.8 CDD7;18;24 for
Geisenheim, − 1.5 CDD7;18;24 for Remich, and 14.4
CDD7;18;24 for Deidesheim (overall average MBE, 0.7
CDD7;18;24) with mean absolute errors (MAE) of 61.5
(Geisenheim), 45.6 (Remich), and 54.6 CDD7;18;24

(Deidesheim) (overall average MAE, 53.9 CDD7;18;24). The
leave-one-out cross-validation of the classification of annual
bunch rot risk classes demonstrated that in 11 of 21 cases, the
predicted classification matched the observed classification.
In four cases, observed classes were one class higher than
the predicted classes and in six cases, one class lower than

the predicted classes. No cases were observed in which the
prediction indicated a high risk, but a low risk was observed in
practice and vice versa (Fig. 3, Table 4).

Discussion

Impact of meteorological conditions on the annual
epidemic

Window Pane analysis demonstrated that the annual thermal-
temporal position of the bunch rot epidemic was independent

Fig. 2 Significant (significance level: p ≤ 0.05) positive (green), highly
significant (p ≤ 0.01) positive (dark green), significant (p ≤ 0.05) negative
(red), or highly significant (p ≤ 0.01) negative (dark red) correlations
between the summary environmental variables of daily average
temperatures (temperature) and daily precipitation sums (precipitation)

and the cumulative degree days CDD7;18;24 reaching a disease severity
of 5%) depending on (i) the starting date of a window (relative to the date
of BBCH 65) and (ii) the window width according to Window Pane
analysis. Correlation coefficients are depicted on the last day of each
temporal window

Observed CDD7;18:24
reaching 5% disease severity
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Fig. 3 Leave-one-out cross-validation: Predicted plotted versus the
observed cumulative degree days CDD7;18;24 after BBCH 65 reaching a
disease severity of 5% in Geisenheim (blue triangles), Remich (red
circles), and Deidesheim (green squares). The dashed line represents the
1:1 relationship. The dotted lines represent the frontiers of the risk classes
according to the bunch rot risk model BotRisk
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of the location and significantly correlated with the meteoro-
logical conditions in specific periods of grape phenology.

Five distinct periods (referred to as critical “events”) were
identified when meteorological conditions were of high prog-
nostic value for the annual thermal-temporal position of the
epidemic:

Event 1: Post-bud break period (temperatures)
Obviously, high temperatures in the period around −

40 days D65 are linked to a thermal-temporal late annual
bunch rot epidemic. For the years 1993 to 2015, BBCH 63
was reached in Luxembourg on average 56 days after BBCH
09 (bud break) (Molitor and Keller 2016). Hence, the critical
event identified here represents the period of approximately
16 days after bud break. Warm conditions during the initial
shoot development and flower formation period in spring are
leading to increased flower sizes (Keller 2015). Interestingly,
studies with the cultivar Sauvignon blanc in 2010 showed that
the elongation effects of gibberellic acid applications on the
cluster stem length weremost pronouncedwhere the treatment
was applied 14 to 36 days after budburst (Molitor et al.
2012b), which indicates that this period might be the most
crucial period for inflorescence stem growth. Potentially, the
effect of warm post-bud break temperatures on the epidemic
might be explained by an elongation of the cluster stems lead-
ing to a looser cluster structure. The latter has been demon-
strated several times to be strongly correlated with a lower
predisposition to bunch rot (e.g., Molitor et al. (2012a,
2015); Hed et al. (2009); Intrigliolo et al. (2014); Tello and
Ibanez (2017)).

Event 2: Post-flowering period (temperatures)
The present investigation demonstrated that high tempera-

tures in a period of approximately 30 days after flowering
were significantly correlated with an early epidemic. We sup-
pose that this effect might be explained by intensified cell
division and cell expansion processes under warm conditions
in this period (Keller 2015), leading to more compact grape
clusters.

Events 3 and 5: Period between veraison and harvest (tem-
peratures + precipitation)

While the effects of meteorological conditions on the an-
nual bunch rot epidemic in events 1 and 2 can supposedly be
explained by indirect effects on the cluster structure, the link
between high precipitation sums between veraison and harvest
and the thermal-temporal position of the epidemic might be
caused by the following direct effect of moist conditions on
the epidemiology of the disease:

(i) The availability of water promotes the development of
fungal pathogens.

(ii) High post-veraison water availability facilitates the water
uptake into the berries, resulting in larger berries, com-
pact clusters, and a high risk of the fruit cracking (Keller
et al. 2003).

(iii) Rain events after veraison re-activate latent B. cinerea
infections, which often lead to direct infections of rip-
ening berries (Evans and Emmett 2011).

Most likely, the inverse influence of air temperature and
precipitation between veraison and harvest on bunch rot epi-
demics is related to the frequently observed negative associa-
tion between precipitation and temperature during the summer
months under Central European conditions.

However, especially under changing environmental condi-
tions, extreme events such as severe rain events in combina-
tion with high air temperatures or combinations of both are
becoming more likely (IPCC 2012), and those conditions are
highly favorable for fungal infections. Consequently, to keep
the model robust against those non-steady environmental fac-
tors, both variables remained in the model even though some
collinearity between them exists.

Event 4: Flowering period (precipitation)
Furthermore, there was a strong link between the amount of

precipitation during the flowering process and the thermal-
temporal position of the annual epidemic. As described before

Table 4 Cross-validation of the
classification of annual bunch rot
risk classes

Observed

Class 3 “high risk” Class 2

“medium risk”

Class 1

“low risk”

Sum

Predicted Class 1 “low risk” 0 2 4 6

Class 2

“medium risk”

4 4 2 10

Class 3

“high risk”

3 2 0 5

Sum 7 8 6 21

The predicted number of cases according to leave-one-out cross-validation in classes 1 to 3 is plotted against the
observed number of cases in the respective classes. Class 1, “low” annual bunch rot risk: predicted CDD7;18;24
values reaching 5% disease severity > 1000; class 2, “medium” annual bunch rot risk: predicted CDD7;18;24
values reaching 5% diseases severity > 900 and < = 1000; class 3, “high” annual bunch rot risk: predicted
CDD7;18;24 values reaching 5% diseases severity were < = 900

1579Int J Biometeorol (2020) 64:1571–1582



(Molitor et al. 2016), wet weather conditions around grape
bloom are associated with a (thermal-temporal) late annual
bunch rot epidemic. This supports the hypothesis that during
grape flowering, in particular, adverse weather conditions are
reducing the degree of the fruit set—as described by Kliewer
(1977), Nesbitt et al. (2016), andMosedale et al. (2015)—and,
consequently, are loosening the bunch structure and reducing
the predisposition to bunch rot.

The observed phenomena demonstrated that the same en-
vironmental factor can have both, a positive or a negative
effect on the thermal-temporal position of the epidemic de-
pending on the phenological stage of the host plants.

The bunch rot risk model BotRisk

Based on the highly significant correlations between the me-
teorological conditions and the CDD7;18;24 reaching a disease
severity of 5% in the five critical events identified above, the
novel bunch rot risk model BotRisk was developed using a
multiple linear regression approach with five input variables.

Model validation showed that the model did not markedly
over- or underestimate the time point reaching 5% disease
severity in any of the three locations. On average, the overall
mean absolute error (MAE) of the cross-validated model was
53.9 CDD7;18;24, which reflects a time frame of 6 days (as-
suming an average daily temperature of 16.0 °C; average
(2000–2009) September temperatures in Geisenheim/
Germany, 15.6 °C, in Remich/Luxembourg, 15.6 °C).

Observed adjusted coefficients of determination show an
adequate level of goodness of fit for the model to simulate the
cumulative degree days reaching 5% disease severity (R2

adj. =
0.633). Obviously, there are other factors besides air temper-
ature and precipitation that influence the thermal-temporal
position of the epidemic. Potentially, unexplained variance
between the different years might be due to crop cultural prac-
tices changing from year to year: e.g., the moment of first
shoot topping has been demonstrated to influence the annual
epidemic in a significant manner (Molitor et al. 2015).

Furthermore, the annual epidemic might have been influ-
enced by grape pests, such as the grape berry moth (Lobesia
botrana (Denis & Schiffermüller), Eupoecilia ambiguella
(Hübner)), or fungal diseases, such as powdery mildew
(Erysiphe necator Schwein.), which are able to wound berry
skin and create entry points for Botrytis cinerea. Furthermore,
frequently observed fluctuations in the annual yield level
(Molitor and Keller 2016) and, in consequence, differences
in the pace of grape maturation after veraison might have
influenced the epidemic.

Interestingly, in the present model, the influence of the
location (potentially including differences in soil type, soil
fertility or soil management, fertilization, grape vigor, age of
plants, rootstock, clone, planting density, canopymanagement
regime) turned out to be of minor importance. This is

demonstrated by the fact that the differences in the mean bias
errors of the model caused by the location are negligible
(MBE, − 10.8 to 14.4 CDD7;18;24 = − 1.2 to 1.6 days (assum-
ing a daily average temperature of 16 °C)). Potential location
differences caused by generally higher or generally lower tem-
peratures at specific sites may have been adjusted for during
the calculation of the CDD7;18;24. Furthermore, validation in-
dicates that model transfer to other locations with comparable
climatic conditions might be possible. However, keeping in
mind that Geisenheim, Remich, and Deidesheim are located in
cool climate viticulture regions with comparable climatic con-
ditions, the present model should not be directly transferred to
regions with markedly deviating climatic conditions without
previous validation with local data sets.

The predicted risk class differed by a maximum of one
class compared with the observation class. I.e., in none of
the 21 studied cases did the model predict a low bunch rot risk
while a high bunch rot risk was observed or vice versa.

Potential BotRisk applications

BotRisk enables a simulation of the thermal-temporal position
of the annual bunch rot epidemic in the Riesling cultivar in the
past or (based on climate projections) in the future even if only
the basic, most frequently recorded environmental variables,
temperatures, and precipitation, are available. Here, the calcu-
lated CDD7;18;24 reaching a disease severity of 5% functions
as the annual risk indicator. The lower the simulated annual
value of the CDD7;18;24 reaching a disease severity of 5%, the
higher the annual risk for an early bunch rot epidemic. Based
on this, three bunch rot risk classes have been defined indicat-
ing years with low, medium, or high bunch rot risk.

Founded on observation data from the three first critical
events coupled with long-term average data for the two miss-
ing critical events 3 and 5 in the period between veraison and
harvest, an estimation of the annual bunch rot risk of the
present season can be realized around 1month after flowering,
and this information can then be integrated into the bunch rot
control strategy. This might, under practical conditions, sup-
port the decisions, if botryticide applications (e.g., at bunch
closure or veraison) or crop cultural measures are necessary or
(monetarily as well as environmentally) meaningful. In the
past, practical bunch rot control strategies were mainly based
on routine fungicide applications (Shtienberg 2007).
However, excessive chemical bunch rot control measures are
becoming increasingly criticized and restricted (Elmer and
Michailides 2007; Shtienberg 2007). Consequently, the clas-
sification of the annual bunch rot risk might be efficiently
implemented in the fungicide regime as a measure of
Integrated Pest Management enabling either (i) a reduction
of the number of botryticide applications and thus a reduction
in pesticide use in years with a lower bunch rot risk or (ii) a
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higher bunch rot control efficiency due to the targeted appli-
cation of botryticides in years with a high bunch rot risk.

The annual thermal-temporal position of the epidemic has
been demonstrated to be significantly correlated with annual
wine quality (Molitor et al. 2016) as the presence of B. cinerea
at early (unripe) stages of berry development negatively af-
fects wine composition (because of berry decay) and hinders
further grape maturation (Molitor et al. 2012a). BotRisk might
be combined with phenological models (Molitor et al. 2014b,
2016, 2020) as well as regional or local climate change pro-
jections (Molitor et al. 2014a; Molitor and Junk 2019) aiming
for a simulation of the bunch rot disease progress in relation to
the progress of the grape phenology/maturity. This study
might reveal if the risk of vintages with an early bunch rot
epidemic at stages of incomplete grape maturity (leading to
low potential wine quality) is supposed to increase or decrease
in the future and if specific adaptation strategiesmight become
necessary.

Conclusions

The annual meteorological conditions during specific periods
of grape development are significantly correlated with the
thermal-temporal position of the bunch rot epidemic on Vitis
vinifera L. cv. Riesling. Based on periods of highly significant
correlations between meteorological data and the thermal-
temporal position of the epidemic, the bunch rot risk model
BotRisk was developed based on a multiple linear regression
approach. BotRisk allows for a simulation of the annual
thermal-temporal position of the bunch rot epidemic in
Riesling based on temperature and precipitation records in
different periods of grape development with an accuracy (R2

adj.) of 0.63 and classifies the annual bunch rot risk in three risk
classes. The observed minor influence of the location on mod-
el robustness indicates that a transfer into other locations of
comparable climatic conditions might be possible. Presently,
BotRisk represents a bunch rot risk model for the grape culti-
var Riesling. However, the approach of BotRisk is open for
parameterization for other cultivars based on respective long-
term observation data sets.
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