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Abstract
Common approaches currently used to monitor forest phenology include direct field observation and indirect approaches such as
satellite remote sensing and carbon fluxmeasurements. However, differences in both temporal and spatial scales of these methods
make direct comparison challenging. In order to evaluate the reliability of indirect measures of autumn phenology in estimating
direct observations, we compared the timing of three transition dates and the rate of autumn progression derived from (i) satellite
data (MOD13Q1 006 enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) products, 2000–
2017), (ii) carbon fluxmeasurements (net ecosystem exchange (NEE) and gross primary production (GPP), 1997–2016), and (iii)
field observation (2010, 2012 for the north site and 2010, 2012, and 2013 for the south site) from a mixed forest in northern
Wisconsin, USA. Overall, the transition dates and progression rates derived fromNDVI were closest to that of field observations.
Furthermore, the start of autumn derived from satellite data was earlier than directly observed leaf coloration (LC), which resulted
from species-specific canopy senescence patterns and the sensitivity of the vegetation indices. Even after full leaf fall was
reached, EVI continued to detect coloring which was likely due to the presence of understory plant species. Finally, NEE and
GPP changes tended to start before LC as a result of tree physiological and environmental changes and continued after full leaf
fall possibly due to understory and coniferous activity. These results highlight the need for long-term field observations of both
trees and understory species, information on species-specific canopy senescence patterns, and species composition in under-
standing the efficiency of indirect approaches in estimating autumn forest phenology.
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Introduction

Phenology is defined as “the art of observing life cycle phases
or activities of plants and animals in their temporal occurrence
throughout the year” (Gratani et al. 1986). Many studies have
shown that plant phenology is sensitive to temperature, and
therefore the timing of phenophases has been used as an indi-
cator of climate change in many parts of the world including
North America, Europe, and Asia (Schwartz 1998; Sparks

et al. 2000; Defila and Clot 2001; Matsumoto et al. 2003;
Menzel 2003; Chmielewski et al. 2005; Donnelly et al.
2006; Ge et al. 2015). In situ observations of tree phenophases
such as bud burst and leaf out in spring, fruiting in summer,
and leaf coloration and fall in autumn are commonly used for
this purpose (Beaubien and Johnson 1994; Linkosalo 1999;
Ahas and Aasa 2006; Menzel et al. 2006). A number of long-
term phenological networks in Europe, such as the
International Phenological Gardens network, have been used
to demonstrate the impact of rising temperature on forest trees
(Chmielewski and Rötzer 2001; Menzel et al. 2006).
However, these datasets are often focused on a small number
of species with limited spatial coverage and tend to be tempo-
rally and spatially discontinuous, making it difficult to deter-
mine large-scale and long-term trends in the timing of leaf
phenophases (Schwartz 1994; Peng et al. 2017. In addition,
observations are made on a few discrete individuals which
may not be representative of phenological response to climate
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at community and ecosystem levels (Diaz and Cabido 1997;
Donnelly et al. 2017).

In contrast, satellites have the ability to monitor vegetation
on a continuous basis across a large geographical area.
Therefore, satellite data, as a substitute for in situ observa-
tions, is becoming one of the most widely used approaches
in landscape-scale forest phenological research (Reed et al.
1994; Zhang et al. 2001; Zhang et al. 2004). Numerous studies
have utilized satellite imagery-based normalized difference
vegetation index (NDVI) and/or enhanced vegetation index
(EVI) to estimate the start and end of greenness or the timing
of deciduous tree phenophases, such as bud burst, leaf expan-
sion, and leaf fall (Moulin et al. 1997;White et al. 1997; Liang
et al. 2011; White et al. 2014). The spatial and temporal cov-
erage afforded by satellite data facilitate monitoring of vege-
tation response to climate change at the continental or global
scale (Reed 2006; Xiao et al. 2006;White et al. 2009; Liu et al.
2016). However, since satellite integrates vegetation signal at
the pixel level, some important details on land cover and com-
munity composition within a pixel may get overlooked (Liang
and Schwartz 2009). This may result in discrepancies between
satellite-derived phenology and direct observation data, al-
though such discrepancies in forest ecosystems are argued to
be smaller than in grassland, cropland, savanna, and hetero-
geneous areas (Donnelly et al. 2018; Zhang et al. 2018).
Therefore, in order to improve the accuracy and reliability of
satellite data in estimating forest phenophases, further re-
search is required.

Carbon flux measurements are another approach used in
large-scale phenological studies (Richardson et al. 2010;
Peng et al. 2017). Plants influence atmospheric carbon con-
centration by taking in carbon dioxide through photosynthesis
and releasing it through respiration, which generally results in
forests acting as a major carbon sink (Goulden et al. 1996;
Schimel et al. 2015). Therefore, the timing of when photosyn-
thesis exceeds respiration in spring is closely related to leaf out
and expansion, which in turn impacts the seasonal and annual
carbon budget in forest ecosystems (Goulden et al. 1996;
Angert et al. 2005; Richardson et al. 2010). Multiple studies
have extracted deciduous forest phenological transition dates
using variations in carbon flux (Desai et al. 2005; Garrity et al.
2011; Wu et al. 2013; Liu et al. 2017). For example, the tran-
sition from dormant buds to budburst corresponds to the start
of CO2 uptake from the atmosphere (Richardson et al. 2009).
Similar to satellite data, carbon flux measurements differ in
scale from in situ observations, as the footprint of a carbon
flux tower is 1.1~5 km2 (Chen et al. 2011). Therefore, it is not
possible to isolate the contribution of individual species and
communities to overall carbon flux. Data quality can also be
affected by topography, vegetation type, and non-vegetation
activities (Baldocchi 2003; Solaymani 2017), highlighting the
need to improve carbon flux accuracy in estimating deciduous
forest phenology.

In situ observations, satellite data and carbon flux mea-
surements are all widely used in forest phenological research,
with the spring season receiving more attention than autumn
(Beaubien and Johnson 1994; Schwartz 1998; Schaber and
Badeck 2003; Menzel et al. 2006; Guo et al. 2015; Donnelly
et al. 2017). Although spring leaf development and flowering
advance has been broadly observed, a trend toward a delay
in autumn leaf coloration and leaf fall was less consistent
(Defila and Clot 2001; Chmielewski et al. 2005; Menzel
et al. 2006). In addition, a distinct NDVI threshold of 0.6
to 0.7 corresponds to spring leaf expansion, but no corre-
sponding threshold has yet been found for autumn defolia-
tion (Nagai et al. 2010). Furthermore, both NDVI and EVI2
(two-band EVI, similar to the three-band EVI but blue band
is not used) show higher correlation with the PhenoCam-
derived green chromatic coordinate and vegetation contrast
index for green-up than for leaf coloration (Zhang et al.
2018). Nevertheless, even though autumn phenology is less
understood, its influence on seasonal and annual carbon bud-
gets cannot be ignored. For example, delayed autumn senes-
cence and an extension to the growing season have explained
50% of the annual carbon flux variation in a deciduous forest
(Dragoni et al. 2011). Although photosynthesis and respira-
tion both increase with warmer temperatures in autumn, CO2

release through respiration may offset 90% of the increased
spring carbon uptake by photosynthesis (Piao et al. 2008).
Therefore, more studies of forest autumn phenology are re-
quired to improve our understanding on its relationship with
carbon exchange.

In order to address some of the shortcomings in scale be-
tween in situ observations, satellite-derived NDVI and EVI,
and carbon flux measurements of autumn phenology, we used
datasets from all three approaches from a temperate mixed
forest in northern Wisconsin, USA. The aims of this study
were to explore (i) the accuracy and reliability of satellite
data/carbon flux measurements in estimating direct observa-
tions of autumn forest phenology and (ii) the environmental
and physiological factors that may influence these differences.
The results will help improve the understanding of the effec-
tiveness of different approaches to estimate autumn forest
phenology.

Materials and methods

Study area

The study area was located in the Park Falls Ranger District of
the Chequamegon-Nicolet National Forest of northern
Wisconsin, where the vegetation is mixed temperate forest
comprising deciduous (70%) and coniferous (30%) species
(Haugen et al. 1998). The area is located within the footprint
of a 447-mWLEFAmeriFlux tower (i.e.,W Lee E. Franks TV
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tower at 45.94°N, 90.27°W), which has been operated by the
Chequamegon Ecosystem-Atmosphere Study group (ChEAS)
to record carbon flux since 1995 (Desai et al. 2005). In situ
phenological observations were available for two 625 m ×
625 m study sites primarily composed of 80-year-old mature
hardwood forest each with slightly different species composi-
tion. The north study site was dominated by sugar maple (Acer
saccharum), red maple (Acer rubrum), and basswood (Tilia
americana), whereas the south study site was dominated by
quaking aspen (Populus tremuloides), speckled alder (Alnus
incana), red maple (Acer rubrum), and white birch (Betula
papyrifera), (Fig.1 and Table A1, online resource).

Data collection and processing

Field data

Field data (Table A2, online resource) were collected during
2010–2013. Specifically, autumn phenological data (leaf col-
oration and leaf fall) were recorded in 2010 and 2012 at the
north site and in 2010, 2012, and 2013 at the south site. For
each tree, leaf coloration and leaf fall phenophases were re-
corded using following protocol: 800 = leaf coloration <

10%; 810 = leaf coloration 10~50%; 850 = leaf coloration
50~90%; 890 = leaf coloration > 90%; 900 = leaf fall <
10%; 910 = leaf fall 10~50%; 950 = leaf fall 50~90%;
990 = leaf fall > 90% (Schwartz and Liang 2013; Yu et al.
2016). Afterward, field observations were scaled up to the
site level in a two-step process (Liang and Schwartz 2009),
so that it becomes comparable with satellite data and carbon
flux measurements in terms of scale (details of field data
collection and upscale can be found in the supplemental
material).

In 2010 and 2012, field observations began after leaf col-
oration (LC) had started. In particular, when observations be-
gan, the population phenology of all species except for tama-
rack (Larix laricina, 2010) and basswood (2012) were greater
than 800 (LC < 10%) in the north site, while all species were
greater than 800 in the south site. In 2013, observation ended
before the full leaf coloration (FLC) and full leaf fall (FLF) of
speckled alder were reached. Therefore, it was difficult to
identify the exact start of LC and LF (leaf fall) dates in 2010
and 2012 and FLC and FLF dates in 2013. Given this situa-
tion, three transition dates were calculated instead of the di-
rectly observed phenophases based on a logistic model de-
scribed in Zhang et al. (2003):

Fig. 1 Map of north and south study sites generated from a QuickBird
(2.4 m) false color composite image (September 27, 2012). Black dots
represent location of the plots where phenological observations were

recorded on trees. The blue lines outline the boundaries of the study
sites, with the WLEF Flux Tower in the middle of the image

Int J Biometeorol (2020) 64:713–727 715



y tð Þ ¼ c
1þ eaþbt þ d ð1Þ

Where t is time in days, y(t) is the leaf coloration or leaf fall
value at time t, a and b are fitting parameters, and c + d is the
maximum phenophase value. Subsequently, change of curva-
ture (i.e., the derivative of curvature derived from function (1))
was calculated. For each time series two minimum and one
maximum change of curvature values were determined which
represented three transition dates, i.e., LCt1, LCt2, and LCt3
(first, second, and third transition of leaf coloration) and LFt1,
LFt2, and LFt3 (first, second, and third transition of leaf fall).

Satellite data

The MOD13Q1 006 vegetation index dataset was selected for
processing the satellite-based phenology which were acquired
via Google Earth Engine (GEE) platform (https://developers.
google.com/earth-engine/datasets/catalog/MODIS_006_
MOD13Q1). GEE is a cloud-based platform enabling users to
process large datasets with limited lines of code (Gorelick
et al. 2017). In contrast to conventional data processing pro-
cedures, GEE simplifies data processing by removing image
clipping, reprojection, and format conversion processes.
Furthermore, when estimating phenology with satellite data,
the vegetation index (VI) value of each pixel was weighted by
the area of intersection within the plot (Liang et al. 2011),
which is also feasible via GEE-provided functions.

The VI values obtained were normalized using the follow-
ing Eq. (2) described in White et al. (1997):

V Iratio ¼ V I−V Imin

V Imax−V Imin
ð2Þ

The normalization process did not have a significant influence
on data quality (shown by the mostly insignificant difference in
terms of fitting parameters and goodness of fit, Table A3, online
resource), while it reduced the complexity of model by fixing the
parameters c and d to 1 and 0. The normalized time series
(NDVInor for normalized NDVI and EVInor for normalized
EVI) was also applied to Eq. (1), and in this case y(t) was the
VI value at time t. Similarly, three transition dates were retrieved
from the change of curvature corresponding to the start of autumn
(SOA), middle of autumn (MOA), and end of autumn (EOA).

Carbon flux data

Carbon flux data for WLEF/Park Falls was downloaded from
the AmeriFlux website (http://ameriflux.lbl.gov/sites/siteinfo/
US-PFa#doi) for the study period 1997–2016 excluding 2005
and 2010 as data for these years were unavailable or unreliable
due to equipment failure. For the remaining data, only daytime
records reflecting photosynthetic productivity were utilized

since nighttime gross primary production (GPP) is usually
zero and net ecosystem exchange (NEE) tends to reflect night-
time respiration. A double-logistic function was applied to
derive the same three transitions: SOA, MOA, and EOA.
The function is described in Eq. (3), which originates from
the double logistic function in Fisher et al. (2006) and the two-
section logistic models in Zhang et al. (2003). Non-
normalized carbon flux datasets were analyzed since normal-
ization significantly reduced data quality (P < 0.01 for good-
ness of fit of normalized and non-normalized datasets).

Flux tð Þ ¼ aþ d
1þ ectþb −

g
1þ eftþe ð3Þ

Where Flux(t) is the carbon flux index value at time t and a, b,
c, d, e, f, and g are fitting parameters (b, c, and d are spring
parameters while e, f, and g are autumn parameters) all esti-
mated by non-linear regression. In agreement with field data
and satellite data, SOA, MOA, and EOA were derived from
the minimum and maximum values of change of curvature.

Transition dates comparison

SOA, MOA, and EOA were derived from both satellite and
carbon flux datasets. For field data, equivalent transition dates
(LCt1/LCt2/LCt3 and LFt1/LFt2/LFt3) were also computed. In
years for which field data were available, bias error (Soudani
et al. 2008) between field observation and the indirect mea-
surements were calculated for each transition date.

Bias error ¼ ∑n
i Mi−Oið Þ

n
ð4Þ

WhereMi is the transition date for satellite data or carbon flux
indices, Oi is the transition date of the equivalent field obser-
vation, and n is the pair of comparisons.

Long-term field data proxy

In order to make direct comparison between field observation
and indirect measures of autumn phenology, it was necessary
to extend the in situ time series to the same timespan as indi-
rect approaches (1997–2017). One method is to use the aver-
age of available field records as representatives of long-term
records. The effectiveness of this method is examined by the z
values (subtract themean from a data point then divided by the
standard deviation) of long-term transition dates and progres-
sion rates derived from EVInor, NDVInor, NEE, and GPP.
Since indirect determination of autumn phenology may be
used as a proxy for field observations, the effectiveness of
average field transitions and progression rates could be sup-
ported if field-observed years were consistent within the long-
term trend, i.e., z values are within a threshold. (the threshold
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is − 3~3, as only 0.2% of data points would fall out of this
range and be considered as outliers).

For transition dates, all z values in 2010, 2012, and 2013
were less than three, suggesting these years were consistent
within long-term records (Table A4 online resource).
Therefore, the average of six direct observation transition
dates in years with available field data (Table A1, online re-
source) were taken as representative of a long-term field re-
cord. For progression rates, the z value derived from NDVInor
in 2013; south site was an outlier (3.62). However, the z values
derived from the other three approaches in 2013 were relative-
ly small (− 0.80~0.25), suggesting that 2013 could not be
considered as an abnormal year (Table A4, online resource).
Therefore, the average progression rate of field data-available
years was also taken as representative of a long-term field
record.

Statistical analysis

In a two-section logistic model (eq. (1)), the absolute value of
parameter b (or the absolute value of c and f in a double-logistic
function) is the rate of vegetation growth or senescence prog-
ress, while the absolute value of a/b (or the absolute value of b/c
and e/f in a double-logistic function) is the peak of growth or
senescence progress, which corresponds to MOS (middle of
spring) or MOA (Beck et al. 2006; Zhang 2015). For satellite
data and carbon flux data, linear correlation of progression rate
parameters (b or f) was conducted, where the constant was
manually set as zero since the intercept did not have any phys-
ical meaning. Therefore, the slope represented howmany times
the rate derived from one approach was compared to another
approach. RMSE andP value derived from the T test were used
to evaluate the quality of the model because they were applica-
ble in a non-constant regression model.

Results

Interannual comparison between satellite-, carbon
flux-, and field-derived autumn phenology

Transition dates

For both the north and south sites, SOA and MOA transition
dates derived from all four indirect approaches (NDVInor,
EVInor, NEE, and GPP) were consistently earlier than the
equivalent transition dates for LC and LF derived by direct
observation. Overall, the greatest disparity (− 83~4 days,
Table 1) was recorded between NEE and field observations,
while NDVInor showed the smallest difference (− 12~−
4 days). In addition, the bias error between SOA and LCt1
(− 78~− 4 days) and LFt1 (− 83~− 12 days) were generally
larger than that between MOA and LCt2 (− 49~− 7 days)

and LFt2 (− 56~− 9 days). EOA derived from EVInor or GPP
was generally later (0~26 days) than direct observations while
the EVInor bias error was smaller than GPP by 13~14 days. In
contrast, NDVInor consistently showed an earlier EOA than
LCt3 and LFt3 by 5~6 days and 12~14 days, respectively. The
bias error between NEE derived EOA and LCt3 and/or LFt3
was even smaller (67~70 and 35~43 days smaller than the
early and mid-season respectively, Table 1).

Autumn phenology progression rates

In general, the autumn progression rate derived from indirect
approaches were slower than direct observations except for
NDVInor in 2013 at the south site (a ratio lower than one
indicates the progression rate derived from an indirect
approach was faster than direct observations, and vice versa,
Table 1). For both sites, the average ratios between NDVInor
and direct observations were consistently close to one
(0.88~1.35), while average ratios for NEE were greater
(8.49~9.88), suggesting that NDVI was better able to capture
direct observations than the other indirect approaches.
Furthermore, for both sites and both phenophases, satellite-
derived progression rates were in closer agreement with direct
observations than carbon flux measurements (Table 1).

Both MOA and autumn progression rate derived from
NDVInor were closer to that of direct observation than the
other indirect measurements (the bias error between MOA
and LCt2 was − 7 days, between MOA and LFt2 was − 9~−
11 days, and the ratio was 0.88~1.35). At both sites, NEE-
derived MOA showed greater bias error from LCt2 and LFt2
than either GPP or EVInor (the bias error between MOA and
LCt2 was − 39~− 49 days, between MOA and LFt2 was − 44~
− 56 days). The magnitude in bias error between GPP/EVInor
derived MOA and LCt2 and/or LFt2 varied across sites.
Conversely, the difference in progression rate between field
data and either NEE or GPP was greater than EVInor, while
only small differences existed between the former two.
Therefore, NEE was considered to be the least reliable ap-
proach in capturing direct observations given the lower per-
formance compared to either EVInor or GPP (Table 1).

Long-term comparison between satellite-
(2000–2017), carbon flux- (1997–2016), and field-
derived autumn phenology

Transition dates

In general, SOA derived from indirect approaches was earlier
than LCt1 and LFt1. The greatest bias error was recorded for
NEE in the north site and EVInor in the south site, while the
lowest was for NDVInor (both sites, Fig. 2a, b). Similarly,
MOA was earlier than LCt2 and LFt2, while the bias error
for both sites was greatest for NEE and smallest for
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NDVInor (Fig. 2c, d). In contrast, EOA tended to be later than
both LCt3 and LFt3 by 5~23 days and 8~15 days, respectively,
apart from NDVInor which occurred on the same day as LFt3
at the south site and was earlier at the north site by 2 days. Bias
error was smallest for NDVInor (0~7 days) and largest for GPP
(14~23 days) which exceeded NEE by 6 days at both sites and
exceeded EVInor by 4 days at the north site and 3 days at the
south site (Fig. 2e, f).

Autumn phenology progression rates

In contrast to the short-term comparisons, all four indirect
approaches underestimated the rate of LC and LF at both sites
over the long-term. Ratios between field data and NDVInor
remained the lowest for both sites and phenophases
(1.93~2.12) while that between field data and NEE were con-
sistently the largest (5.74~7.23). Conversely, the order of
EVInor and GPP differed between phenophases, whereby
EVInor ratios were lower than GPP for LC (5.50~5.97 versus
5.89~6.38) and larger for LF (5.64~6.19 versus 5.07~5.56).
This result suggests that EVInor, NEE, and GPP were less
effective than NDVInor at capturing LC and LF observations.

Linear regression analysis between satellite and carbon
flux-derived progression rates at both sites revealed signifi-
cantly (P < 0.01) positive relationships with low RMSE
(0.021~0.138), resulting in the following order: NEE ≈
GPP ≈ EVInor < NDVInor (Fig. 3). Specifically, the progres-
sion rate derived from NDVInor tended to be faster than from
EVInor, NEE, or GPP (NDVInor rate was 1.159~2.053,

1.553~2.551, and 1.933~2.300 times greater than NEE,
GPP, and EVInor rate, respectively), while the progression
rates derived from these three approaches were relatively sim-
ilar (EVInor rate was −0.114~0.015 and 0.142~0.246 times
faster than NEE and GPP rate, respectively).

The bias error between MOA and LCt2 and/or LFt2 was
smallest for NDVInor (1~10 days) and largest for NEE
(18~25 days), while the order of EVInor and GPP differed be-
tween sites (Fig. 2c, d). NDVInor-derived progression rate was
also closest to LC and LF, suggesting that this methodwasmore
effective than EVInor, NEE, and GPP at capturing changes in
phenology. In addition, MOA derived from EVInor, NEE, and
GPP were generally a few days later (8~25 days) than LCt2 and
LFt2, indicating delayed autumn progression compared to direct
observations. Furthermore, the rate of LC and LF was
5.07~7.23 times faster than EVInor-, NEE-, and GPP-derived
progression rates. This resulted in an earlier SOA, later EOA,
and longer autumn duration for indirect estimated phenology
compared to directly observe autumn phenology. Considering
the similarity in progression rates and inconsistent bias error
order, the ability of EVInor, NEE, and GPP was similar in terms
of capturing autumn canopy change signals.

Field phenology corresponding with satellite-derived
transition dates

Although the phenological stages of LC and LF corresponding
to SOA, MOA, and EOA derived from indirect approaches
could be estimated using the fitted field observation curve, the

Table 1 Comparison of bias error (average number of days between indirect measurements and direct observation), modeled autumn progression rate
for each approach and their average ratios to field observation rates of autumn phenology.

Sites Bias error Modeled progression rates Average ratio between modeled and field-observed rates

LCt1 LCt2 LCt3 LFt1 LFt2 LFt3 2010 2012 2013 LC LF
SOA MOA EOA SOA MOA EOA

EVInor N −31 −11 9 −36 −14 0 0.13 0.07 4.62 6.98

S −52 −20 13 −56 −24 7 0.06 0.06 0.05 4.26 6.35

NDVInor N −9 −7 −5 −15 −9 −14 0.32 0.37 1.35 1.24

S −4 −7 −6 −12 −11 −12 0.18 0.24 0.83 0.97 0.88

NEE N −78 −49 −8 −83 −56 −16 N/A 0.05 9.88 9.11

S −66 −39 4 −71 −44 −1 0.04 9.32 8.49

GPP N N/A −30 N/A N/A −37 N/A N/A 0.05 9.95 9.17

S −28 −16 26 −32 −21 21 0.05 7.76 7.25

LC N – – – – – – 0.43 0.50 – –

S – – – – – – 0.41 0.45 0.36 – –

LF N – – – – – – 0.28 0.58 – –

S – – – – – – 0.27 0.55 0.29 – –

LCt1, LCt2, LCt3 = the first, second, and third transition of leaf coloration; LFt1, LFt2, LFt3 = the first, second, and third transition of leaf fall; SOA= start
of autumn, MOA=middle of autumn, EOA= end of autumn; EVInor = normalized EVI; NDVInor = normalized NDVI; NEE = net ecosystem exchange,
GPP = gross primary production; N = north site (2010 and 2012), S = south site (2010, 2012, and 2013); LC = leaf coloration, LF = leaf fall; N/A = not
applicable
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results may not necessarily represent true field phenology.
Since LC had already started (i.e., LC > 800) when field obser-
vations began in 2010 and 2012, the phenological stage before
LCt1 was overestimated. In addition, field observations ended
before FLC and FLF in 2013, resulting in the underestimation
of LC and LF progression stages after LCt3 and LFt3. However,
slopes could nonetheless identify the rate of phenology progres-
sion. For example, the flat line before LCt1 indicates LC had not
yet started, and the flat line after LCt3 and LFt3 indicates FLC
and FLF had already occurred (Fig. 4).

EVInor-derived SOA andMOA tended to occur earlier than
LCt1 and LFt1 except for the north site in 2010, when MOA

occurred 1 day after LCt1 (Fig. 4). For this exception, LC
progressed by 11% from SOA to MOA, suggesting that LC
had just started when MOAwas reached. For all other situa-
tions, only slight increases from SOA to MOAwere found for
LC (0%~2%) and LF (0%~4%), suggesting that LC and LF
had not started by the time MOA was reached, whereas
EVInor-derived EOA occurred after LCt3 and LFt3, except
for the north site in 2010 where EOA occurred 1 day earlier
than LFt3. In all other situations, the flat lines at EOA indicat-
ed that FLC and FLF had already occurred. Therefore, EVI
was able to capture LC and LF progression, both of which
tended to overlap with the EVI decline after MOA.

Fig. 2 Autumn phenology
derived from satellite data (2000–
2017) and carbon flux
measurements (1997–2016)
compared with field observation
(the north site: 2010 and 2012; the
south site: 2010, 2012, and 2013).
SOA = start of autumn, MOA =
middle of autumn, EOA= end of
autumn. Dotted lines show the
average first, second, and third
transition of leaf coloration, while
the dot-dash lines show the aver-
age first, second, and third transi-
tion of leaf fall. The star in each
box represents mean values and
open circles represent outliers.
Numbers below each label show
absolute bias error between mean
values of each approach and LC/
LF stage
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Similarly, NDVInor-derived SOA and MOA tended to oc-
cur before or close to LCt1 and LFt1 except for the south site in
2013, when SOA was 3 days later than LCt1 (Fig. 4). This
pattern suggests that LC had just started or had not started
yet by the time MOA was reached. In contrast to EVInor,
NDVInor-derived EOA tended to occur later than LCt1 while
earlier than LCt3 and LFt3. LC progression corresponding to
EOA varied between 20% and 80%, while LF progression
varied between 0% and 53%. Therefore, NDVI tended to de-
crease earlier than or close to field-observed canopy change,
while it stopped declining before FLC and FLF.

Variation in carbon flux during senescence

In 2012 and 2013 in both sites, NEE increased and GPP de-
creased before LCt1 and LFt1 occurred and continued after FLC

and FLF were reached (Fig. 5). During observed LC and LF
progression, GPP decreased and NEE increased as expected. In
particular, NEE increased by 0.25 μmolCO2 m−2 s−1 at the
north site (2012) and by 0.39 and 0.92 μmolCO2 m

−2 s−1 at
the south site (2012 and 2013, LCt1–LCt3). NEE increased by
0.27 μmolCO2 m

−2 s−1 in the north site (2012) and by 0.28 and
0.88 μmolCO2 m

−2 s−1 in the south site (2012 and 2013, LFt1–
LFt3). Meanwhile, GPP decreased by 0.55 μmolCO2m

−2 s−1 in
the north site and by 0.84~3.09 μmolCO2 m

−2 s−1 in the south
site and by 0.55 μmolCO2 m−2 s−1 in the north site and by
0.57~3.2 μmolCO2 m−2 s−1 in the south site from LFt1 to
LFt3. However, the change of NEE and GPP during field-
observed autumn phenology was only a small fraction of the
entire variation throughout the season (6%~17% of NEE and
5%~30% of GPP), suggesting that other factors may also im-
pact carbon flux.
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Fig. 3 Linear relationships of
autumn phenology progression
rates at two forest sites (north or
south) in northern Wisconsin,
USA, derived from four indirect
measures (NDVInor, EVInor,
NEE, and GPP). For either site,
two of the four approaches were
selected, and their rate parameters
were regressed ((a) to (k))
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Discussion

Discrepancies between satellite-derived autumn
phenology and field observations

There are numerous methods used to determine the timing and
duration of the autumn phenology season including direct ob-
servation, satellite indices, and carbon flux measurements,
each with their own uncertainties. In the current work, the

SOA derived from satellite data was consistently earlier than
the equivalent dates determined by direct observations.
However, the decline in NDVInor and EVInor prior to MOA
had little or no overlap with LC and LF phenophases. One
reason for this mismatch in timing may be related to satellites
observing the upper surface of the canopy from above while
direct observations are generally recorded by looking up into
the canopy from below; thus, these methods are not necessarily
viewing the same part of the tree canopy. Furthermore,
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Fig. 4 Modeled field phenology correspondence with transition dates
derived from four indirect approaches. Dot-dash lines are the fitted curves
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different parts of a tree could color at different times, the pat-
tern of which depends on the species in question.

Koike (1990) classified 30 tree species in northern Japan
into outer-type species, whereby coloration began on the outer
part of the crown and in situ observationmay detect the start of
autumn progression later than satellite observation from
above, and inner-type species, whereby the reverse occurred.
Therefore, the existence of outer-type species in the study sites
could contribute to the earlier SOA observed by satellite data.
However, whether the species in our study area were “inner-
type” or “outer-type” was not known, since there was no in-
formation reported for aspen (Populus tremuloides), which

had the largest population in the south site. Furthermore, al-
thoughmaple (Acer monoBunge) was reported to be an outer-
type species (Koike et al. 2001), the species of maple (Acer
saccharum or Acer rubrum) which had large populations in
the current study area were different.

Similar discrepancies in the timing of autumn phenology
have been reported by Donnelly et al. (2018) albeit for differ-
ent species in Ireland and over a longer time period (1970–
2017) whereby the start of colorationwas earlier when derived
from EVI2 compared to ground observations. Some of the
explanations they put forward included the different parame-
ters observed by satellite data and field records, the
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Fig. 5 NEE increase and GPP decrease variation. The solid lines show
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heterogeneous landscape covered by satellite pixels, and the
scale difference between satellite data and field observations.
These results highlight the need for further research to help
understand and explain these discrepancies.

Evaluating effectiveness of EVI and NDVI at capturing
in situ autumn phenology

Generally, EVI started to decrease earlier than NDVI and end-
ed later, resulting in lower autumn progression rates and a
longer autumn duration. The earlier SOA derived from EVI
than NDVI is likely due to the higher sensitivity of EVI than
NDVI for canopies with high leaf area indices (LAI) (Gamon
et al. 1995; Huete et al. 2002). In particular, NDVI will satu-
rate and remain stable throughout the middle of the growing
season (Motohka et al. 2010), and therefore early LC and LF
may not be detected. EVI, in contrast, avoids this issue due to
its overall lower values and has been reported to be better able
to detect canopy change in the early period of LC and LF
(Huete et al. 2002).

Given the sensitivity of NDVI to soil (Gao et al. 2000) and
litter (Van Leeuwen and Huete 1996) and to subtle changes in
leaf spectral properties (Motohka et al. 2010; Junker and
Ensminger 2016) during LC, it was not surprising that
NDVI-derived EOA occurred earlier than LCt3 and LFt3. In
particular, NDVI has been reported to vary with soil lightness
and land cover when LAI is constant (Gao et al. 2000) and to
be susceptible to noise produced by soil and litter (Van
Leeuwen and Huete 1996). In addition, change in maple leaf
color in late autumn could delay the decrease in NDVI.
Although NDVI showed an obvious decrease when leaves
turned from green to yellow during early autumn (2004–
2008) in a Japanese deciduous forest (Motohka et al. 2010),
an increase was reported when maple (Acer saccharum
Marsh.) leaves in Canada changed from yellow to red during
late autumn (Junker and Ensminger 2016). Therefore, the in-
crease in NDVI resulting from red leaves may offset the de-
crease caused by yellow leaves, resulting in a stabilizing trend
in NDVI prior to FLC and FLF.

In contrast to NDVI, EVI did not finish declining until
nearly 2 weeks after LCt3 was reached and in some instances
even 1 week after LFt3. This is in agreement with that reported
for a 35-year time series in which EVI2 decrease ended later
and lasted longer than the overall field record of many species
in Ireland (Donnelly et al. 2018). Since EVI has been shown to
be insensitive to coniferous late autumn phenology as they do
not change color (Huete et al. 2002; Yuan et al. 2018), the
delayed decline recorded in the current study may have result-
ed from the influence of late coloring understory shrubs,
which remain green after canopy species became leafless
(Xu et al. 2007). Compared to NDVI, EVI has reduced sensi-
tivity to background soil while keeping the sensitivity to veg-
etation by incorporating the blue band (Huete et al. 2002), thus

enabling it to detect understory vegetation change under an
open canopy in late autumn with limited noise interference.

These results suggest that the proportion of deciduous and
coniferous species, the pattern in which color changes occur in
deciduous species, together with the actual color (yellow/red)
may have a significant impact on satellite-derived autumn
phenology and highlights the continued need for in situ
ground observations of trees and shrubs (Donnelly et al.
2019) with which to validate satellite-derived vegetation
indices.

Evaluating the effectiveness of carbon flux
measurements at capturing in situ autumn phenology

During early autumn, NEE started to increase and GPP
started to decrease before LCt1. When only considering years
for which both flux and field data were available, NEE-
derived SOA occurred 9~11 weeks prior to field-observed
LCt1 and 6 weeks earlier when the long-term datasets were
used. This pattern was in close agreement with a reported
reduction in maximum carboxylation rate (an indicator of
photosynthetic capacity) of five deciduous species in
Tennessee, USA, which occurred 6–8 weeks before observed
leaf senescence during 1997 to 1998 (Wilson et al. 2000b).
Furthermore, the follow-up study suggested that this reduc-
tion started during mid-summer when both leaf nitrogen con-
tent and leaf area were constant (Wilson et al. 2001). In
southern Wisconsin, USA, leaf photosynthetic capacity per
unit area for red maple and sugar maple peaked in summer
during 1986 to 1989 (Reich et al. 1991), supporting our
findings in northern Wisconsin.

The decline in carbon flux before LCt1 was reached may at
least in part be a result of asynchronous canopy senescence
whereby color change starts at the outer part of the canopy for
some species, resulting in an earlier start to carbon flux decline
than field-observed LC and LF. In addition, photosynthesis
has been reported to decline prior to visible symptoms of
chlorophyll degradation and LC being detected in response
to physiological and environmental changes (Reich et al.
1991; Wilson et al. 2000b; Bauerle et al. 2012). In terms of
physiological changes, the net photosynthesis per unit area of
pin oak (Quercus ellipsoidalis), red maple, and sugar maple in
Wisconsin peaks in summer then decline in response to grow-
ing leaf age (Reich et al. 1991).Similarly, the photosynthesis
of white oak (Quercus alba L.), chestnut oak (Quercus prinus
L.), and red maple in Tennessee shows the same temporal
pattern with the increase of leaf age as well as leaf thickness
(Wilson et al. 2000a). In terms of environmental changes, a
decrease in photosynthetic capacity for 23 tree species (both
deciduous and coniferous) after the summer solstice (when
leaves are still green) resulted from shortening photoperiod
(Bauerle et al. 2012), while drought could also reduce autumn
photosynthetic capacity of deciduous trees as has been
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reported in Michigan and Tennessee (Weber and Gates 1990;
Wilson et al. 2000a; Busch et al. 2008).

During late autumn, NEE continued to decline and GPP
to increase after FLC and FLF were reached, but this signal
could not be attributed to deciduous tree activity. The carbon
flux signal may have resulted from a combination of conif-
erous and/or understory shrub photosynthesis as chlorophyll
would have likely been still active. Unfortunately, since phe-
nology of understory vegetation and conifers was not record-
ed in this study, it was not possible to determine their con-
tribution to either the carbon flux- or the satellite-derived
signals. However, a previous study (carried out in the eastern
USA on 73 common species in deciduous forests) suggested
that some non-native understory species remained active af-
ter trees were leafless (Fridley 2012). Similarly, the late
leafing native species in a New York secondary growth forest
were also active after FLF in 2004 (Xu et al. 2007).
Evergreen species, on the other hand, lack observable au-
tumn phenology, while photoperiod and temperature could
be influential on autumn photosynthesis capability of coni-
fers such as Pinus banksiana (Tanja et al. 2003; Richardson
et al. 2009).

Explaining the consistency between NDVI-derived
and field-observed autumn phenology

Although the timing of SOA andMOA derived fromNDVInor
showed closer agreement with field-observed LCt1, LCt2,
LFt1, and LFt2 than that derived from EVInor, NEE, or GPP,
this relationship does not necessarily imply that NDVI was a
better predictor of field phenology during early autumn. Since
LC was observed from the bottom of the canopy even though
coloration may have already started at the top, and NDVI
decline began after LC had started (top of canopy), LC and
NDVI show close agreement likely due to the slight delay in
both methods. However, this phenomenon did not persist into
late autumn, and the bias error between EOA derived from the
indirect approaches and LCt3 and/or LFt3 generally became
closer than in early autumn. Therefore, the overall higher con-
sistency between NDVI and field observations resulted from
(i) the delay in NDVI decline and field-observed LC during
early autumn compared to LC at the top of the canopy and (ii)
the reduced difference among indirect approaches during late
autumn.

Relationship between satellite data and carbon flux
measurements

During early autumn, there was higher temporal consistency
between EVI- and carbon flux-derived SOA than between
NDVI- and carbon flux-derived SOA. In particular, EVI,
NEE, and GPP all started to decrease, while NDVI remained
stable partly due to the fact that NDVI becomes saturated at

high LAI. Furthermore, NDVI is not as efficient as EVI in
estimating chlorophyll content during early autumn
(Gitelson and Merzlyak 1994; Junker and Ensminger 2016).
In particular, NDVI becomes less sensitive with increasing
chlorophyll content in sugar maple in Canada (Junker and
Ensminger 2016) and grassland, shrubs, and trees in
California (Gamon et al. 1995). Similarly, NDVI became sat-
urated when leaf chlorophyll content was low in horse chest-
nut (Aesculus hippocastanum L.) and Norway maple (Acer
platanoides L., Gitelson and Merzlyak 1994). Compared to
NDVI, EVI has been shown to have a similar relationship with
chlorophyll content but with a higher saturation threshold
(Schlemmer et al. 2013); and when chlorophyll content was
high, EVI crop canopy noise was lower than NDVI (Peng
et al. 2017). These results indicate that EVI has higher sensi-
tivity to chlorophyll content than NDVI in highly vegetated
areas, which contributes to its closer temporal agreement with
carbon flux variation during early autumn.

The better temporal consistency between EVI and carbon
flux measurements than NDVI during late autumn was based
on the fact that both EVI and carbon flux indices continued to
decrease after FLC and FLF, while NDVI stopped declining
before FLC and FLF were reached. This was likely due to the
higher sensitivity of EVI to sparse vegetation than NDVI.
Therefore, EVI decline had higher temporal consistency
with NEE and GPP than NDVI in both early and late
autumn, leading to the overall similarity in autumn duration
and progression rates. Similar reports by Wu et al. (2017)
suggested that NDVI-derived phenology had poor correlation
with carbon derived end of growing season, especially for
mixed forests; and Peng et al. (2017) suggested that EVI-
based spring onset had higher consistency with carbon flux
measurements than NDVI. The consistency between EVI and
carbon flux measurements was also supported by the reports
estimating GPP with EVI in Amazonian and North American
forests (Huete et al. 2006; Harris and Dash 2010).

Overall, the difference between these approaches in captur-
ing field phenology may, at least in part, be explained by the
difference in what theymeasure, i.e., satellite data is a measure
of vegetation spectral properties while carbon flux is a mea-
sure of photosynthetic activity. Although EVI is more sensi-
tive than NDVI under high chlorophyll content, neither is a
good predictor of leaf chlorophyll content partly due to the
absence of green band. In particular, the green band is argued
to be sensitive to chlorophyll (Gitelson and Merzlyak 1994;
Datt 1998), whereby indices that include the green band show
higher consistency with chlorophyll content than NDVI
(Gitelson et al. 1996; Lichtenthaler et al. 1996; Motohka
et al. 2010) while lower noise than EVI (Peng et al. 2017).
Furthermore, the photosynthetic capability of vegetation may
vary even when vegetation spectral properties are similar
(Prince 1991) due to the changes in photoperiod, temperature,
drought leaf age, leaf thickness, etc., as discussed earlier.
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Conclusion

The transition dates and progression rates of autumn phenology
in a northern Wisconsin mixed temperature forest were derived
from field data, satellite data, and carbon fluxmeasurements. Our
results suggest that the timing of autumn transition dates and
progression rates derived from NDVI were closer to that of field
observations than EVI, NEE, or GPP, while the reliability of the
latter three were close. The consistency between NDVI and field
observation was, at least in part, a result of inaccuracies of both
approaches. Indirect approaches tended to derive earlier SOA
than LCt1, while EVI, NEE, and GPP continued to decrease after
FLC and FLF. The advanced SOA derived from satellite data
could be influenced by species-specific canopy senescence pat-
terns and the sensitivity of vegetation indices, while the advanced
SOA derived from carbon flux measurements was more likely
due to trees responding to physiological and environmental
changes. EVI could possibly detect change in understory activity
in late autumn as indicated by the decline after FLC and FLF,
while the decrease in carbon flux measurements during this pe-
riod could have resulted from both understory and conifers.
There were a number of limitations associated with this study
relating to the limited availably of in situ field data in terms of the
length of the time series, a lack of conifer and shrub phenological
observations, a lack of detailed data on canopy senescence pat-
terns, andmissing data on the extremes of the season all of which
could help, at least in part, explain the observed discrepancies
between in situ and remotely derived autumn phenology.
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