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Abstract
Dengue fever is expanding rapidly in many tropical and subtropical countries since the last few decades. However, due to limited
research, little is known about the spatial patterns and associated risk factors on a local scale particularly in the newly emerged
areas. In this study, we explored spatial patterns and evaluated associated potential environmental and socioeconomic risk factors
in the distribution of dengue fever incidence in Jhapa district, Nepal. Global and local Moran’s I were used to assess global and
local clustering patterns of the disease. The ordinary least square (OLS), geographically weighted regression (GWR), and semi-
parametric geographically weighted regression (s-GWR) models were compared to describe spatial relationship of potential
environmental and socioeconomic risk factors with dengue incidence. Our result revealed heterogeneous and highly clustered
distribution of dengue incidence in Jhapa district during the study period. The s-GWR model best explained the spatial associ-
ation of potential risk factors with dengue incidence and was used to produce the predictive map. The statistical relationship
between dengue incidence and proportion of urban area, proximity to road, and population density varied significantly among the
wards while the associations of land surface temperature (LST) and normalized difference vegetation index (NDVI) remained
constant spatially showing importance of mixed geographical modeling approach (s-GWR) in the spatial distribution of dengue
fever. This finding could be used in the formulation and execution of evidence-based dengue control and management program to
allocate scare resources locally.
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Introduction

Dengue fever is an arboviral disease transmitted by Aedes
genus female mosquito especially Aedes aegypti (Messina et
al. 2015). Studies indicated that globally around 400 million
dengue infections occurs annually and nearly four billion

people lives under the direct risk of dengue transmission
(Bhatt et al. 2013). In the recent years, dengue has expanded
in many countries which were considered dengue free earlier
(Brady et al. 2013). In Nepal, dengue fever is a relatively new
disease which was first reported about a decade ago in 2004
(Pandey et al. 2004). However, in short period, the disease has
spread rapidly covering wide geographical areas of the coun-
try especially in the southern low-land Tarai and less elevated
hill districts putting almost two thirds of the population under
the direct risk of the disease.

Spatial distribution of dengue fever is determined by com-
plex interaction of environmental, geographic, and socioeco-
nomic factors (Wijayanti et al. 2016; Méndez-Lázaro et al.
2014; Lin and Wen 2011; Khormi and Kumar 2011).
Several previous studies have recognized role of meteorolog-
ical factors such as temperature, precipitation, and relative
humidity in the spatial distribution of dengue fever
(Méndez-Lázaro et al. 2014; Wu et al. 2009; Limper et al.
2016). Other studies identified the importance of
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socioeconomic factors as main driving forces for occurrence
and outbreak of dengue fever (Khormi and Kumar 2011). The
role of proximate variables including distance to major roads,
water bodies, and health facilities (Wijayanti et al. 2016) are
also important for spatial variation of dengue fever. Recently,
remote sensing application is increasingly being used in the
human health studies (Beck 2000). Satellite-based precipita-
tion estimation-Tropical Rainfall Measuring Mission
(TRMM) (Méndez-Lázaro et al. 2014), normalized difference
vegetation index (NDVI) (Arboleda et al. 2009; Ge et al.
2016; Troyo et al. 2009), normalized difference built-up index
(NDBI), normalized difference water index (NDWI), and land
surface temperature (LST) (Méndez-Lázaro et al. 2014;
Roslan et al. 2016) were widely used as the environmental
proxies to assess the spatial variation in dengue and other
mosquito borne disease.

Previous studies have investigated spatial association of
dengue fever with various potential risk factors (Qi et al.
2015; Wijayanti et al. 2016). Most of these studies were based
on global model which assumes the relationships between the
predictors and the outcome variable are homogeneous (or sta-
tionary) across the study area. Further, global model assumes
normal distribution and no specific autocorrelation in the
dataset. Therefore, global models produce parameter esti-
mates which represent an Baverage^ type of behavior
(Fotheringham and Brunsdon 2010). However, in practice,
the relationships between variables might be non-stationary
and vary geographically (Cressie 1993). According to
Tobler, Beverything is in the space is related with everything
but closer thing is more related than distant thing^ (Tobler
1970). A global model used to assess the spatial association
violates the assumption of normal distribution and explains
only little deviance. As a result, a predictive map based on
such global model is usually subject to high errors, especially
in the areas with weak relationship between predictors and
outcome variables.

To address limitations of the global model, several local
statistical methods have recently been developed for the em-
pirical spatial analysis. The local statistics seeks spatial asso-
ciation between predictor variables and outcome variable on
the one hand and heterogeneity on the association on the other.
Local forms of spatial analysis also provide a linkage between
the outputs of spatial techniques and the powerful visualiza-
tion capabilities of geographic information system (GIS) and
some statistical graphics packages (Fotheringham and
Brunsdon 2010). Local indicator of spatial association
(LISA) (Anselin 2010), local Gi* (Ord and Getis 2010) and
local Moran’s I (Anselin 2010), geographically weighted re-
gression (GWR) (Brunsdon et al. 1998), and spatial regres-
sions are some of commonly used local spatial statistics.
GWR among others is the most widely used multivariate local
statistics proposed by Brunsdon et al. to cope with spatially
non-stationary processes that allowed to change parameter

locally (Brunsdon et al. 1998, 2010). It should be noted that
GWR approach does not assume that relationships vary across
space but is a means to identify whether or not they do. If the
relationships do not vary across space, the global model is an
appropriate specification. GWR has been used widely to as-
sess the spatial relationship in the various field including but
not limited to the land use change, urbanization, and various
infectious disease under the broad field of epidemiology
(Corner et al. 2013; Ge et al. 2016; Zheng et al. 2014).

However, all the variables considered in the GWR model-
ing may not vary and some of them may exhibit global effects
(Ribeiro et al. 2015). Considering this situation, Brunsdon et
al. proposed a semi-parametric geographical regression model
as a mixed modeling approach where some parameters are
fixed globally but others vary locally (Brunsdon et al. 1999).
In most recent studies which applied the s-GWR model in the
spatial analysis showed better model fit compared to local
GWR and global model (Ehlkes et al. 2014; Manyangadze
et al. 2016; Mondal et al. 2015). Several software are now
available to estimate global model (OLS) and local model
(GWR) including ArcGIS, QGIS, spgwr package of R, and
GWR 4.0. As GWR has also implemented mixed model (s-
GWR) along with local GWR and Global (OLS), we used
GWR 4.0 which is not available in other software. In addition,
GWR 4.0 has also implemented significant test (t test) of local
parameters.

In this study, we focused on the Jhapa district which is one
of the highly dengue-affected districts in Nepal. In Jhapa, first
dengue fever case was reported in 2011, 7 years after its in-
troduction in the country (C and Agarwal 2014), with a big
outbreak recorded in 2013 (Acharya et al. 2018). A total of
200 laboratory confirmed cases were reported from across the
district. However, very few cases were reported in 2014 (8
cases) and 2015 (2 cases). After relative silence in 2014 and
2015, another big outbreak occurred in this district in 2016. A
total of 312 cases were reported during the peak outbreak year
of 2016 until the end of the October. However, there is no
spatially explicit research being conducted in local level to
understand the spatial epidemiology of dengue fever and as-
sociated potential risk factors. To fill this gap, we studied
spatial distribution and associated potential environmental
and socioeconomic risk factors of dengue fever by comparing
local (GWR), global (OLS), and mixed (s-GWR) modeling
approach in Jhapa district of Nepal.

Materials and methods

Study area

Jhapa district is located in the south east part of Nepal (26.36°
to 26.80° North and 87.63° to 88.20° East) bordering India in
south and east and Morang and Ilam districts in the west and
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north, respectively. Most of the land is flat and average eleva-
tion is less than 300 m. Northern parts of the district are oc-
cupied by hills. Administratively, Jhapa is divided into 48
Village Development Committees (VDCs) and three munici-
palities1 with a total of 470 wards (Fig. 1). Since the use of
smaller spatial unit has shown to provide valuable information
on the distribution of disease over space (Matisziw et al.
2008), the lowest administrative unit ward polygons were tak-
en as a spatial unit for this analysis. Jhapa district observes
subtropical monsoon climate with the summer temperature

from 32 to 35 °C and winter temperature from 8 to 15 °C.
The district receives about 250–300 cm annual rainfall, most
of which occurs during the monsoon season (June–
September). Average population density of the district is
510/km2, nearly three times higher than the national average
(180/km2) (Central Bureau of Statistics (CBS) 2011b). The
distribution of population is uneven and concentrated mainly
in the urban center along the highway. The East-West high-
ways passing from northern part of the district connects it with
the capital city while the North-South highway joins it with
eastern hill districts. These two highways play significant role
for movement of people and goods in and out of the district.
We chose this district for this study due to its highest dengue
incidence and availability of disease data.

1 VDC/municipalities boundaries in Nepal are rather unstable and changing
continuously in the recent years. We have considered the boundaries at time of
last census enumeration in 2011 because base population and dengue data both
were available at ward level at time of census enumeration.

Fig. 1 Location of the study area. The color map is false color composite of Landsat 8 OLI (2013-10-19) based on bands 6, 5, and 3 (RGB)
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Dengue data

Dengue fever is a high public health concern infectious dis-
ease in Nepal. It is reported weekly to the Epidemiology and
Disease Control Division (EDCD) of the Government of
Nepal from all the private and public hospitals through the
early warning reporting system (EWARS) (DOHS 2015).
During the epidemic, the cases and death of dengue fever
including other five public health important infectious disease
are reported immediately (within 24 h) to the EDCD. In this
study, we collected 6 years (2011–2016) of laboratory con-
firmed, based on either immunoglobulin M (IgM) tests or
polymerase chain reaction (PCR) tests, dengue cases summa-
rized at ward level from the EDCD. These cases include both
dengue fever and dengue hemorrhagic fever cases.

Explanatory variables

Considering the previous studies and data availability, seven
potential environmental and socioeconomic risk factors in-
cluding population density (Araujo et al. 2014; Lin and Wen
2011), proximity to road (Hsueh et al. 2012; Mahabir et al.
2012; Qi et al. 2015), proportion of urban area (Wijayanti et al.
2016; Qi et al. 2015), LST (Araujo et al. 2014; Méndez-
Lázaro et al. 2014; Roslan et al. 2016), NDVI (Arboleda et
al. 2009; Moreno-Madriñán et al. 2014; Qi et al. 2015; Troyo
et al. 2009), NDBI, and NDWI (Estallo et al. 2012) were
selected to explain ward-level spatial variation of dengue fever
in Jhapa district, Nepal.

The ward-level population data was obtained from the
Central Bureau of Statistics (CBS) from 2011 census
(Central Bureau of Statistics (CBS) 2011a). The population
density was then estimated by dividing total population of
each ward by total area of the respective ward polygon.
Ward and higher level administrative boundary of Nepal along
with other GIS layers were obtained from the Department of
Survey of the Government of Nepal which were prepared
based on the topographical base map of 1995 A.D. The prox-
imity to major road (East-West Highway and North-South
Highway) was computed based on the Euclidean distance in
the ArcGIS software and proportion of urban area was com-
puted with built-up class based on the land cover map with

30 m spatial resolution prepared by ICIMOD (Uddin et al.
2015).

Other four variables were derived from remote sensing
which were obtained using the Landsat 8 Operational Land
Manager and Thermal Infrared Sensor (OLI/TIRS) imagery
(Path/Row: 139/42) dated on 2013-10-19 A.D. Semi-
automatic classification plugin implemented in QGIS (http://
qgis.com/) was used to process the Landsat image.
Radiometric calibration was performed at first to convert the
satellite digital numbers to at-satellite reflectance using gains
and offsets obtained from the image metadata. Atmospheric
correction was further employed to convert at-satellite reflec-
tance to surface reflectance using the dark object subtraction
(DOS) method (Chavez 1996). The LSTwas computed based
on thermal band (Band 10) and NDVI, NDBI, and NDWI
were computed using the green, red, near infrared, and
short-wave infrared bands with following the formula summa-
rized in Table 1.

As dengue data was in ward-level aggregation, all depen-
dent variables were also summarized in ward level for their
mean value using zonal statistics function implemented in
ArcGIS.

Mapping and clusters detection

The spatial distribution of dengue incidence rate was mapped
in ArcGIS taking 6 years (2011–2016) average incidence rate
with base population of 2011 census. We assumed that base
population of 2011 did not change significantly during the
study period. The Global Moran’s I (Moran 1948) was calcu-
lated to evaluate and quantify the overall spatial autocorrela-
tion or spatial dependence of dengue incidence in the study
area. The GlobalMoran’s I is a widely used indicator of spatial
autocorrelation. Its value ranges from − 1 to 1, where 1 indi-
cates a perfect positive correlation, 0 implies perfect spatial
randomness, and − 1 suggests a perfect negative spatial auto-
correlation. Significance of Global Moran’s I was assessed at
95% confidence interval using the z test. Mathematically, it is
expressed as:

I ¼ N
∑i∑ jwij

∑i∑ jwij X i−X
� �

Y j−Y
� �

∑i Y i−Y
� �2 ð1Þ

Table 1 Environmental
indicators computed based on
LandSat8 OLI

Acronyms Spectral band combinations* Description

NDVI (Rouse et al. 1974) B5NIR −B4Red/B5NIR + B4Red Normalized difference vegetation
index

NDBI (Zha et al. 2003) B6SWIR1 −B5NIR/B6SWIR1 – B5NIR Normalized difference built-up index

NDWI (McFEETERS
1996)

B3Green −Band5NIR/B3Green + Band5NIR Normalized difference water index

*NIR near infrared, SWIR short-wave infrared
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where N is the total number of ward, Xi and Xj are the spatially

smoothed incidence rate (SSIR) of wards i and j, X is the
average SSR of all wards, and wij is the element of the spatial
weight matrix corresponding to the wards pair i and j.

Anselin’s Local Indicators of Spatial Association
(LISA) technique using the Local Moran’s I Statistic
(Anselin 2010) was used to identify and map the local
clusters of unusually high dengue rates. LISA computes
a measure of spatial association for each individual loca-
tion. A local Moran’s I autocorrelation statistic at the lo-
cation i can be expressed as

I i ¼ zi ∑
j
wijz j ð2Þ

where zi and zj are the standardized scores of attribute values
for unit i and j, and j is among the identified neighbors of i
according to the weights matrix wij.

Modeling the spatial relationship

The spatial relationship of ward-level disease incidence
and potential environmental and socioeconomic risk fac-
tors were assessed using the OLS, GWR, and s-GWR
model. Before running these models, the Pearson correla-
tion test was conducted and highly correlated risk factors
(r > |0.7|), if any were excluded. These models were com-
pared based on R2, adjusted R2, and Akaike information
criterion (AICc) to identify the best-fit regression model.
The R2 value indicates a model’s ability to explain the
variance in the dependent variable, and thus a higher R2

implies a better model performance. The AICc is an indi-
cator of model accuracy and smaller AICc value indicates
improvements in a model performance (Ribeiro et al.
2015; Tu and Xia 2008). However, the rule-of-thumb is
that the difference in AICc should be 2 or higher for the
substantive difference on the goodness of fit (T. Nakaya et
al. 2005). The best model was chosen with minimum
AICc with difference of more than 2 and maximum R2

value. We used freely available GWR 4.0 (T. Nakaya et
al. 2005; Tomoki Nakaya 2016) software to model the
spatial relationship of dengue incidence with potential en-
vironmental and socioeconomic risk factors. Diagnosis of
residuals of the final model was assessed using the
Moran’s I test. Moran’s I indicate any misspecification
or missing of key variables to explain the spatial patterns.
Additionally, observed and predicted dengue cases were
mapped and compared with correlation and scatter plot to
assess the predictive performance of the final model.

The OLS regression model was applied first to assess
the global relationship between dengue incidences and the

selected risk factors. The method of least square is
expressed in Eq. 3.

yi ¼ aþ ∑
k

j¼1
a jxij þ εi ð3Þ

where yi is the ith observation of the dependent variable, ajxij
is the ith observation of the Kth independent variable, and εi is
the error terms. Such global model assumes that the rate of
neighborhood i is independent of neighboring j and that resid-
uals are normally distributed in terms with zero mean.

Secondly, we applied GWR to analyze the relationship be-
tween dengue incidences and associated risk factors which
varies from one ward to another. Geographically weighted
regression model is a simple extension of traditional regres-
sion model (Eq. 3) which can be expressed mathematically in
the following equation:

yi ¼ ∑
k

j¼1
βk uivið Þxilþεi ð4Þ

where (ui, vi) is coordinate for each location i., in our cases it is
the centroid of each ward. In geographical weighted regres-
sion model, (Eq. 4) (ui vi) is an additional term to the global
regression model. This is a weight term which is generally
called kernel and is determined by the principle of Tobler’s
First Law of Geography (Tobler 1970). In this analysis, we
used adaptive bi-square kernel for geographically weighting
since it is suitable for clarifying local extents for model fitting
and keeping constant the number of areas to be included in the
kernel (Tomoki Nakaya 2016). The golden searchmethodwas
used to automatically and efficiently determine the optimal
bandwidth size for geographically weighting. The optimal
bandwidth and the associated weighting function were obtain-
ed by choosing the lowest AICc score.

Finally, we applied s-GWRmodel treating some predictors
as local while others as global. The s-GWR model can be
expresses in the following equation:

yi ¼ ∑
k

j¼1
ajxij þ ∑

p

l¼kþ1
βk uivið Þxilþεi ð5Þ

Equation 5 is the combined form of previously mentioned
two equations (Eqs. 3 and 4) where the first aj denotes the
global parameter estimates of fixed independent variables,
and ik (ui,vi) denotes the local parameter estimates on each
location i in space. In the mixed modeling approach (s-
GWR), it is necessary to assess which of the selected indepen-
dent variables exhibit local and which exhibit global patterns.

We used both geographical variability test and global to
local variables selection approach to find actual global and
local term using the GWR 4.0. These methods follow a ratio-
nale similar to the one used in a stepwise regression model
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selection process where model with lower AIC or AICc values
is usually selected. In geographical variability test, GWR 4.0
software compares the model comparison criterion such as
AICc between original and switched GWR model. For this,
the GWR software fits GWRmodel with all selected variables
as spatially varying terms and computes the AICc. In the next
step, another model fits in which one variable is switched as
fixed term while all other kept as a varying coefficient. If the
switched GWRmodel attains a statistically better fit, the value
of the model comparison indicator, i.e. AICc, is smaller than
that of the original GWRmodel suggesting no spatial variabil-
ity in the selected term. In this condition, BDiff of Criterion^
column, which shows the difference in model comparison
indicator between the original GWR model and the switched
GWR model, becomes a positive value. In the reverse condi-
tion, the selected variable is considered spatially non-
stationary and BDiff of Criterion^ becomes negative. The test
routine repeats this comparison for each geographically vary-
ing coefficient. For computational simplicity, the compared
models are fitted with the same bandwidth as the fitted model.

Like geographical variability test, global to local variable
selection approach fits global model with all selected variables
and switch them one by one as a local term with other terms
remaining unchanged in the switched model and compares
model fits. If the switched model better fits, the selected var-
iable is considered local and in the reverse condition as a
global term. The test routine repeats this comparison for each
selected variable. Unlike fixed band width of geographical
variability test, bandwidth selection is applied for each com-
pared model.

The local parameters such as local R2, coefficients of local
terms, and predicted cases with associated residuals were
mapped using the ArcGIS10.3. Mapping local parameters fa-
cilitates interpretation based on spatial context and known
characteristics of the study area (Goodchild and Janelle
2004). However, mapping only parameter estimate alone is
misleading, as the map reader has no way of knowing whether
the local parameter estimates are significant anywhere on the
map (Matthews and Yang 2012). Therefore, statistically insig-
nificant areas where pseudo t do not exceed ± 1.96 were
masked as insignificant (Matthews and Yang 2012; Ehlkes
et al. 2014; Wabiri et al. 2016).

Results

Spatial distribution and local and global clustering
patterns

A total of 605 cases of dengue fever were reported during the
period of 2011 January to 2016 October from Jhapa district,
out of which 568 cases were geocoded in ward level. Dengue
case reported from outside the district and the cases without

ward-level information were excluded. At least one case of
dengue fever was recorded from 56 out of 470 wards of the
district. The distribution of 5-year averaged dengue fever in-
cidence rate was presented in Fig. 2b which shows substantial
variation in the distribution dengue incidence rates in the dis-
trict. The highest rate (more than 500 cases per 100,000 per-
son) was observed in the core town of Mechi municipality
(ward 10) and Damak municipality (wards 10, 13, 14) located
in the eastern and western margin of the district while lower
rates were observed in the surrounding areas of the core town.
The global autocorrelation assessment with low p value and
higher z score suggests global clustering pattern (Moran’s I =
0.48, z = 25.054, p < 0.001). Local Moran’s I approach iden-
tified 20 wards from Damak, Lakhanpur, and Mechinagar as
the significant local clusters. The location of the high clusters
is presented in Fig. 2a, b with purple color symbol.

Identification of spatially varying environmental
and socioeconomic risk factors

Based on Pearson’s correlation test (Table 2), we removed
highly correlated (r > |0.7|) explanatory risk factors (NDBI
and NDWI). After removing these two variables, there were
other five potential environmental and socioeconomic risk
factors, namely NDVI, LST, population density, proximity
to road, and proportion of urban area for further analysis.
Spatial distribution of these variables summarized at ward
level was mapped in Figs. 3 and 4 respectively.

Spatial association of these five potential risk factors was
evaluated based on OLS, GWR, and s-GWR using the GWR
4.0 (T. Nakaya et al. 2005; Tomoki Nakaya 2016) software.

Table 3 summarizes the result obtained from GWR 4.0 (T.
Nakaya et al. 2005; Tomoki Nakaya 2016) where comparison
of OLS, GWR, and s-GWR in terms of AICc, R,2 and adjusted
R2. The global regression model OLS explained only 22% of
variance of ward-level dengue incidence in the district which
increased to 69% when model was calibrated as geographical
regression model considering local effects of all the five pre-
dictor variables (Table 3). The model fit was significantly
improved reducing the AICc values from 5569 to 5187. The
results of geographic variability test and local to global vari-
able selection approach showed DIFF of Criterion (Table 4)
positive values of LST and NDVI (Tomoki Nakaya 2016)
suggesting no spatial variability on them. These two variables
remained as global terms while other three explanatory vari-
ables were considered as local terms. Accordingly, final model
was calibrated considering the global effect of NDVI and LST
while other three as the local terms. This regression model
explained about 79% variance again further reducing the
AICc from 5187 to 5054.27 thereby improving the model
fit. Therefore, s-GWR model with NDVI and LST as global
terms and population density, proportion of urban area, and
proximity to road was selected as the final model.
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The Moran’s I of the residuals of the final s-GWR model
was − 0.056960 (z score = − 2.627548 and p value = 0.0086)
which indicated no significant spatial autocorrelation in the
residual and that the model was well specified. The validity
of the final model was further assessed comparing the ob-
served and predicted dengue cases statistically (Fig. 5) and
spatially (Figs. 1a and 8a). The Pearson’s correlation coeffi-
cient (r = 0.88, p < 0.05) showed higher association between
observed and predicted dengue cases.

Figure 6 showed the local coefficients of determination R2

(i) of the final s-GWR model which was not homogenously
distributed in all the wards of the district. Overall, it showed
strong predictive power in Mechi Nagar and Damak munici-
palities coinciding with high dengue cluster (Fig. 1a).
Moderate strength with the local R2 value between 0.3–0.5
was observed in the central part of the district and low in other

parts of the district. Lower R2 (i) values in other parts of the
district indicates poor regression fit.

Table 4 shows the association of finally selected explana-
tory variables in the s-GWR model. LSTwas positively asso-
ciated globally but its influence in the model was minimum.
Association of NDVI value in the model was globally nega-
tive and stronger than LST. Other three variables exhibited
strong ward-level variation in the association. The variation
of the estimated local coefficients and associated t statistics is
shown in Fig. 7. The area with significant coefficient at 95%
confidence interval where pseudo t did not exceed ± 1.96
(Wabiri et al. 2016) was symbolized with bivariate graduate
color while areas with insignificant t values were masked by
grey color.

The average association of population density was moder-
ately positive (βpop density = 3.93). However, the strength of

0 8.5 17 25.5 344.25

Kilometers

(a) High Clusters rate(cases per
100,000 individuals)

0 - 100

100 - 300

<0

300 - 500

>500

(b)
Ward# of dengue

cases per ward

51 - 134

2 - 50

1

Fig. 2 (a) Aggregated counts of 2011–2016 reported dengue fever cases and (b) associated raw rates per 100,000 in Jhapa district. Clusters of high rates
are identified using local Moran’s I and are outlined in purple color

Table 2 Correlation matrix of dengue incidence and potential risk factors based on Pearson’s correlation test (p < 0.5)

NDBI NDVI NDWI LST Population density Proximity to road Urban proportion

NDBI 1

NDVI − 0.83324 1

NDWI − 0.99947 0.833855 1

LST 0.696755 − 0.45894 − 0.696 1

Population density 0.346613 − 0.33862 − 0.34254 0.22466 1

Proximity to road 0.164048 − 0.05848 − 0.16356 0.150523 − 0.24226 1

Proportion of urban area 0.276187 − 0.25939 − 0.27322 0.206717 0.565309 − 0.09822 1

Dengue rate 0.174573 − 0.16502 −0.17595 0.106903 0.304611 − 0.11813 0.134889
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association varies greatly in the district. In the east around
Mechi municipality and the surrounding areas, strong positive
relationship was observed while in the west around Damak
municipality, the association was negative. In the central part
of the district, impact of population density is moderately
positive.

The average association of proximity to road was negative.
However, the strength of association varied greatly in the dis-
trict. There was strong negative association (βprox road ≤ 150 = −
7.824721) in Damak municipality and surrounding areas

which was much weaker in the east. A Positive association
(βproportion of urban area = 78.684616) was observed between pro-
portions of urban area and dengue incidences, the strength of
the associations was strong in the east compared to west.

Figure 8a, b summarizes spatial distribution of predicted
dengue fever rates and distribution of residual respectively.
Higher rates were identified in 30 neighborhoods, 20 of which
matched from the observed rates. Overall, residuals are con-
fined in the range of 229.879058–759.073333 cases per
100,000 individuals with a mean − 0.468506.

Fig. 3 Spatial distribution of spatially stationary variables: (a) NDVI and (b) LST in Jhapa district

Fig. 4 Spatial distribution of spatially non-stationary explanatory variables: (a) population density, (b) proximity to road, and (c) urban proportion
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Discussion

Dengue fever has been one of the major public health prob-
lems in Nepal especially in low-land Tarai since the last few
years. The higher elevated hilly and mountainous districts in
the north are free from this disease probably due to the ab-
sence of vector mosquitoes owing to low temperature. Dengue
is a newly emerged disease which was first time reported in
2004 A.D. Sporadic cases were reported every year until
2010. Nepal experienced two major outbreaks in 2010 and
2013 with 917 and 642 laboratory confirmed cases. Five in-
dividuals died from dengue infection in 2010. Low-land Tarai
districts, especially Chitwan and Jhapa, are the most vulnera-
ble to dengue although it has recently expanded to hilly dis-
tricts too. Jhapa is one of the worst dengue-affected districts in
Nepal despite its recent emergence (DOHS 2015). The present
study mapped spatial distribution and explored global and
local clustering pattern of 6 years (2011–2016) averaged den-
gue fever incidence rate using the ward-level areal data. In
addition, spatial association of dengue fever with various po-
tential environmental and socioeconomic risk factors was
assessed by comparing OLS, GWR, and s-GWR regression
models.

Results of this study showed that dengue fever in Jhapa
district during the study period was heterogeneously distrib-
uted and spatially clustered at ward level, the lowest adminis-
trative unit in Nepal indicating small-scale focality of the dis-
ease. The results are consistent with findings from previous
studies conducted in different dengue-endemic regions of the
world (Delmelle et al. 2016;Wijayanti et al. 2016; Arboleda et

al. 2009; Lin and Wen 2011). To the best of our knowledge,
this is the first local-level dengue study in Nepal which ex-
plained the spatial association of dengue and associated fac-
tors in Nepal although coarse-level spatial distribution and
cluster identification work was carried out earlier (Acharya
et al. 2016). The finding could be useful for the local-level
policy formulation and implementation of dengue control.

Our study showed importance of mixed geographical
modeling approach of local-level risk factors analysis by com-
paring global (OLS), local (GWR) and mixed (s-GWR) mod-
el. Our analysis showed the limitations of the OLS method to
explain spatial variation of dengue incidence in terms of pre-
dictive performance and model accuracy and complexities
compared to the GWRmodel. We showed that both predictive
performance and model accuracy can be further improved
through the implementation of s-GWR model. These findings
are concurrent with schistosomiasis study in South Africa
(Manyangadze et al. 2016), malaria in Ghana (Ehlkes et al.
2014), and urban expansion in India (Mondal et al. 2015).
However, when predictor variables do not exhibit spatial
non-stationarity, global regression model (i.e., OLS) is gener-
ally recommended to avoid the model complexity instead of
GWR or s-GWR (Ramezankhani et al. 2017).

Our final s-GWR model explained highest deviance (R2 =
0.76) among selected three regression model. The deviance
not explained by our model could be due to nonlinear effects
of selected variables, missing other potential risk factors, and
immune status of the host population (Gubler and Clark
1995). Moran’s I showed no significant autocorrelation in
the residuals and confirms the variables considered in this
study were able to predict the spatial distribution of dengue
fever. High concordance of the model inferences with obser-
vations (Wijayanti et al. 2016) showed high predictive perfor-
mance of our final s-GWRmodel. Although the spatial pattern
in the predicted rates is higher than the observed rates
(Figs. 2b and 8a), it is likely due to the GWR smoothing
effects (Delmelle et al. 2016).

A major benefit of the local spatial statistics including
GWR is their ability to visually represent the varying strength

Table 4 Summary of s-GWR models for different potential environmental and socioeconomic risk factors

Global coefficients

Variables Estimate Standard error t (estimate/SE) DIFF of Criterion

Intercept 33.221446 8.622187 3.853018 −51.437123
LST 1.614623 3.589317 0.449841 3.323321`

NDVI − 4.362304 3.202033 − 1.362355 11.431795

Local coefficients

Variable Min Lower quartile Median Upper quartile Max Mean

Population density − 55.333062 − 2.501887 1.617758 8.43993 140.554501 3.933889 − 31.703398
Proximity to road − 228.735227 − 8.836164 − 0.771252 25.959086 52.412189 − 7.824721 − 20.357736
Proportion of urban area − 45.63145 2.984835 73.918426 128.337042 400.398697 78.684616 − 171.595233

Table 3 Comparison of model performances based on three fitness
parameters:AICc, R2, and adjusted R2

Fitness parameters Global regression GWR s-GWR

AICc 5569.74 5187.54 5054.273

R2 0.224 0.696 0.796

Adjusted r2 0.2144 0.667 0.761
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of relationship between the dependent and independent vari-
ables (Buck 2016) and facilitates interpretation based on spa-
tial context and known characteristics of the study area
(Goodchild and Janelle 2004). The variation in local R2 over
the wards revealed strong regional differences of dengue
transmission processes in the study area. The local R2 showed
that the local model had higher performance in hotspots areas
compared to the other parts of the study area matching with
similar previous studies from Colombia (Delmelle et al. 2016)
and South Africa (Manyangadze et al. 2016).

Concurrent with previous studies (Lin and Wen 2011; Ren
et al. 2017; Delmelle et al. 2016; Qi et al. 2015), three socio-
economic factors such as proportion of urban area, proximity
to road, and population density were the most important risk
factors for spatial variations of dengue incidence in Jhapa
district during the study period. High population density
(Wijayanti et al. 2016; Araujo et al. 2014) and availability of
artificial breeding sites (e.g., water-storage containers,

aquariums, traditional bath tubes) are generally attributed for
elevated dengue risk in urban areas (Wijayanti et al. 2016; Wu
et al. 2009; Akhtar et al. 2016). Higher population density
may lead to higher vector-host contact rates and higher inci-
dence rate. Similarly, higher dengue risk has been reported in
areas close to road compared to the place distant from road
(Mahabir et al. 2012). The road transportation plays a signif-
icant role in the long-distance spread of dengue virus given the
limited flight range of dengue vectors (Qi et al. 2015).
However, our finding also revealed spatial heterogeneity be-
tween these risk factors and dengue incidence patterns.
Therefore, intensity and direction of associations greatly var-
ied from one ward to another and sometimes in opposite di-
rections. In the east, dengue incidence was highly concentrat-
ed in the core urban area (Mechi Nagar-10) with high popu-
lation density and impervious surface during the study period.
Therefore, local effects of population density and proportion
of urban area are significantly high in this area but low with

Pearson correlation coefficient (r=0.88, p<0.05)
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proximity to road. However, reverse association was observed
in the west around Damak and surrounding areas. In Damak
and surrounding areas, high incidence rate was observed with
little dispersed patterns from the core urban area covering
some neighboring wards with low population density and
comparatively less urban previous surface than the east.
Therefore, proximity to road is one of the most important risk
factors in the west for the transmission of dengue with mod-
erate local effects of urban proportion and negative association

with population density. Spatial non-stationary relationship
with population density, road, and urban was also observed
in the previous studies (Delmelle et al. 2016; Ren et al. 2017;
Lin and Wen 2011) in other dengue-affected regions.

The NDVI and LST exhibited global effects among five
finally selected potential environmental and socioeconomic
risk factors in the distribution of dengue incidence possibly
due to small study area with little variation in vegetation and
temperature dynamics (Homan et al. 2016; Qi et al. 2015).

Fig. 7 Geographically weighted regression parameters (a) population density, (b) proximity to road, and (c) proportion of urban area; significant areas at
± 1.96 level of the s-GWR model

Fig. 8 Predicted dengue fever rates and residuals in (a) and (b), respectively. Higher values are determined using localMoran’s I Statistic and highlighted
with purple color. Use observed in Fig. 1b for the comparison
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Negative association of dengue fever with NDVI is consistent
with several other previous local-level studies (Troyo et al.
2009; Araujo et al. 2014) but inconsistent with some other
studies (Martínez-Bello et al. 2017). The discrepancies might
be due to resolution, spatial aggregation unit, non-linear rela-
tionship between dengue and NDVI (Qi et al. 2015). The
association of LSTwith dengue was weak positive compared
to the NDVI. Positive relationship of LST was also found
increasing risk of dengue infection with a decreasing mini-
mum night-time temperature (Wijayanti et al. 2016).

The findings of this study have direct implication for
health policy and decision making. Dengue being a highly
focal disease, health authorities should always consider
selecting micro-geographical areas: in this case, the ward
rather than macro (district) for control and intervention
program. The method adopted could be valuable tool to
find such high-risk areas. Secondly, we suggest that the
government efforts in control and intervention program
should be concentrated in densely populated areas, urban
centers, and areas along the major roads especially highly
urbanizing areas. However, the authority should be careful
about the geographical heterogeneity of potential risk fac-
tors, therefore, should be aware that dengue control and
intervention strategies may not be same spatially and uni-
versally suitable all times.

Our study inherits some limitations which need to be ad-
dressed in forthcoming study. The possible under reporting in
dengue cases due to poor surveillance and data management
system may introduce bias in our study. Similarly, we could
not include some important local-scale risk factors such as
intra-urban mobility and migration patterns, quality of the
health care system, and treatment-seeking behavior of differ-
ent social groups as well as extent and coverage of dengue
control programs in our analysis due to data unavailability.
Likewise, GWR model is sensitive to kernel type and band-
width selection method and result matters on how these pa-
rameters are implemented in the analysis. The nonlinear ef-
fects of the predictors could not be included in our analysis.
Despite these limitations, this is the first spatially explicit den-
gue research in Nepal to map and explore potential environ-
mental and socioeconomic risk factors in one of the highly
dengue-affected district of Nepal at lowest administrative unit.
The methodological framework developed in this study is
transferable in other regions and at different spatial scales
depending upon the data availability, as well as to other
mosquito-borne diseases. Finally, this study demonstrate the
importance of mixed geographical regression modeling ap-
proach in the spatial analysis of disease and other phenomena
affected by complex environmental and socioeconomic fac-
tors at the local scale.

Conclusion

This study explored and analyzed the spatial distribution of
dengue fever incidence and its relationship with various po-
tential environmental and socioeconomic risk factors in Jhapa
district of Nepal. This research revealed that dengue fever
distribution in Jhapa district was heterogeneous and highly
clustered at ward level. Proportion of urban area, proximity
to road, and population density were the most important risk
factors responsible for the spatial variation of the disease in-
cidence. This study also demonstrated importance of mixed
geographical modeling (e.g., s-GWR) approach in order to
improve accuracy of predictive model. This evidence can be
used for control and management of the disease at micro scale.
Future research should consider including more risk factors
that may further improve the performance of the s-GWR
models in determining the local variation of dengue infection
intensity.

Acknowledgements We would like to express our sincere gratitude to
Epidemiology and Disease Control Division (EDCD), Department of
Health Services, Government of Nepal, for providing us dengue data.
We are also thankful to Dr. Surendra Karki, University of Illinois,
Urbana-Champaign, USA, and Dr. Laxman Khanal, Central
Department of Zoology, Institute of Science and Technology, Tribhuvan
University, Kathmandu, Nepal, and two anonymous reviewers for the
feedback and comments on an early version of this manuscript. Two
authors, Bipin Kumar Acharya and Shahid Naeem, acknowledge the
Chinese Academy of Sciences (CAS) and The World Academy of
Sciences (TWAS) for awarding the CAS-TWAS President’s fellowship
for their PhD study.

Funding The work in this paper was financially supported by the
National Key Research and Development Program of China (No.
2016YFB0501505) and the Natural Science Foundation of China (No.
41601368).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

Acharya BK, CaoCX, Lakes T, ChenW,NaeemS (2016) Spatiotemporal
analysis of dengue fever in Nepal from 2010 to 2014. BMC Public
Health 16(1):849. https://doi.org/10.1186/s12889-016-3432-z

Acharya BK, Cao C, Min X, Chen W, Pandit S (2018) Spatiotemporal
distribution and geospatial diffusion patterns of 2013 dengue out-
break in Jhapa District, Nepal. Asia Pac J Public Health. https://doi.
org/10.1177/1010539518769809

Akhtar R, Gupta PT, Srivastava AK (2016) Urbanization, urban heat
island effects and dengue outbreak in Delhi. In: Akhtar R (ed)
Climate Change and Human Health Scenario in South and

1984 Int J Biometeorol (2018) 62:1973–1986

https://www.researchgate.net/institution/University_of_Illinois_Urbana-Champaign
https://www.researchgate.net/institution/University_of_Illinois_Urbana-Champaign
https://doi.org/10.1186/s12889-016-3432-z
https://doi.org/10.1177/1010539518769809
https://doi.org/10.1177/1010539518769809


Southeast Asia. Springer International Publishing, Cham, pp 99–
111. https://doi.org/10.1007/978-3-319-23684-1_7

Anselin L (2010) Local indicators of spatial association-LISA. Geogr
Anal 27(2):93–115. https://doi.org/10.1111/j.1538-4632.1995.
tb00338.x

Araujo RV, Albertini MR, Costa-da-Silva AL, Suesdek L, Franceschi
NCS, Bastos NM, Katz G et al (2014) São Paulo urban heat islands
have a higher incidence of dengue than other urban areas. Braz J
Infect Dis 19:146–155. https://doi.org/10.1016/j.bjid.2014.10.004

Arboleda S, Jaramillo-O N, Peterson AT (2009) Mapping environmental
dimensions of dengue fever transmission risk in the Aburrá Valley,
Colombia. Int J Environ Res Public Health 6(12):3040–3055.
https://doi.org/10.3390/ijerph6123040

Arya SC, Agarwal N (2014) Re: first isolation of dengue virus from the
2010 epidemic in Nepal. Trop Med Health 42(2):93–94. https://doi.
org/10.2149/tmh.2013-31

Beck L (2000) Remote sensing and human health: new sensors and new
opportunities. Emerg Infect Dis 6(3):217–227. https://doi.org/10.
3201/eid0603.000301

Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL,
Drake JM, Brownstein JS, Hoen AG, Sankoh O,Myers MF, George
DB, Jaenisch T, Wint GRW, Simmons CP, Scott TW, Farrar JJ, Hay
SI (2013) The global distribution and burden of dengue. Nature
496(7446):504–507. https://doi.org/10.1038/nature12060

Brady OJ, Johansson MA, Guerra CA, Bhatt S, Golding N, Pigott DM,
Delatte H, Grech MG, Leisnham PT, Maciel-de-Freitas R, Styer
LM, Smith DL, Scott TW, Gething PW, Hay SI (2013) Modelling
adult Aedes Aegypti and Aedes Albopictus survival at different
temperatures in laboratory and field settings. Parasit Vectors 6(1):
351. https://doi.org/10.1186/1756-3305-6-351

BrunsdonC, Fotheringham S, CharltonM (1998)Geographically weight-
ed regression. J R Stat Soc Ser D (The Statistician) 47(3):431–443.
https://doi.org/10.1111/1467-9884.00145

Brunsdon C, Fotheringham AS, Charlton M (1999) Some notes on para-
metric significance tests for geographically weighted regression. J
Reg Sci 39(3):497–524. https://doi.org/10.1111/0022-4146.00146

Brunsdon C, Fotheringham AS, Charlton ME (2010) Geographically
weighted regression: a method for exploring spatial nonstationarity.
Geogr Anal 28(4):281–298. https://doi.org/10.1111/j.1538-4632.
1996.tb00936.x

Buck KD (2016) Modelling of geographic cancer risk factor disparities in
US counties. Appl Geogr 75:28–35. https://doi.org/10.1016/j.
apgeog.2016.08.001

Central Bureau of Statistics (CBS) (2011a) National population census
2011 household and population by sex ward. Kathmandu. http://cbs.
gov.np/sectoral_statistics/population/wardlevel

Central Bureau of Statistics (CBS) (2011b) National population census
2011 household national report. CBS. http://cbs.gov.np/image/data/
Population/National%20Report/National%20Report.pdf

Chavez PS (1996) Image-based atmospheric corrections—revisited and
improved. Photogramm Eng Remote Sens 62(9):1025–1036

Corner RJ, Dewan AM, Hashizume M (2013) Modelling typhoid risk in
Dhaka metropolitan area of Bangladesh: the role of socio-economic
and environmental factors. Int J Health Geogr 12(1):13. https://doi.
org/10.1186/1476-072X-12-13

Cressie NAC (1993) Statistics for spatial data: cressie/statistics. Wiley
Series in Probability and Statistics. Hoboken: Wiley. https://doi.
org/10.1002/9781119115151

Delmelle E, Hagenlocher M, Kienberger S, Casas I (2016) A spatial
model of socioeconomic and environmental determinants of dengue
fever in Cali, Colombia. Acta Trop 164:169–176. https://doi.org/10.
1016/j.actatropica.2016.08.028

DOHS (2015) Annual Report, 2013-2014. In Annu Rep, 2013–2014,
2013th–2014th ed. Government of Nepal, Ministry of Health and
Population, Department of Health Services, Teku, Kathmandu

Ehlkes L, Krefis A, Kreuels B, Krumkamp R, Adjei O, Ayim-Akonor M,
Kobbe R, Hahn A, Vinnemeier C, Loag W, Schickhoff U, May J
(2014) Geographically weighted regression of land cover determi-
nants of plasmodium falciparum transmission in the Ashanti region
of Ghana. Int J Health Geogr 13(1):35. https://doi.org/10.1186/
1476-072X-13-35

Estallo EL, Ludueña-Almeida FF, Visintin AM, Scavuzzo CM, Lamfri
MA, Introini MV, ZaidenbergM, AlmirónWR (2012) Effectiveness
of normalized difference water index in modelling Aedes Aegypti
house index. Int J Remote Sens 33(13):4254–4265. https://doi.org/
10.1080/01431161.2011.640962

Fotheringham AS, Brunsdon C (2010) Local forms of spatial analysis.
Geogr Anal 31(4):340–358. https://doi.org/10.1111/j.1538-4632.
1999.tb00989.x

Ge Y, Song Y, Wang J, Liu W, Ren Z, Peng J, Binbin L (2016)
Geographically weighted regression-based determinants of malaria
incidences in Northern China: Ge et Al. Trans GIS 21:934–953.
https://doi.org/10.1111/tgis.12259

Goodchild MF, Janelle DG (eds) (2004) Spatially integrated social sci-
ence. Spatial information systems. Oxford Univ. Press, Oxford

Gubler DJ, Clark GG (1995) Dengue/dengue hemorrhagic fever: the
emergence of a global health problem. Emerg Infect Dis 1(2):55–
57. https://doi.org/10.3201/eid0102.9502004

Homan T, Maire N, Hiscox A, Di Pasquale A, Kiche I, Onoka K,
Mweresa C et al (2016) Spatially variable risk factors for malaria
in a geographically heterogeneous landscape, Western Kenya: an
explorative study. Malar J 15(1). https://doi.org/10.1186/s12936-
015-1044-1

Hsueh Y-H, Lee J, Beltz L (2012) Spatio-temporal patterns of dengue
fever cases in Kaoshiung City, Taiwan, 2003–2008. Appl Geogr
34(May):587–594. https://doi.org/10.1016/j.apgeog.2012.03.003

Khormi HM, Kumar L (2011) Modeling dengue fever risk based on
socioeconomic parameters, nationality and age groups: GIS and
remote sensing based case study. Sci Total Environ 409(22):4713–
4719. https://doi.org/10.1016/j.scitotenv.2011.08.028

Limper M, Thai KTD, Gerstenbluth I, Osterhaus ADME, Duits AJ, van
Gorp ECM (2016) Climate factors as important determinants of
dengue incidence in Curaçao. Zoonoses Public Health 63(2):129–
137. https://doi.org/10.1111/zph.12213

Lin C-H, Wen T-H (2011) Using geographically weighted regression
(GWR) to explore spatial varying relationships of immature mos-
quitoes and human densities with the incidence of dengue. Int J
Environ Res Public Health 8(12):2798–2815. https://doi.org/10.
3390/ijerph8072798

Mahabir RS, Severson DW, Chadee DD (2012) Impact of road networks
on the distribution of dengue fever cases in Trinidad, West Indies.
Acta Trop 123(3):178–183. https://doi.org/10.1016/j.actatropica.
2012.05.001

Manyangadze T, Chimbari MJ, Gebreslasie M, Mukaratirwa S (2016)
Risk factors and micro-geographical heterogeneity of Schistosoma
Haematobium in Ndumo area, UMkhanyakude District, KwaZulu-
Natal, South Africa. Acta Trop 159:176–184. https://doi.org/10.
1016/j.actatropica.2016.03.028

Martínez-Bello DA, López-Quílez A, Torres Prieto A (2017) Relative
risk estimation of dengue disease at small spatial scale. Int J
Health Geogr 16(1):31. https://doi.org/10.1186/s12942-017-0104-x

Matisziw TC, Grubesic TH, Wei H (2008) Downscaling spatial structure
for the analysis of epidemiological data. Comput Environ Urban
Syst 32(1):81–93. https://doi.org/10.1016/j.compenvurbsys.2007.
06.002

Matthews SA, Yang T-C (2012) Mapping the results of local statistics:
using geographically weighted regression. Demogr Res 26:151–
166. https://doi.org/10.4054/DemRes.2012.26.6

McFEETERS SK (1996) The use of the normalized difference water
index (NDWI) in the delineation of open water features. Int J

Int J Biometeorol (2018) 62:1973–1986 1985

https://doi.org/10.1007/978-3-319-23684-1_7
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://doi.org/10.1016/j.bjid.2014.10.004
https://doi.org/10.3390/ijerph6123040
https://doi.org/10.2149/tmh.2013-31
https://doi.org/10.2149/tmh.2013-31
https://doi.org/10.3201/eid0603.000301
https://doi.org/10.3201/eid0603.000301
https://doi.org/10.1038/nature12060
https://doi.org/10.1186/1756-3305-6-351
https://doi.org/10.1111/1467-9884.00145
https://doi.org/10.1111/0022-4146.00146
https://doi.org/10.1111/j.1538-4632.1996.tb00936.x
https://doi.org/10.1111/j.1538-4632.1996.tb00936.x
https://doi.org/10.1016/j.apgeog.2016.08.001
https://doi.org/10.1016/j.apgeog.2016.08.001
http://cbs.gov.np/sectoral_statistics/population/wardlevel
http://cbs.gov.np/sectoral_statistics/population/wardlevel
http://cbs.gov.np/image/data/Population/National%20Report/National%20Report.pdf
http://cbs.gov.np/image/data/Population/National%20Report/National%20Report.pdf
https://doi.org/10.1186/1476-072X-12-13
https://doi.org/10.1186/1476-072X-12-13
https://doi.org/10.1002/9781119115151
https://doi.org/10.1002/9781119115151
https://doi.org/10.1016/j.actatropica.2016.08.028
https://doi.org/10.1016/j.actatropica.2016.08.028
https://doi.org/10.1186/1476-072X-13-35
https://doi.org/10.1186/1476-072X-13-35
https://doi.org/10.1080/01431161.2011.640962
https://doi.org/10.1080/01431161.2011.640962
https://doi.org/10.1111/j.1538-4632.1999.tb00989.x
https://doi.org/10.1111/j.1538-4632.1999.tb00989.x
https://doi.org/10.1111/tgis.12259
https://doi.org/10.3201/eid0102.9502004
https://doi.org/10.1186/s12936-015-1044-1
https://doi.org/10.1186/s12936-015-1044-1
https://doi.org/10.1016/j.apgeog.2012.03.003
https://doi.org/10.1016/j.scitotenv.2011.08.028
https://doi.org/10.1111/zph.12213
https://doi.org/10.3390/ijerph8072798
https://doi.org/10.3390/ijerph8072798
https://doi.org/10.1016/j.actatropica.2012.05.001
https://doi.org/10.1016/j.actatropica.2012.05.001
https://doi.org/10.1016/j.actatropica.2016.03.028
https://doi.org/10.1016/j.actatropica.2016.03.028
https://doi.org/10.1186/s12942-017-0104-x
https://doi.org/10.1016/j.compenvurbsys.2007.06.002
https://doi.org/10.1016/j.compenvurbsys.2007.06.002
https://doi.org/10.4054/DemRes.2012.26.6


Remote Sens 17(7):1425–1432. https://doi.org/10.1080/
01431169608948714

Méndez-Lázaro P, Muller-Karger F, Otis D, McCarthy M, Peña-Orellana
M (2014) Assessing climate variability effects on dengue incidence
in San Juan, Puerto Rico. Int J Environ Res Public Health 11(9):
9409–9428. https://doi.org/10.3390/ijerph110909409

Messina JP, Brady OJ, Pigott DM, Golding N, Kraemer MUG, Scott TW,
Wint GRW, Smith DL, Hay SI (2015) Themany projected futures of
dengue. Nat Rev Microbiol 13(4):230–239. https://doi.org/10.1038/
nrmicro3430

Mondal B, Das DN, Dolui G (2015) Modeling spatial variation of ex-
planatory factors of urban expansion of Kolkata: a geographically
weighted regression approach. Model Earth Syst Environ 1(4).
https://doi.org/10.1007/s40808-015-0026-1

Moran PAP (1948) The interpretation of statistical maps. J R Stat Soc
10(2):243–251

Moreno-MadriñánM, CrossonW, Eisen L, Estes S,Maurice EstesMH Jr,
Hemmings S et al (2014) Correlating remote sensing data with the
abundance of pupae of the dengue virus mosquito vector, Aedes
Aegypti, in Central Mexico. ISPRS Int J Geo-Inf 3(2):732–749.
https://doi.org/10.3390/ijgi3020732

Nakaya T (2016) GWR4.09 user manual
Nakaya T, Fotheringham AS, Brunsdon C, Charlton M (2005)

Geographically weighted Poisson regression for disease association
mapping. Stat Med 24(17):2695–2717. https://doi.org/10.1002/sim.
2129

Ord JK, Getis A (2010) Local spatial autocorrelation statistics: distribu-
tional issues and an application. Geogr Anal 27(4):286–306. https://
doi.org/10.1111/j.1538-4632.1995.tb00912.x

Pandey BD, Rai SK,Morita K, Kurane I (2004) First case of dengue virus
infection in Nepal. Nepal Med Coll J 6(2):157–159

Qi X, Wang Y, Li Y, Meng Y, Chen Q, Ma J, Gao GF (2015) The effects
of socioeconomic and environmental factors on the incidence of
dengue fever in the Pearl River Delta, China, 2013. Edited by
David Harley. PLOS Negl Trop Dis 9(10):e0004159. https://doi.
org/10.1371/journal.pntd.0004159

Ramezankhani R, Hosseini A, Sajjadi N, Khoshabi M, Ramezankhani A
(2017) Environmental risk factors for the incidence of cutaneous
Leishmaniasis in an endemic area of Iran: a GIS-based approach.
Spat Spatiotemporal Epidemiol 21:57–66. https://doi.org/10.1016/j.
sste.2017.03.003

Ren H, Zheng L, Li Q, Yuan W, Lu L (2017) Exploring determinants of
spatial variations in the dengue fever epidemic using geographically
weighted regression model: a case study in the joint Guangzhou-
Foshan area, China, 2014. Int J Environ Res Public Health 14(12):
1518. https://doi.org/10.3390/ijerph14121518

Ribeiro MC, Sousa AJ, Pereira MJ (2015) A Coregionalization
model to assist the selection process of local and global vari-
ables in semi-parametric geographically weighted Poisson re-
gression. Procedia Environ Sci 26:53–56. https://doi.org/10.
1016/j.proenv.2015.05.023

Roslan NS, Latif ZA, Dom NC (2016) Dengue cases distribution based
on land surface temperature and elevation. IEEE 87–91. https://doi.
org/10.1109/ICSGRC.2016.7813307

Rouse JW Jr, Haas RH, Schell JA, Deering DW (1974) Monitoring veg-
etation systems in the Great Plains with Erts. 309–17. https://ntrs.
nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740022614.pdf

Tobler WR (1970) A computer movie simulating urban growth in the
Detroit region. Econ Geogr 46:234. https://doi.org/10.2307/143141

Troyo A, Fuller DO, Calderón-Arguedas O, Solano ME, Beier JC (2009)
Urban structure and dengue incidence in Puntarenas, Costa Rica.
Singap J Trop Geogr 30(2):265–282. https://doi.org/10.1111/j.
1467-9493.2009.00367.x

Tu J, Xia Z (2008) Examining spatially varying relationships between
land use and water quality using geographically weighted regression
I: model design and evaluation. Sci Total Environ 407(1):358–378.
https://doi.org/10.1016/j.scitotenv.2008.09.031

Uddin K, Shrestha HL, Murthy MSR, Bajracharya B, Shrestha B, Gilani
H, Pradhan S, Dangol B (2015) Development of 2010 National
Land Cover Database for the Nepal. J Environ Manag 148:82–90.
https://doi.org/10.1016/j.jenvman.2014.07.047

Wabiri N, Shisana O, Zuma K, Freeman J (2016) Assessing the spatial
nonstationarity in relationship between local patterns of HIV infec-
tions and the covariates in South Africa: a geographically weighted
regression analysis. Spat Spatiotemporal Epidemiol 16:88–99.
https://doi.org/10.1016/j.sste.2015.12.003

Wijayanti SPM, Porphyre T, Chase-Topping M, Rainey SM, McFarlane
M, Schnettler E, Biek R, Kohl A (2016) The importance of socio-
economic versus environmental risk factors for reported dengue
cases in Java, Indonesia. Edited by Marilia Sá Carvalho. PLOS
Negl Trop Dis 10(9):e0004964. https://doi.org/10.1371/journal.
pntd.0004964

Wu P-C, Lay J-G, Guo H-R, Lin C-Y, Lung S-C, Su H-J (2009) Higher
temperature and urbanization affect the spatial patterns of dengue
fever transmission in subtropical Taiwan. Sci Total Environ 407(7):
2224–2233. https://doi.org/10.1016/j.scitotenv.2008.11.034

Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in
automatically mapping urban areas from TM imagery. Int J Remote
Sens 24(3):583–594. https://doi.org/10.1080/01431160304987

Zheng S, Cao CX, Cheng JQ, Wu YS, Xie X, Xu M (2014)
Epidemiological features of hand-foot-and-mouth disease in
Shenzhen, China from 2008 to 2010. Epidemiol Infect 142(08):
1751–1762. https://doi.org/10.1017/S0950268813002586

1986 Int J Biometeorol (2018) 62:1973–1986

https://doi.org/10.1080/01431169608948714
https://doi.org/10.1080/01431169608948714
https://doi.org/10.3390/ijerph110909409
https://doi.org/10.1038/nrmicro3430
https://doi.org/10.1038/nrmicro3430
https://doi.org/10.1007/s40808-015-0026-1
https://doi.org/10.3390/ijgi3020732
https://doi.org/10.1002/sim.2129
https://doi.org/10.1002/sim.2129
https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
https://doi.org/10.1371/journal.pntd.0004159
https://doi.org/10.1371/journal.pntd.0004159
https://doi.org/10.1016/j.sste.2017.03.003
https://doi.org/10.1016/j.sste.2017.03.003
https://doi.org/10.3390/ijerph14121518
https://doi.org/10.1016/j.proenv.2015.05.023
https://doi.org/10.1016/j.proenv.2015.05.023
https://doi.org/10.1109/ICSGRC.2016.7813307
https://doi.org/10.1109/ICSGRC.2016.7813307
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740022614.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740022614.pdf
https://doi.org/10.2307/143141
https://doi.org/10.1111/j.1467-9493.2009.00367.x
https://doi.org/10.1111/j.1467-9493.2009.00367.x
https://doi.org/10.1016/j.scitotenv.2008.09.031
https://doi.org/10.1016/j.jenvman.2014.07.047
https://doi.org/10.1016/j.sste.2015.12.003
https://doi.org/10.1371/journal.pntd.0004964
https://doi.org/10.1371/journal.pntd.0004964
https://doi.org/10.1016/j.scitotenv.2008.11.034
https://doi.org/10.1080/01431160304987
https://doi.org/10.1017/S0950268813002586

	Modeling...
	Abstract
	Introduction
	Materials and methods
	Study area
	Dengue data
	Explanatory variables
	Mapping and clusters detection
	Modeling the spatial relationship

	Results
	Spatial distribution and local and global clustering patterns
	Identification of spatially varying environmental and socioeconomic risk factors

	Discussion
	Conclusion
	References


