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Abstract
Even though existing remote-sensing-based drought indices are widely used in many different types of ecosystems, their utility has not
been widely assessed in tropical dry forests (TDFs). The aim of this study is to evaluate the performance of three remote-sensing-based
drought indices, the Vegetation Condition Index (VCI), Temperature Condition Index (TCI), and Vegetation Health Index (VHI), for
meteorological drought monitoring in TDFs using the moderate-resolution imaging spectroradiometer (MODIS) products. The corre-
lation between the VCI, TCI, and VHI and multiple time scales of the Standardized Precipitation Index (SPI) (1, 3, 6, 9, 12, 15, 18, 21,
24 months) for each month (January to December) and each season (dry season, dry-to-wet season, wet season and wet-to-dry season)
were conducted using the Pearson correlation analysis.We also correlated year-to-year changes of satellite-based drought indiceswith the
changes of the in situ annual SPI (A_SPI) which provides annual information on the meanmeteorological drought. The analysis reveals
that the ability of these remote-sensing-based drought indices for meteorological drought monitoring varies with timing, and the TCI
outperforms the VCI and VHI in terms of seasonal and annual scale. These remote-sensing indices performed well in monitoring
meteorological drought in the dry season, poorly in the in the dry-to-wet season, and moderately in the wet season. The TCI performed
best in monitoring meteorological drought in the wet-to-dry period, followed by VHI, whereas the VCI performed worst. All of these
remote-sensing-based drought indices failed to detect drought in May during the green-up period and in September, October, and
November when the water content in the root regions was abundant. Our results indicate that the evapotranspiration of TDFs is more
sensitive than canopy greenness to detectmeteorological drought. Results from this study increase the ability to provide real-time drought
monitoring and early warnings of drought in TDFs.

Keywords Meteorological drought . SPI . VCI . TCI . VHI . TDFs

Introduction

Tropical dry forests (TDFs) are defined as a vegetation type
where more than half of its species are drought deciduous,

there are 4 to 6 months with low or no precipitation (<
100 mm per month), a mean annual temperature of 25 °C,
and total annual precipitation between 700 and 2000 mm
(Sanchez-Azofeifa et al. 2005). TDFs comprise about 42%
of all tropical forests worldwide (Murphy and Lugo 1986).
TDFs are habitat with abundant plant and animal species,
many of them endemic (Du et al. 2013). In Latin America,
60% of all TDFs have been replaced by other land cover types
such as agriculture and pasture for cattle ranching (Portillo-
Quintero and Sanchez-Azofeifa 2010). This ecosystem is es-
timated to store close to 22 Pg of carbon (Du et al. 2013).

As TDFs undergo tremendous human disturbances
(Rodriguez et al. 2017), ongoing climate change is affecting
the provision of ecosystem services (Kalacska et al. 2004).
Much of these changes are via droughts (Zhang et al. 2013).
In general, drought is defined as a precipitation deficit that
occurs over a period of time and that impacts both water re-
sources and ecosystem services (Du et al. 2013). Droughts can
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introduce great damages to tropical forests in terms of their
biophysical properties and ecosystem services (Portillo-
Quintero et al. 2015).

Increases in the frequency, duration, and severity of
droughts can change the structure, composition, and function
of tropical forests, which in turn contribute to declines in for-
est productivity (Choat et al. 2012; Engelbrecht et al. 2007;
Zhang et al. 2013). Droughts can also lead to an increase in
tree mortality rates of tropical forests and an impact on the
hydrological dynamics in the neotropics (Allen et al. 2010;
Phillips et al. 2009, 2010; Portillo-Quintero et al. 2015).
Allen et al. (2010) reviewed the potential of droughts to am-
plify tree mortality around the world and found any forest type
and any climate zone is vulnerable to climate change in terms
of tree mortality. Phillips et al. (2009) found that the Amazon
forests were vulnerable to growing moisture deficit, with the
potential for losing large amounts of carbon (1.2 to 1.6
petagrams) in response to drought. Phillips et al. (2010) indi-
cated that mortality rates of tropical forests tended to increase
disproportionately when the moisture stress is at higher levels,
and trees in Borneo are more vulnerable than those in the
Amazon. Portillo-Quintero et al. (2015) indicated that
droughts are potential threats to water resources in the neo-
tropics where a large fraction of population (approximately 90
million) lived.

Meteorological drought occurs mainly when rainfall is sig-
nificantly lower than the average precipitation for a sustained
period of time (Olukayode Oladipo 1985). High temperatures
and associated increases on potential evapotranspiration are
important drivers associated to meteorological droughts
(Williams et al. 2013). Many drought indices have been de-
veloped to characterize meteorological drought in terms of its
severity, magnitude, duration, and spatial extent. Popular
drought indices, such as the Palmer Drought Severity Index
(PDSI, Palmer 1965) and the Standardized Precipitation Index
(SPI, McKee et al. 1993), are derived from data coming from
in situ weather stations. The PDSI considers prior precipita-
tion, soil moisture, runoff, and evaporation demand; however,
its fixed time scale (between 9 and 12 months) precludes its
use for identifying drought lasting shorter time periods (e.g.,
less than 9 months). The PDSI has been widely applied to
determine the areal extent and severity of the drought in the
northeastern United States over the years (Alley 1984; Palmer
1965). The SPI is a precipitation-based drought index, which
considers the essential character of the drought as the deficien-
cy of usable water, including the soil moisture, rivers and
streams, groundwater, and reservoirs (McKee et al. 1993).
The SPI can be calculated for flexible scales depending on
the purpose of the study. Its applications have encompassed
a wide range of ecosystems at varying scales (Guttman 1999;
McKee et al. 1993; Patel et al. 2007).

Uncertainties associated with the in situ meteorological in-
dices depend on the density and distribution of the

meteorological stations (Brown et al. 2008). In a remote area
where the meteorological stations are limited, the use of the in
situ indices for drought monitoring faces a great risk of low
accuracy (Rhee and Carbone 2010). Remote sensing, which
can characterize meteorological and terrestrial biophysical at-
tributes from a regional to global coverage, has gained much
attention over the past several decades in drought monitoring.
Many remote-sensing-based drought indices have been pro-
posed as substitutes to in situ drought indices (Kogan 1995; Ji
and Peters 2003; Quiring and Ganesh 2010; Rhee and
Carbone 2010; Zhang et al. 2013; Nichol and Abbas 2015;
Zhang et al. 2017). Their abilities vary with climate zone,
ecosystem, and land cover (Zhang et al. 2017).

Among remote-sensing vegetation indices, the Normalized
Difference Vegetation Index (NDVI) and the Vegetation
Condition Index (VCI, scaled inter-annual NDVI), have been
extensively used for drought monitoring (Kogan 1995, 1997;
Quiring and Ganesh 2010). Bhuiyan et al. (2006) carried out a
detail analysis of spatial and temporal drought dynamics during
monsoon and non-monsoon seasons for the years 1984 to 2003
in Rajasthan (India) and found the correlation between the VCI
and SPI increased in themonsoon season because the growth of
vegetation was largely dependent on rainfall, while it was partly
controlled by irrigation in the non-monsoon season. Dutta et al.
(2015) conducted the correlation analysis of NDVI and VCI
derived from NOAA-AVHRR data and precipitation in the
northwest of Iran between 1997 and 2001 and found that good
correlations were obtained between average NDVI and VCI
and average 3-month precipitation, indicating that NOAA-
AVHRR-derived NDVI can reflect the precipitation fluctuation
in the study area. Quiring and Ganesh (2010) examined the
relationship between the VCI, and meteorological drought in-
dices during Texas’ growing seasons. Results suggested that
the VCI responded to relative prolonged moisture stress instead
of short-term precipitation deficiency. The authors also reported
that the correlations between the VCI and meteorological indi-
ces varied significantly across the State, being the correlation
between the SPI and PSDI weaker in east Texas than west
Texas due to higher permeable soils in the east.

The Temperature Condition Index (TCI, scaled inter-
annual LST) is another index that has been proposed for
drought monitoring due to its potential ability to quantify
evapotranspiration (Kogan 1995). Seiler et al. (1998) used
the TCI and VCI to assess drought conditions in Argentina
and found a close relationship with precipitation patterns.
Karnieli et al. (2006) compared satellite-based drought indi-
ces, such as the TCI and VCI, with the PDSI across the desert
regions ofMongolia, and concluded that there was little agree-
ment among those indices. The vegetation heath index (VHI),
a combination of the VCI and TCI (Kogan 2002), was an early
warning tool for drought. Rhee and Carbone (2010) tested
various remote-sensing-based drought indices in the arid re-
gions of Arizona and New Mexico and humid regions of

Int J Biometeorol (2020) 64:701–711702



North Carolina and South Carolina and found that the VHI
performed better than the VCI and TCI in both arid and humid
regions when tested against in situ meteorological drought
indices. Shamsipour et al. (2011) conducted correlation anal-
ysis of various remote-sensing indices and meteorological
drought indices in semi-arid central plains of Iran confined
to the spring season from 1998 to 2004 and found that VCI
better correlated to meteorological drought indices than TCI,
and VHI is not a reliable measure of drought condition in this
region. Amalo and Hidayat (2017) compared the remote-
sensing-based drought indices in East Java and found that
TCI was sensitive to drought in dry season or months; VCI
is proved to detect drought more sensitive in wet season than
TCI and VHI; VHI provided better comprehension about
drought occurrence. Zhang et al. (2017) compared various
satellite-based drought indices to monitor drought events in
the Continental United States. They found that VHI performed
better than the VCI and TCI in most climate regions.

Despite the fact that there is a considerable amount of sci-
entific literature associated to the development, testing, and
evaluation of drought indexes across many different types of
ecosystems, little has been done in tropical dry forest ecosys-
tems. As such, the objective of this study is to evaluate the
performance of three remote-sensing-based drought indices to
monitoring meteorological drought conditions in a TDF at the
local scale. We focus this study on the monthly, seasonal, and
yearly correlations between remote-sensing-based drought in-
dices and SPIs. This evaluation we did uses the MODIS
NDVI and LST products from 2000 to 2017, as well as local
precipitation data from 1979 to 2017.

Methods

Study area

This study was conducted at the Santa Rosa National Park
Environmental Monitoring Super Site (SRNP-EMSS),
Northwest Costa Rica (Fig. 1). The total study area covers
109 km2 with an average slope of 7%. For over 200 years,
the region was part of a cattle ranch until it became a National
Park in the early 1970s (Castillo et al. 2012; Janzen 2000; Cao
and Sanchez-Azofeifa 2017). Currently, the SNRP-EMSS is a
mosaic of diverse vegetation types dominated by secondary
tropical dry forests with three stages of ecological succession:
early, intermediate, and late (Kalacska et al. 2004; Cao and
Sanchez-Azofeifa 2017; Li et al. 2017). The early stage of
regeneration is composed of shrubs, small trees with grasses,
and bare soil in open areas. The intermediate stage is com-
posed of fast growing deciduous species, Lianas, and shade-
tolerant species. The late succession is consisted of dominant
evergreen species and regeneration of tolerant shade species
(Kalacska et al. 2004).

This area receives between 915 and 2558 mm of annual
precipitation, andmean annual temperature is stable at 26.6 °C
(Sanchez-Azofeifa et al. 2005). The SNRP-EMSS experi-
ences a 3-month dry season (January to March) when the
precipitation is extremely scarce (Fig. 2), and the majority of
the deciduous vegetation loses its leaves (Fig. 3). April and
May are considered as a transition from dry to wet season
(dry-to-wet season) because precipitation starts to grow in
April and sharply increases in May. The wet season is usually
from June to October. Then, SNRP-EMSS goes through a
transitional season from November to December (wet-to-dry
season) when the rainfall decreases significantly. The domi-
nant factor that affects the phenology of secondary TDFs with
various successions at this TDF site is water availability
(Sanchez-Azofeifa et al. 2005).

Data preprocessing

This study employed a set of Terra Moderate Resolution
Imaging Spectroradiometer (MODIS) products between
March 2000 and March 2017. Specifically, the 16-day
MODIS NDVI product at 250 m resolution (MOD13Q1, col-
lection v006) and the 8-day MODIS LST product at 1000 m
resolution (MOD11A12, collection v006) were obtained at the
“Reverb Echo” portal (http://reverb.echo.nasa.gov/reverb/).
Both products were re-projected to WGS 1984 UTM Zone
16 North. The Land Surface Temperature (LST) product was
then resampled to 250 m so that it had the same resolution
with the NDVI product. We converted the 16-day NDVI and
8-day LST products to monthly data by considering the num-
ber of days belonging to each month for each phase of image
products (Rhee and Carbone 2010). Quality flags in both
products were used to extract the ideal quality pixels for reli-
able analysis. Specifically, the pixels where the values in the
quality flags layer of MODIS products equal to zero were
selected as ideal quality pixels.

We also collected daily precipitation data between
June 1979 and March 2017 in a meteorological station
(10°50.408′ N, 85°37.055′ W) within the SNRP-EMSS. The
daily precipitation data were also aggregated to monthly data.

Remote-sensing drought indices

The Normalized Difference Vegetation Index (NDVI) is a
good indicator of the chlorophyll content and vegetative cover
and indicates the capacity of the photosynthesis of the canopy
(Karnieli et al. 2010); in addition, the LST is a proxy for
assessing the evapotranspiration of vegetation canopy and soil
moisture (Karnieli et al. 2010). The VCI and the TCI, calcu-
lated on monthly NDVI and LST data using the eq. (1) and
(2), reflect relative greenness and temperature of plants
(Kogan 1995; Kogan 1997). Specifically, VCI and TCI as
the normalizations of NDVI and LST emphasize the relative
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changes in the local NDVI and LST through time while re-
ducing the influences of local climate conditions and ecosys-
tems. The VHI, indicating vegetation health, is an additional
combination of the VCI and TCI with the same weight assum-
ing an even contribution from two elements (eq. (3)), indicat-
ing the health condition of the vegetation.

VCIij ¼ NDVIð ij−NDVI j min
�
= NDVIð j max−NDVI j min

�
*100

ð1Þ
TCIij ¼ LSTð j max−LST j

�
= LSTð j max−LST j min

�
*10 ð2Þ

VHIij ¼ 0:5* VCIij þ TCIij
� � ð3Þ

where i describes the ith year and j represents the jth month.
These indices could indirectly reflect the meteorological

drought conditions based on vegetation stress related to leaf
vigor, evapotranspiration in the leaf, or surface temperature in
the leaf. The values of these drought indices range from 0 to

100, the low values (close to 0) show the stressed vegetation
condition, middle values show fair conditions (close to 50),
and high values (close to 100) indicate the optical conditions
(Kogan 1995; Kogan 1997). Specifically, the drought grades
based on three drought indices can be defined as following
(Table 1):

In situ meteorological drought index (SPI)

The Standardized Precipitation Index (SPI) is a ground
station-based meteorological drought index (McKee et al.
1993). As a standardized index, the SPI is comparable with
each other both temporally and spatially. Higher values of the
SPI indicate humid conditions, and lower SPI values represent
drought. McKee et al. (1993) proposed a classification for the
SPI as follows: extremely wet (SPI > 2.0), very wet (1.5 < SPI
< 1.99), moderately wet (1.0 < SPI < 1.49), near normal (−
0.99 < SPI < 0.99), moderately dry (− 1.49 < SPI < − 1.0), se-
verely dry (− 1.99 < SPI < − 1.5), and extremely dry (SPI < −

Fig. 1 Study area: Santa Rosa National Park Environmental Monitoring Super Site (SRNP-EMSS), and the location of the source of meteorological
information used in this study
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2.0). Because the SPI is strongly affected by the record length
and longer records provide more consistent and accuracy SPI
values (Quiring 2009), the calculation of an SPI requires long-
term historical precipitation data. As such, this study used
information from the local meteorological station from

June 1979 to March 2017. In this calculation of the SPI, we
assumed that the precipitation records followed a Gamma dis-
tribution (Patel et al. 2007); as such, the data will be trans-
formed, using studentized residual normalization techniques,
to a normal distribution, with a mean value of 0 and a variance
value of 1. The z-scores for each record are therefore calcu-
lated as the SPI.

This study calculated SPIs of different time scales from
short and medium term to long term (1, 3, 6, 9, 12, 15, 18,
21, and 24 months) (McKee et al. 1993). One- and three-
month SPIs reflect short-term drought conditions, indicating
soil moisture and vegetation stress; 6- and 9-month SPIs re-
flect medium-term precipitation trends, showing the precipi-
tation over distinct seasons; 12-month or more SPIs indicate
long-term precipitation trends, which are tied to streamflow
and groundwater level (Zargar et al. 2011).

The correlation and regression analysis

To evaluate the performance of the remote-sensing-based
indices in monitoring meteorological droughts in TDFs,
we built relationships between the VCI, TCI, and VHI
and the multiple-scale SPIs using the Pearson correlation
analysis (Quiring and Ganesh 2010; Rhee and Carbone
2010). Since the relationships could vary with season
timing and time scales (Quiring and Ganesh 2010), the
Pearson correlation analysis was conducted at multiple
time scales (1, 3, 6, 9, 12, 15, 18, 21, 24 months) for each
month (January to December) and each season (dry sea-
son, dry-to-wet season, wet season, and wet-to-dry sea-
son), respectively. We also correlated year-to-year chang-
es of satellite-based drought indices with the changes of
in situ annual SPI (A_SPI) which was calculated as 12-
month SPI ending in Decembers of each year. The A_SPI
is considered as the annual mean meteorological drought
condition. Correlation coefficients (r) and p values were
obtained to determine whether and how meteorological
drought conditions affect vegetation conditions in differ-
ent phases of the phenology cycle.

Fig. 2 Precipitation distribution at the SRNP-EMSS in the dry, dry-to-
wet, wet, and wet-to-dry seasons. The dry season includes January to
March (red); the dry-to-wet transitional season includes April and May
(blue); the wet season includes June to October (green); the wet-to-dry
transitional season includes November and December (yellow)

Fig. 3 The NDVI distribution at the SRNP-EMSS in the dry, dry-wet,
wet, and wet-dry seasons. The dry season includes January–March (red);
the dry-wet transitional season includes April–May (blue); the wet season
includes June–October (green); the wet-dry transitional season includes
November–December (yellow). The monthly NDVI distributions were
extracted from MODIS products (MOD13Q1, collection v006)

Table 1 Classification of remote-sensing-based drought indices VCI,
TCI, and VHI

Name of class VCI TCI VHI

Extreme drought 0–10 0–10 0–10

Severe drought 10–20 10–20 10–20

Moderate drought 20–30 20–30 20–30

Mild drought 30–40 30–40 30–40

Abnormally dry 40–50 40–50

No drought 50–100 50–100 40–100
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Result

The precipitation distribution at SRNP-EMSS

Figure 2 shows monthly and seasonal precipitation distri-
butions at the SRNP-EMSS based on historical records
from 1979 to 2017. The precipitation in the dry season
is extremely low with a median amount of 2.9 mm and
average amount of 7.9 mm. The precipitation increases
sharply in the dry-to-wet season (median rainfall:
188.2 mm; average rainfall: 236.6 mm). In the wet sea-
son, the precipitation is generally abundant (median rain-
fall: 1152.9 mm; average rainfall: 1389 mm) even though
July is a relatively dry month (median rainfall: 117.2 mm;
average rainfall: 144.5 mm). The SNRP-EMSS experi-
ences sharp decline in the wet-to-dry season (median rain-
fall: 115.8 mm; average rainfall: 157.4 mm).

Seasonal correlations between remote-sensing-based
drought indices and multiple-scale SPIs

Figure 4 shows the correlation coefficients between
satellite-based drought indices and multiple-scale SPIs
over the SRNP-EMSS in four seasons. The correlations
varied with season timing. The TCI had an overall bet-
ter performance than the VCI and VHI in terms of sea-
sonal scale.

In the dry season, three remote-sensing-based drought in-
dices had very similar correlations with SPIs: they had mod-
erate correlations with the short- (3-month) and long-term
(18-, 21-, and 24-month) SPIs (r ≈ 0.5), and they had high
correlations with the medium- to long-term (6-, 9-, 12-, and
15-month) SPIs (r ≈ 0.70). The maximum correlated values
for VCI, TCI, and VHI (dry season) and SPI (12 months,
12 months, 12 months) are 0.69, 0.64, and 0.72, respectively.
The VCI, TCI, and VHI also presented similar correlations
with the SPIs in the wet season: for all time scales except for
the 24-month SPI with which VCI was not significantly cor-
related, they were moderately correlated (r ≈ 0.40) with SPIs.
The maximum correlated values for VCI, TCI, and VHI (wet
season) and SPI (9 months, 12 months, 12 months) are 0.38,
0.47, and 0.43, respectively. In the dry-to-wet season, three
drought indices had poor performances: none of them could
reflect meteorological drought conditions for any given scales.
The performance of three drought indices differed in the wet-
to-dry season: the VCI did not correlate with SPIs at all time
scales; the TCI had significant correlations with SPIs at all
time scales, especially for 6-, 9-, 12-month SPIs; and the
VHI had moderate correlations with SPIs from 1-month to
the 12-month time scale. The maximum correlated values
for TCI and VHI (wet-to-dry season) and SPI (12 months,
12 months) are 0.62 and 0.38, respectively.

Monthly correlations between remote-sensing-based
drought indices and multiple-scale SPIs

Figure 5 describes monthly correlations of the VCI-SPIs, TCI-
SPIs, and VHI-SPIs at the SRNP-EMSS. Three drought indi-
ces had a similar performance in February, June, and July:
they responded to the short-, medium-, and long-term SPIs
in February (1 month to 15 months) and July (1 month to
24 months) and the medium- and long-term SPIs in June
(9 months to 24 months). The VCI and VHI performed better
than the TCI in February. The TCI and VHI performed better
than the VCI in June. The VHI performed best in July.

Three drought indices had different performances in
January, March, April, August, and December. In January,
the VCI moderately responded to the middle-term SPIs;
meanwhile, the TCI and VHI can respond to the short-, medi-
um-, and long-term SPIs. In March and April, the VCI was
more sensitive to shorter-term SPIs than TCI and VHI while
TCI and VHI could also well monitor the medium- and long-
term SPIs. In August, the VCI and VHI responded to short-
and medium-term SPIs; and the TCI only responded to 24-
month SPI. In December, there were no correlations between
the VCI and SPIs, the TCI was able to respond to SPIs of all-
time scales, and the VHI was significantly correlated the SPIs
of 1 to 12 months. All of the three-remote-sensing-based
drought indices failed to correlate to SPIs in May,
September, October, and November.

Yearly correlations between remote-sensing-based
drought indices and A_SPI

Figure 6 shows the correlations between the annual mean
values of satellite-based drought indices, the VCI, TCI and
VHI, and the A_SPI. The TCI presented a significantly strong
correlation (r2 = 0.63, p < 0.01, and RMSE = 0.81) with the
A_SPI, the VHI presented a moderate correlation (r2 = 0.39,
p < 0.01, and RMSE= 1.03) and the VCI did no significantly
respond to the A_SPI (r2 ≈ 0, p = 0.92, and RMSE= 1.03).

Discussion

The performance of the remote-sensing-based drought indices
in monitoring droughts is phenologically and seasonally de-
pendent at the SRNP-EMSS. In the dry season, the correlation
between the remote-sensing indices and the SPIs became sig-
nificant when the time scale was larger than 3 months (i.e., 3,
6, 9, 12, 15, 18, 21, and 24 months). This means that the
remote-sensing indices can better reflect the rainfall deficien-
cy in previous (≥ 3) months rather than the current month
during the dry season. The fact that the remote-sensing indices
performed badly in the dry-to-wet season may be due to an
insignificant correlation with the SPIs in May when the leaves
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Fig. 4 The correlation coefficients (r) between remote-sensing-based
drought indices (the VCI, TCI, and VHI) and multiple-scale SPIs in four
seasons at the SRNP-EMSS. Blank places represent p values that are not
significant (significance level = 0.05). Purple circles indicate significantly

positive relationships and yellow circles indicate significantly negative
relationships. The darker and bigger circles stand for higher absolute r
values
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of TDFs develop quick fast (Fig. 3). The remote-sensing in-
dices moderately reflected meteorological condition in the wet
season, probably associated with the water content in the root

regions. In the early stage of wet season (June, July, and
August), significant correlations between remote-sensing-
based indices, the VCI, TCI and VHI, and the SPIs were found

(a). the VCI-SPIs correlation (b). the TCI-SPIs correlation

(c). the VHI-SPIs correlation

Fig. 5 The correlation coefficients (r) between the remote-sensing-based
drought indices (the VCI, TCI, and VHI) and the multiple-scale SPIs for
each month at the SRNP-EMSS. Blank places represent p values that are
not significant (significance level = 0.05). Purple circles indicate

significantly positive relationships and yellow circles indicate significant-
ly negative relationships. The darker and bigger circles stand for higher
absolute r values

Int J Biometeorol (2020) 64:701–711708



when the soil moisture was not much high; when the water
content in the root regions was much abundant (September
and October), the remote-sensing indices could no longer re-
flect the meteorological condition probably because TDFs,
with sufficient water content in the root regions, were resistant
to meteorological drought. Ji and Peters (2003) found similar
patterns in areas of northern Great Plain where high correla-
tions between the NDVI and the SPIs occurred in the middle
(June, July, and August) of the growing season and low cor-
relations occurred at the start (May) and end (September and
October) of the same season.

Observed significant differences for the VCI, TCI, and VHI
reflected meteorological drought in the wet-to-dry season. We
found that remote-sensing indices could not reflect the mete-
orological drought condition at the early stage of the wet to
dry season (November), because the water content in the root
regions was still saturated though its leaves started falling. But
in the late stage of the wet-to-dry period (December) when
falling leaves dramatically and water content being not satu-
rated, the TCI reflected all the time-scale meteorological
drought conditions. Moreover, the VHI described the precip-
itation deficiency within 1 year, and the VCI did not respond
to the rainfall.

The varying performances of the VCI, TCI, and VHI are a
result of reflecting the seasonal and monthly dynamics of
TDFs in different biochemical or biophysical manners. The
VCI detected the canopy greenness, leaf vigor, and the decid-
uousness during the growing season (Kogan 1995, 1997). The
TCI is more sensitive to the soil moisture when the leaf falls
during the dry season and is more sensitive to the water

content in the canopy when the leaf is saturated during the
wet season (Karnieli et al. 2010). The VHI, which indicates
the vegetation health condition, inherits characteristics of the
VCI and TCI. These indices performed similarly to reflect
meteorological drought conditions except for the wet-to-dry
season in terms of seasonal scales. The variation of precipita-
tion regime triggered the changes in the canopy greenness and
leaf vigor, in the evapotranspiration of the canopy and soil,
and in the health conditions of TDFs. Thus, the VCI, TCI, and
VHI have the potential to detect meteorological drought indi-
rectly. The biophysical and biochemical parameters
responding to the VCI, TCI, and VHI in the dry seasons were
associated with the rainfall in previous (≥ 3) months because
the precipitation in the current dry season was pretty low. In
the dry-to-wet season, the variabilities of the biophysical and
biochemical parameters were related to the rapid growth of
TDFs in May (Fig. 3) which was driven by the precipitation
regime in previous months rather than in the current month,
although the rainfall in May was pretty much (Fig. 2).

In the wet season, meteorological droughts can lower VCI
by altering the leaf reflectance at both the red and near-
infrared wavelength (Carter et al. 1996). In detail, when a leaf
is in the water-stressed condition, the chlorophyll concentra-
tion would decrease and results in higher reflectance in the red
band; meanwhile, spaces within the spongy mesophyll would
be enlarged and lead to an increase of the scattering effect for
near-infrared photons at the cell wall-air interface and eventu-
ally increase the near-infrared reflectance (Carter et al. 1996;
Asner 1998). The sensitivity of red reflectance to decreased
water content in the leaf was much more than near-infrared

Fig. 6 The correlation
coefficients between the annual
satellite-based drought indices
(the VCI, TCI, and VHI) and the
A_SPI which indicates annual
mean meteorological drought
condition
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reflectance, resulting in lower values of the VCI while suffer-
ing from meteorological droughts. At the same time, meteo-
rological droughts can trigger the closure of the leaf stomata
and weaken the transpiration process, leading to an increase in
the surface temperature at the canopy (Carter et al. 1996). As
such, the TCI also decreased under water stress. As a linear
combination of VCI and TCI, VHI declined with VCI and TCI
when suffering from drought. During the wet-to-dry period,
the role of precipitation was no longer to sustain the canopy
greenness (because phenologically falling leaves) but to pro-
mote evapotranspiration of plants and soil (Karnieli et al.
2010). As a result, the VCI did not reflect the precipitation
deficiency (SPIs) in December while TCI was able to depict
the evapotranspiration process in TDFs and thus well
responded to variations in precipitation and soil moisture
(Cao et al. 2016).

The remote-sensing-based drought indices performed sig-
nificantly different to reflect annual meteorological drought
condition. The annual mean TCI and VHI explained 63%
and 39% variability of the A_SPI, respectively, and annual
mean VCI was a poor indicator to account for the change in
the A_SPI. This was because the evapotranspiration of TDFs
was more sensitive than canopy greenness to the inter-annual
precipitation deficiency.

The performance of a specific remote-sensing-based
drought index for the early, intermediate, and late stage of
TDFs should be similar. This is because time-series of leaves
intensity for intermediate and late are very close during the
whole period, and three stages of TDFs have similar leaves
intensity during May and November. The changes in leaf in-
tensity for early, intermediate, and late stages of TDFs, driven
by the effect of phenology, are simultaneous (no time lag) and
have the same direction (Lopezaraiza-Mikel et al. 2013). The
remote-sensing drought indices (e.g., VCI and TCI) empha-
size the relative changes in the biophysical parameters (NDVI
and LST) through time. As a result, the values of a specific
remote-sensing-based drought index for three stages of TDFs
should be similar in eachmonth, under the assumption that the
difference in leaf intensity between early and intermediate/late
stage in a certain month (from December to April) does not
vary with a given year. Furthermore, the element of vegetation
heterogeneity is buffered by the available MODIS satellite
information (250 m and 1 km), which prevents to fully con-
sider differences between the different levels of successional
stages present in our study area.

Conclusion

In this study, we evaluated the use of three popular remote-
sensing-based vegetation indices, i.e., the Vegetation
Condition Index (VCI), Temperature Condition Index (TCI),
and Vegetation Health Index (VHI), calculated onMODIS the

NDVI and LST products, towards the monitoring of the me-
teorological drought in a TDF at SRNP-EMSS. Multiscale
Standard Precipitation Index (SPIs) calculated on precipitation
data from a meteorological station was used to evaluate
satellite-based indices. Pearson correlation analysis was per-
formed between remote-sensing indices and SPIs. We con-
cluded that the ability of these remote-sensing-based drought
indices to monitor meteorological drought varied with timing,
and TCI outperformed VCI and VHI in terms of seasonal and
annual scale. They performed similarly in the dry, dry-to-wet,
and wet season while TCI performed best to monitor meteo-
rological drought in the wet-to-dry period, followed by VHI,
and VCI did worst. These remote-sensing indices performed
well in monitoring meteorological drought in the dry season,
poorly in the dry-to-wet season, and moderately reflected rain-
fall deficiency in the wet season. However, these remote-
sensing indices were not suitable to reflect meteorological
drought in the dry-to-wet season.

The utility of remote-sensing indices was also assessed in
terms of the monthly scale. The varying performance of
remote-sensing indices can be mostly explained by their na-
ture in describing the biophysical and biochemical properties
in TDFs. All of them failed to well monitor the drought in
May when the leaf flushed sharply and in September, October,
and November when the water content in the root region was
abundant. Besides, the inter-annual analysis showed that the
evapotranspiration of TDF was more sensitive than canopy
greenness to precipitation deficiency. Our study effectively
increased the ability to provide real-time drought monitoring
and early warning of drought in the TDF.
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