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Abstract
Heatwaves can be a common occurrence in Australia, and the public health impacts can be severe. Heat warnings and interven-
tions are being adopted widely to reduce the preventable health impacts. This study examines the effects of heatwaves on
morbidity and mortality in different climatic regions in the state of South Australia, to inform the targeting of heat warnings
according to regional needs. Heatwaves were defined using the excess heat factor (EHF), an index based on mean daily
temperature indices that quantifies heatwave severity relative to the local climate. In all regions, there were increases in morbidity
(daily rates of ambulance call-outs and heat-related emergency presentations and hospital admissions) on heatwave days com-
pared to non-heatwave days, which increased with heatwave severity. This study demonstrates that a consistent measure for
heatwave severity, based on EHF, can be used to underpin public health warnings for climatically diverse areas.
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Introduction

Over recent decades, there have been thousands of excess
deaths attributed to heatwave disasters worldwide, most nota-
bly in India (Azhar et al. 2014), Europe (Robine et al. 2008),
Russia (Shaposhnikov et al. 2014) and Chicago (Semenza et
al. 1996). Heatwave conditions can lead to a range of heat-
related illnesses, such as dehydration and heat stroke, and can
also exacerbate common chronic diseases (Kenny et al. 2010).
Although relatively common in much of Australia, the im-
pacts of heatwaves can still be severe. In 2009, over 400
excess deaths were attributed to an unprecedented event

affecting the south-eastern states (Victorian Chief Health
Officer 2009; State Coroner 2010; Langlois et al. 2013).

Heat-related morbidity and mortality is associated with a
range of physiological, behavioural and social risk factors,
with the potential for interactive effects (Kovats and Hajat
2008; World Meteorological Organisation and World Health
Organisation 2015; Zhang et al. 2016a, 2016b). For example,
thermoregulation can be impaired due to age, illness or the
physiological effects of certain medications (Kenny et al.
2010). Adopting appropriate behavioural responses can be
challenging for those with declining cognitive function, im-
paired mobility or the frail elderly (Kenny et al. 2010). Other
groups who may have limited ability to reduce their heat ex-
posure include outdoor workers, tourists, disadvantaged or
homeless populations (Faunt et al. 1995; Kjellstrom et al.
2009; Harlan et al. 2013). Notwithstanding the diversity of
these risk factors, most heat-related illness is preventable
(World Meteorological Organisation and World Health
Organisation 2015), and heatwave warning systems (HWS)
and interventions can be effective in moderating the adverse
effects (Ebi et al. 2004; Bassil and Cole 2010; Toloo et al.
2013).

In relation to public health measures, it is also important to
understand geographic variations in heat effects, so that warn-
ings and interventions can be targeted appropriately. The level
of acclimatisation is a significant factor, and this is particularly
relevant in the large and climatically diverse states in
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Australia, where distinct regional variations in heat impacts
have been reported (Loughnan et al. 2010; Jegasothy et al.
2017; Xiao et al. 2017). In general, heatwave impacts are
expected to be more severe in metropolitan areas, where the
built environment retains more heat (the urban heat island
effect) (McGeehin and Mirabelli 2001). However, it has been
argued that the socio-demographic and occupational charac-
teristics in regional populations can present alternate risks
(Williams et al. 2013; Kovach et al. 2015). For example, re-
gional populations are often older, with lower average in-
comes, and a lower health status than metropolitan counter-
parts (National Rural Health Alliance 2010). A higher partic-
ipation in outdoor work, particularly regional agriculture and
mining industries, can result in higher exposure. Variation in
regional housing, and in access to health services, may also
influence how heatwaves affect different regional populations.
There is now growing evidence of significant heat impacts in
regional populations from diverse locations (Sheridan and
Dolney 2003; Wu et al. 2011; Hattis et al. 2012; Henderson
et al. 2013; Lippmann et al. 2013; Kovach et al. 2015).

The purpose of this study was to examine the effects of
heatwaves on morbidity and mortality across South
Australia (SA), a state with a population of 1.6 million and
characterised by dry, warm-to-hot summers. Climatic diversi-
ty means the populations in the North and inland regions of
the state experience higher average temperatures than those in
the coastal areas and lower South East (Griffin and McCaskill
1986). Over the last two decades, the annual mean tempera-
ture anomaly for SA has shown a strong upwards trend,
reaching a peak of 1.5 °C above the 1961–1990 average in
2013 (Australian Government Bureau of Meteorology 2015).
Previous extreme heat events have had significant health im-
pacts in SA, most notably during the 2009 heatwave (Nitschke
et al. 2011). A HWS for SAwas developed following the 2009
heatwave (Akompab et al. 2013), and a recent study suggests
that these measures have been effective in reducing heat at-
tributable morbidity in the state capital, Adelaide (Nitschke et
al. 2016). However, one quarter of the SA population resides
outside the metropolitan area, in climatically diverse regional
areas where the effects of heatwaves have not been closely
studied.

In this study, heatwaves have been defined using the excess
heat factor (EHF) index (Nairn et al. 2009; Nairn and Fawcett
2015), which quantifies heatwave intensity relative to the local
climate. The EHF index has been shown to be associated with
excess mortality or morbidity in different locations (Langlois
et al. 2013; Scalley et al. 2015; Hatvani-Kovacs et al. 2016;
Jegasothy et al. 2017; Xiao et al. 2017), and is recognised by
the World Health and World Meteorological Organisations
(WMO and WHO 2015). The calculation of the EHF relates
3-day mean daily temperatures for a particular location to both

the 95th percentile of long-term average temperatures, and the
recent (prior 30-day) temperatures, and the estimate is normal-
ised to generate an index of heatwave severity (Nairn and
Fawcett 2015). The incorporation of historical and acclimati-
sation factors within the EHF severity index makes it useful to
identify extreme or unusual heat which is likely to be hazard-
ous to population health. Using the EHF severity index to
define heatwaves of increasing severity, we have examined
the effects of heatwaves in different regions of SA, to inform
the development of heat warnings and interventions for the
state.

Methods

Study setting

The state of South Australia occupies an area of 984,377 km2

in southern, central Australia, with a Mediterranean climate in
the south ranging to hot desert climate in the north. For the
purpose of this study, we divided the state into six discrete
regions, plus the Adelaide metropolitan area (Fig. 1). These
regions were defined with reference to the 12 Australian
Bureau of Meteorology (ABM) weather districts and repre-
sented areas with broadly similar climate (Australian
Government Bureau of Meteorology 2017). Each region is
comprised of aggregated postcode areas, and represents a total
population of North (64,626), Murray Mallee (62,211), South
East and Kangaroo Island (KI) (75,530), Adelaide Hills
(112,866), Yorke and Lower Eyre (56,443), and Mid North
(59,912). The population of the Adelaide metropolitan area
was 1,254,116. The state has a very low population density
outside of the metropolitan area, particularly in the northern
regions. Approximate population densities (people per square
km) for the regions are North (less than 0.1), Murray Mallee
(0.1–1.0), South East and KI (1.0–10.0), Adelaide Hills (1.0–
10.0), Yorke and Lower Eyre (0.1–10.0), andMid North (1.0–
10.0) (Australian Bureau of Statistics 2016). These popula-
tions are largely concentrated within regional centres.

Meteorological data

Meteorological data were provided by the ABM, and included
daily indices datasets for the period 2000–2016. For each
region, we selected a regional population centre to act as a
representative site (latitude and longitude) for extraction of
meteorological data (Fig. 1). A second representative site
was selected for each region to allow for a sensitivity analysis.
Daily mean (average of maximum and minimum) tempera-
tures were acquired using the ABM low-resolution (0.25° ×
0.25°, approximately 25 km × 20 km) operational daily
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temperature analyses (Jones et al. 2009). The EHF intensity
and normalised EHF severity metrics were normalised from
the temperature data as described by Nairn and Fawcett
(2015). The severity levels of events are derived from the ratio
of EHF to the historical 85th percentiles of values of all pos-
itive EHF at each specific location. The ABM defines a low-
severity event occurring when the value of this ratio lies

between 0 and 1. In this study, we defined two further severity
levels as ‘moderate’ (1 ≤ EHF severity < 2) and ‘high’ (EHF
severity ≥ 2). The ABM categorises an extreme heatwave
when EHF severity is three times the historical 85th percentile
EHF intensity value and greater (EHF severity ≥ 3). However,
as there were very few days meeting this criterion within the
study period, we chose to combine these days into the high

Fig. 1 Regional zones for
heatwave analysis in South
Australia showing reference sites
for meteorological data as circles
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severity category. Non-heatwave days were those with EHF
severity ≤ 0.

Health outcome data

Health outcome data included all-cause daily mortality,
ambulance call-outs, emergency hospitalisations and
emergency department presentations (ED). A direct
heat-related hospitalisation and ED category was also
extracted, using the ICD-10 codes: T67 (effects of heat
and light), E86 (volume depletion) and X30 (exposure
to excessive heat). Daily hospital and ambulance call-
out data were sourced from the South Australian
Department for Health and Wellbeing (SA Health).
Hospitalisations were for the period 1 July 2000–30
April 2016, ambulance call-outs for 1 January 2000–31
December 2015, and ED data were from 1 July 2003–
30 April 2016. Mortality data (1 January 2000–30 April
2016) were sourced from the SA Registry of Births,
Deaths and Marriages. Estimated residential population
data were from the ABS. Patient postcodes were used to
aggregate and map outcomes to regions.

Statistical analysis

Analysis was undertaken for days within the warmer
months, 1 October through 31 March. Poisson regres-
sion models were used to estimate the effect of
heatwaves of varying severity (low, moderate, high) on
specific health outcomes in each region. Negative bino-
mial or zero-inflated Poisson models were used to ad-
dress issues of over-dispersion or zero counts, where
appropriate. Incidence rate ratios (IRRs) and 95% con-
fidence intervals (CI) are reported for heatwave days
compared to all non-heatwave days during the same
warm season. The EHF is an accumulative index using
3-day mean daily temperatures, and we used a 3-day
cumulative count for each health outcome to correspond
with the 3-day EHF calculation period. We also
analysed 5 and 7-day cumulative outcomes, to capture
delayed effects, and these results are shown in
Appendix 1. All models were adjusted for year, month,
and day of the week, to account for long- and short-
term temporal trends. The annual estimated resident
population for each region was used as the offset vari-
able to model rates. Population by post code (ABS data)
was aggregated to estimate the regional population, with
2014 estimates used for the period 2014–2016. All anal-
yses were conducted using Stata 13 (StataCorp., College
Station, TX).

Results

The number of days at each level of heatwave severity
and the corresponding average daily maximum temper-
atures for each region are shown in Table 1. The aver-
age maximum temperatures during high severity
heatwave days were highest in the North, Murray
Mallee and Mid North regions, consistent with the
warmer climates in these regions. The mean daily health
outcomes by region are shown in Table 2. These de-
scriptive measures are indicative of the total populations
in the regional and metropolitan areas.

The analyses of ambulance call-outs in relation to
heatwave exposure indicated significant increases during
low-severity heatwave days, and across the EHF sever-
ity scale, for most regions (Table 3). The highest in-
crease in call-outs was evident for the Mid North region
and on high severity heatwave days (35%; CI 24–47%).

The results of analyses of daily all-cause and heat-
related hospital admissions are shown in Table 4. There
was an increase in all-cause admissions on low-severity
heatwave days in all regions, and also at higher severity
levels in most regions. The highest increase (18%) was
evident for the Mid North region on high severity
heatwave days (IRR 1.18; CI 1.11–1.25%). Heat-related
admissions increased over 2-fold in all regions on
heatwave days, and up to 8.6-fold (IRR 8.57; CI 7.72–
9.51) in the Adelaide metropolitan area on high severity
days. There was a consistent increase apparent across the
heatwave severity scale for heat-related admissions.

All-cause ED presentations showed small increases in most
regions during low-severity heatwaves, but, in contrast to the
Adelaide metropolitan area, the increase was not consistent at
increasing heatwave severity (Table 5). In two regions, there
was a significant decrease in presentations during high sever-
ity heatwaves, which is difficult to reconcile with the findings
for other health services. Heat-related EDs showed a more
consistent increase across the EHF severity scale, increasing
up to 9.1-fold (IRR 9.06; CI 8.37–9.81) in the Adelaide met-
ropolitan area on high severity heatwave days.

There was a significant increase in mortality on heatwave
days at each severity level for the Adelaide population,
reaching an estimated 22% (CI 14–31%) increase at high se-
verity (Table 6). This increase was also evident in the North
region, with an estimated 50% (CI 18–91%) increase in mor-
tality at highest severity. There was no consistent increase in
mortality across the heatwave severity scale for other regions,
and evidence of a protective effect of heatwaves in the Yorke
and Lower Eyre region.

The effect estimates shown in Tables 3, 4, 5 and 6
were derived from models using 3-day cumulative
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health outcomes, aligned with the 3-day EHF calcula-
tion period, as described in BMethods^ section. We also
considered the possibility of delayed effects by analysing 5
and 7-day cumulative health outcomes (extending 2 or 4 days
beyond the EHF calculation period, respectively), and these
results are shown in Appendix 1 (Table 7). In the main, the
results indicate that the health effects become apparent in the
immediate 3-day heatwave period. In isolated cases there was
an apparent increase in effects with longer delays after high
severity heatwaves.

The aggregation of outcome data over large areas is
likely to result in exposure misclassification, which
could affect the estimated associations between
heatwave severity and health outcomes. To address this
issue, we repeated the analyses using an alternative site
for representative meteorological data for each region,
and the results are included as Appendix 2 (Tables 8,
9, 10, 11, 12). The alternative sites were chosen on the
basis that they represented (i) an alternative population

centre within the region, (ii) a site distant from the first
site, or (iii) an inland rather than coastal site. In the
main, we found that the effect estimates and associated
confidence intervals were comparable when using mete-
orological data from the alternative sites, for all health
outcomes and all regions. These results would lead to
the same conclusions being drawn, thus providing vali-
dation of our results.

Discussion

This study has quantified the effects of heatwaves
across diverse regional areas of South Australia, using
the normalised EHF intensity index as an indicator of
heatwave severity, and considering a range of morbidity
and mortality outcomes. At the high severity level (EHF
severity ≥ 2), we observed increased daily rates of am-
bulance call-outs, heat-related hospital admissions and

Table 2 Mean daily
hospital admissions, ED
presentations, ambulance
call-outs and deaths by
region in South
Australia, for warmer
months (October to
March), 2000–2016

Region Hospital Heat-related
hospital

Emergency
(ED)

Heat-related
emergency

Ambulance
call-outs

Deaths

North 23.2 0.2 22.1 0.0 11.9 1.1

Murray Mallee 22.5 0.1 17.2 0.0 11.4 1.3

South East and KI 23.7 0.1 19.3 0.0 11.8 1.4

Adelaide Hills 29.4 0.2 27.2 0.1 17.1 2.1

Yorke and Lower
Eyre

20.2 0.1 10.8 0.0 8.1 1.4

Mid North 18.6 0.1 19.5 0.1 7.8 1.3

Adelaide Metro 292.6 1.4 547.3 3.0 225.1 23.2

Table 1 Number of heatwave
days (n) and corresponding
average daily maximum
temperatures (ADMT, in °C, for
3-day average) by region in South
Australia, for warmer months
(October to March), 2000–2016

Region Heatwave severitya

No heatwave Low Moderate High

n ADMT n ADMT n ADMT n ADMT

North 2737 27.7 221 37.5 34 40.4 15 42.6

Murray Mallee 2713 29.3 240 38.5 44 41.7 10 43.2

South East and KI 2762 22.2 209 32.1 29 35.4 7 39.0

Adelaide Hills 2757 23.8 207 34.1 32 36.9 11 40.4

Yorke and Lower Eyre 2749 23.3 216 31.2 32 34.8 10 37.9

Mid North 2719 28.9 238 38.6 31 41.4 19 43.4

Adelaide Metro 2744 25.1 218 35.2 35 38.1 10 41.5

Total 19,181 25.7 1549 35.4 237 38.6 82 41.5

a Severity defined on the basis of normalised EHF intensity: no heatwave: EHF severity < 0; low: 0 > severity < 1;
moderate: 1 ≤ severity < 2; high: severity ≥ 2
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heat-related emergency presentations, in all regions
across the state. These findings suggest that, despite

differing levels of acclimatisation, populations in all re-
gions experience increased morbidity during periods of

Table 4 Effect estimates (IRRs) for the associations between heatwave exposure (low, moderate and high intensity) and 3-daily hospital admissions
(all-cause and heat-related) by region in South Australia, for warmer months (October to March), 2000–2016

Outcome/region Heatwave severitya

Low Moderate High

IRR p value 95% CI IRR p value 95% CI IRR p value 95% CI

Hospital admissions

North 1.05 0.000 1.03–1.06 1.02 0.317 0.98–1.06 1.04 0.192 0.98–1.11

Murray Mallee 1.04 0.000 1.03–1.06 1.04 0.067 1.00–1.08 1.10 0.010 1.02–1.19

South East and KI 1.04 0.000 1.02–1.06 1.09 0.000 1.04–1.14 1.07 0.122 0.98–1.17

Adelaide Hills 1.05 0.000 1.04–1.07 1.04 0.034 1.00–1.08 1.12 0.000 1.06–1.19

Yorke and Lower Eyre 1.05 0.000 1.03–1.07 1.07 0.004 1.02–1.12 1.07 0.098 0.99–1.16

Mid North 1.06 0.000 1.04–1.08 1.10 0.000 1.05–1.16 1.18 0.000 1.11–1.25

Adelaide Metro 1.02 0.000 1.01–1.02 1.03 0.000 1.02–1.05 1.03 0.010 1.01–1.05

Heat-related hospital admissionsb

North 2.69 0.000 2.29–3.15 4.82 0.000 3.66–6.34 4.48 0.000 3.14–6.39

Murray Mallee 2.75 0.000 2.35–3.23 6.04 0.000 4.76–7.66 7.60 0.000 5.21–11.1

South East and KI 2.82 0.000 2.37–3.34 5.13 0.000 3.80–6.93 7.85 0.000 5.23–11.8

Adelaide Hills 2.61 0.000 2.21–3.08 5.25 0.000 4.04–6.83 6.66 0.000 4.60–9.64

Yorke and Lower Eyre 2.32 0.000 1.95–2.76 4.62 0.000 3.50–6.10 6.23 0.000 4.27–9.11

Mid North 2.95 0.000 2.48–3.51 5.12 0.000 3.73–7.04 7.63 0.000 5.58–10.5

Adelaide Metro 2.45 0.000 2.33–2.58 4.28 0.000 3.92–4.68 8.57 0.000 7.72–9.51

IRRs for significant p values (< 0.05) are indicated in italic font
a Severity is defined on the basis of normalised EHF intensity: no heatwave: EHF severity < 0; low: 0 > severity < 1; moderate: 1 ≤ severity < 2; high:
severity ≥ 2
b Results from zero-inflated Poisson regression models

Table 3 Effect estimates (IRRs) for the association between heatwave exposure (low, moderate and high severity) and 3-daily ambulance call-outs by
region in South Australia, for warmer months (October to March), 2000–2016

Region Heatwave severitya

Low Moderate High

IRR p value 95% CI IRR p value 95% CI IRR p value 95% CI

North 1.08 0.000 1.05–1.10 1.10 0.001 1.04–1.16 1.19 0.000 1.10–1.29

Murray Mallee 1.07 0.000 1.04–1.09 1.11 0.000 1.05–1.17 1.17 0.002 1.06–1.30

South East and KI 1.08 0.000 1.05–1.11 1.06 0.056 1.00–1.13 1.08 0.196 0.96–1.21

Adelaide Hills 1.05 0.000 1.03–1.07 1.02 0.379 0.97–1.07 1.19 0.000 1.11–1.28

Yorke and Lower Eyre 1.05 0.001 1.02–1.08 1.06 0.090 0.99–1.13 1.21 0.000 1.09–1.35

Mid North 1.07 0.000 1.04–1.10 1.13 0.001 1.05–1.21 1.35 0.000 1.24–1.47

Adelaide Metro 1.05 0.000 1.04–1.05 1.08 0.000 1.06–1.09 1.15 0.000 1.12–1.17

IRRs for significant p values (< 0.05) are indicated in italic font
a Severity is defined on the basis of normalised EHF intensity: no heatwave: EHF severity < 0; low: 0 > severity < 1; moderate: 1 ≤ severity < 2; high:
severity ≥ 2
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Table 6 Effect estimates (IRRs) for the associations between heatwave exposure (low, moderate and high severity) and 3-daily mortality by region in
South Australia, for warmer months (October to March), 2000–2016

Deathsb/region Heatwave severitya

Low Moderate High

IRR p value 95% CI IRR p value 95% CI IRR p value 95% CI

North 1.00 0.990 0.92–1.08 1.28 0.004 1.08–1.52 1.50 0.001 1.18–1.91

Murray Mallee 1.02 0.593 0.95–1.09 1.19 0.015 1.03–1.38 0.90 0.537 0.65–1.26

South East and KI 1.00 0.906 0.93–1.08 0.87 0.170 0.71–1.06 0.82 0.344 0.54–1.24

Adelaide Hills 1.04 0.183 0.98–1.10 1.08 0.282 0.94–1.24 1.09 0.466 0.87–1.37

Yorke and Lower Eyre 0.91 0.015 0.85–0.98 0.76 0.007 0.63–0.93 1.10 0.507 0.83–1.47

Mid North 1.03 0.485 0.96–1.10 1.25 0.008 1.06–1.48 0.97 0.773 0.76–1.23

Adelaide Metroc 1.05 0.000 1.03–1.07 1.05 0.022 1.01–1.09 1.22 0.000 1.14–1.31

IRRs for significant p values are indicated in italic font
a Severity was defined on the basis of normalised EHF intensity: no heatwave: EHF severity < 0; low: 0 > severity < 1; moderate: 1 ≤ severity < 2; high:
severity ≥ 2
b Results from zero-inflated Poisson regression models, except for Adelaide Metropolitan
c Results from Poisson regression (counts > 0)

Table 5 Effect estimates (IRRs) for the association between heatwave exposure (low, moderate and high severity) and 3-daily emergency presentations
(all-cause and heat-related) by region in South Australia, for warm months (October to March), 2000–2016

Outcome/region Heatwave severitya

Low Moderate High

IRR p value 95% CI IRR p value 95% CI IRR p value 95% CI

Emergency

North 1.06 0.000 1.04–1.08 1.08 0.001 1.03–1.13 0.93 0.068 0.86–1.01

Murray Mallee 1.03 0.005 1.01–1.05 0.98 0.474 0.94–1.03 0.93 0.121 0.86–1.02

South East and KI 1.01 0.371 0.99–1.03 1.08 0.006 1.02–1.14 0.89 0.023 0.81–0.98

Adelaide Hills 1.03 0.001 1.01–1.05 1.01 0.793 0.97–1.04 1.00 0.954 0.94–1.07

Yorke and Lower Eyre 1.07 0.000 1.04–1.10 1.07 0.069 0.99–1.16 0.82 0.005 0.72–0.94

Mid North 1.04 0.000 1.02–1.06 1.02 0.443 0.97–1.08 1.02 0.498 0.95–1.10

Adelaide Metro 1.02 0.000 1.02–1.03 1.03 0.000 1.02–1.04 1.04 0.000 1.02–1.05

Heat-related emergencyb

North 3.81 0.000 2.83–5.15 4.16 0.000 2.37–7.33 6.23 0.000 3.19–12.2

Murray Mallee 1.89 0.001 1.30–2.75 5.07 0.000 3.22–8.00 5.83 0.000 2.95–11.5

South East and KI 1.77 0.007 1.17–2.69 0.90 0.887 0.20–3.97 3.78 0.022 1.21–11.8

Adelaide Hills 2.47 0.000 1.89–3.22 4.56 0.000 3.08–6.76 4.31 0.000 2.35–7.90

Yorke and Lower Eyre 1.93 0.013 1.15–3.26 1.83 0.404 0.44–7.64 6.19 0.001 2.09–18.4

Mid North 2.47 0.000 2.03–3.00 3.27 0.000 2.18–4.89 3.13 0.000 1.98–4.96

Adelaide Metro 2.52 0.000 2.42–2.62 4.26 0.000 3.99–4.55 9.06 0.000 8.37–9.81

IRRs for significant p values (< 0.05) are indicated in italic font
a Severity is defined on the basis of normalised EHF intensity: no heatwave: EHF severity < 0; low: 0 > severity < 1; moderate: 1 ≤ severity < 2; high:
severity ≥ 2
b Results from zero-inflated Poisson regression models
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extreme or unusual heat. Furthermore, as the EHF se-
verity index was a consistent predictor of morbidity, it
appears to provide a suitable index for activating public
health warnings and responses across the state.

For some outcomes, (mortality, all-cause hospital admis-
sions and ED presentations), we observed increases on all
heatwave days for the Adelaide population, but the effects
were less consistent across regional areas. This may be due
to limited power when analysing effects in smaller regional
populations, combined with fewer days at higher severity
levels, and using all-cause outcomes that are less sensitive
indicators of heat impacts.

Our results are suggestive of some regional differ-
ences in heatwave impacts. The Mid North region
showed the highest increases for ambulance call-outs
and all-cause hospital admissions during heatwave days,
while the North region showed the highest estimate for
mortality, when compared with other areas. As noted
above, these results must be interpreted with caution
because of the limited population sizes in the regions.
However, it is of interest to consider any regional char-
acteristics that might explain these results. Regions in
the Mid North and North of the state have notably low-
er socio-economic status than other regions in the state
(Australian Bureau of Statistics 2008), and this can be
associated with poorer health status, reduced access to
air conditioning, and poorer quality of housing (Jones
and Tonts 2003). It is highly plausible that these char-
acteristics could lead to a higher risk profile within
these populations in relation to severe heatwave
exposure.

The range of available health services, and the ease of
access to these services, must also be considered when
comparing heatwave impacts across different regions.
Better access to particular services in some regions, for
example hospitals and ED departments, could result in
higher levels of use during heatwaves. A study of the
usage of services between regional and metropolitan pop-
ulations in SA found that the self-reported frequency of
use of a range of health services was broadly similar
across remoteness categories. However, use of primary
care services was higher among residents of highly acces-
sible areas and public hospital use increased with increas-
ing remoteness (Eckert et al. 2004). The higher level of
all-cause hospital admissions during heatwaves for the
Mid North region may be due, in part, to a relatively high
access to hospital services in this region (L. Jones, per-
sonal communication). In contrast, the more remote North
region has relatively low access to hospitals, and it is
noteworthy that this region showed the highest increase
in mortality during heatwaves. A more detailed

investigation is warranted to validate these differences
and to explore any specific regional risk factors.

The morbidity outcomes showing the highest in-
creases during heatwaves were specific heat-related hos-
pital admissions and ED presentations. Although the ab-
solute numbers for these admissions are typically low
(mean daily admissions of 1–3 in the Adelaide popula-
tion), the large estimated increases (up to 9-fold at
highest severity) could result in a high cumulative bur-
den on services, particularly over the course of an ex-
tended heatwave. This would be particularly significant
in the context of limited service capacity in regional
areas. It is important to note, however, that there is
potential for coding bias associated with heat exposure,
and this may affect the results for specific heat-related
outcomes.

Most states in Australia comprise distinct climatic
regions, with varying levels of heat acclimatisation.
Establishing the criteria for activating state HWS re-
quires some understanding of these variations in heat
susceptibility. This will enable more appropriate
targeting of resources and maximise opportunities for
prevention, while avoiding the public complacency and
fatigue that can result from false positive warnings
(Bassil and Cole 2010). The EHF severity index pro-
vides an alternative criteria for defining extreme or un-
usual heatwaves at different locations (Nairn and
Fawcett 2015), and, on the basis of our findings, the
index could be adopted in the HWS for SA. Over a
threshold of EHF severity (≥ 2), the increases in mor-
bidity observed in all regions suggest it would be ap-
propriate to consider public heal th advisor ies .
Furthermore, the frequency of events meeting this
threshold was low (five events in Adelaide for the pe-
riod 1990–2015) and would not be expected to result in
public complacency or fatigue. Our findings for SA are
broadly consistent with results from other studies relat-
ing the EHF severity index to morbidity or mortality
outcomes. For the Adelaide metropolitan population,
the EHF severity index has previously been shown to
predict excess ambulance call-outs (Hatvani-Kovacs et
al. 2016) and mortality (Langlois et al. 2013b). For
the state of Western Australia, the EHF severity index
was found to be a predictor of health service utilisation
for both metropolitan and regional areas, with evidence
of geographical variations in effects across the state
(Scalley et al. 2015; Xiao et al. 2017). Health service
utilisation was also increased on heatwave days (EHF
severity > 1) in New South Wales, with some variation
across rural, remote and urban areas, and for different
outcome measures (Jegasothy et al. 2017). Regional
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variations in heat effects have also been reported in the
relatively smaller state of Victoria, where different max-
imum temperature thresholds for heat effects have been
identified in different regions (Loughnan et al. 2010).

Humidity is considered to be another important factor
in heat stress, and how the EHF metric performs as an
indicator of hazardous heatwaves in more humid
locations is yet to be determined. Although humidity
is not directly captured within the EHF metric, Nairn
and Fawcett (2015) have argued that the close correla-
tion of humidity with minimum temperature means it is
implicitly represented within the EHF calculation.

One of the strengths of our study was the range of
different morbidity outcomes examined. This allowed us
to identify the most sensitive indicators of heat effects,
and revealed some differences between metropolitan and
regional populations. For example, while ED presenta-
tions are significantly increased during heatwaves in
Adelaide, this was not observed in regional populations,
which may be explained by differences in access or use
of ED services. It is not clear why ED presentations do
not increase in parallel with ambulance call-outs in re-
gional areas, but it should be noted that not all call-outs
will result in an ED admission. In terms of surveillance
of heatwave impacts, it appears that ambulance call-outs
would provide the most consistent indicator of emergen-
cy health service utilisation across all regions. A further
strength of the study was the use of several different
categories of heatwave severity, which provided a better
indication of the effects in each region. This was pos-
sible because the EHF severity categories could be ap-
plied consistently across different climatic regions. It
should be noted, however, that categorisation of
heatwave exposure results in some loss of information,
and the use of a continuous EHF severity variable
would provide more analytic power.

When using the EHF metric, the exposure relates to a
3-day period, rather than for individual days. Our effect
estimates represent overall effects for EHF-defined heat
events, with the 3-day cumulative outcomes capturing
immediate and short-term effects, while the 5 and 7-
day cumulative totals account for delayed effects. A
more detailed analysis of daily outcomes, including for
lagged days, could provide more information about how
the health effects are distributed during and after the 3-
day periods. Our results indicate that the health effects
can extend beyond the immediate 3-day heatwave peri-
od, consistent with findings from other studies (Scalley
et al. 2015; Jegasothy et al. 2017; Xiao et al. 2017).
Further research could also examine the impact of de-
layed effects on specific health services.

A particular limitation of our study was the potential
for misclassification of exposure, arising because expo-
sure data from a single site was assigned to populations
across large regions. For this study, it was not feasible
to conduct analyses at smaller scales because of the low
population density in most areas of SA. To address this
issue, we repeated the analyses using exposure data
from a separate site in each region, which provided
broad confirmation of the results. We conclude that
our effect estimates are indicative of population effects
across the broader regions, despite some within-region
climatic variations.

It is likely that the relationships between heatwaves
and morbidity and mortality will change as populations
are exposed (and adapt) to increasing temperatures, and
as public health warnings and interventions are more
widely implemented. In this context, some ongoing spa-
tial monitoring of heat effects will be important to en-
sure that warnings and interventions are being targeted
for maximum effectiveness.

Conclusions

Morbidity was increased on heatwave days in all re-
gions of South Australia, suggesting that public health
warnings and interventions are warranted across the
state. Some regional differences in heatwave impacts
were evident and may indicate higher levels of suscep-
tibility. The EHF severity index was a consistent predic-
tor of specific morbidity outcomes across regional SA,
and could provide uniform threshold criteria for regional
heat warnings in the state. These warnings, together
with specific interventions, will become more important
as the frequency and intensity of heatwaves increases
with climate change, and as existing adaptations are
challenged.
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Appendix 2

Results from a sensitivity analysis using alternative
regional sites for meteorological observations

Fig. 2 Map of South Australia
showing location of alternate
reference sites within regions
(circles)
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Table 8 Number of heatwave days (n) and corresponding average daily maximum temperatures (ADMT oC; for 3 day average) by region in South
Australia, for warmer months (Oct to Mar), 2000-2016.

Region Heatwave severity*

No heatwave Low Moderate High

n ADMT n ADMT n ADMT n ADMT

North 2668 27.9 272 37.2 50 40.4 17 41.5

Murray & Mallee 2754 26.5 210 36.6 33 39.7 10 43.2

South East & KI 2761 26.2 210 36.7 22 39.3 14 42.4

Adelaide Hills 2717 25.8 235 36.0 41 38.9 14 41.5

Yorke & Lower Eyre 2758 27.2 204 37.3 35 40.3 10 43.1

Mid-North 2729 27.0 228 37.0 32 39.7 18 41.6

Adelaide Metro 2732 26.0 229 36.2 36 39.1 10 42.4

Total 19119 26.7 1588 36.7 249 39.7 93 42.1

*Severity is defined on the basis of normalised EHF intensity: No heatwave: EHF severity<0; Low: 0>severity<1; Moderate: 1≤ severity< 2; High:
severity ≥ 2

Table 9 Effect estimates (IRRs) for the association between heatwave exposure (low, moderate and high severity) and 3-daily ambulance call-outs by
region in South Australia, for warmer months (Oct to Mar), 2000-2016. IRRs for significant pvalues (<0.05) are indicated in bold font

Region Heatwave Severity*

Low Moderate High

IRR p-value 95% CI IRR p-value 95% CI IRR p-value 95% CI

North 1.10 0.000 1.07 1.12 1.10 0.000 1.05 1.15 1.25 0.000 1.16 1.35

Murray and Mallee 1.07 0.000 1.04 1.10 1.10 0.001 1.04 1.17 1.23 0.000 1.12 1.35

South East & KI 1.05 0.000 1.02 1.07 1.11 0.002 1.04 1.18 1.14 0.006 1.04 1.25

Adelaide Hills 1.05 0.000 1.03 1.07 1.01 0.844 0.96 1.05 1.19 0.000 1.12 1.28

Yorke & Lower Eyre 1.03 0.024 1.00 1.07 1.07 0.043 1.00 1.14 1.29 0.000 1.16 1.45

Mid North 1.07 0.000 1.04 1.10 1.11 0.005 1.03 1.20 1.28 0.000 1.17 1.40

Adelaide metro 1.05 0.000 1.04 1.05 1.08 0.000 1.06 1.09 1.15 0.000 1.12 1.17

*Severity is defined on the basis of normalised EHF intensity: No heatwave: EHF severity<0; Low: 0>severity<1; Moderate: 1≤ severity< 2; High:
severity ≥ 2
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Table 10 Effect estimates (IRRs) for the associations between
heatwave exposure (low, moderate and high severity) and 3-daily
hospital admissions (all-cause and heat-related) by region in South

Australia, for warmer months (Oct to Mar), 2000-2016. IRRs for
significant p-values (<0.05) are indicated in bold font

Outcome /Region Heatwave Severity*

Low Moderate High

IRR p-value 95% CI IRR p-value 95% CI IRR p-value 95% CI

Hospital Admissions

North 1.05 0.000 1.03 1.06 1.05 0.005 1.02 1.09 1.07 0.044 1.00 1.33

Murray and Mallee 1.03 0.002 1.01 1.05 1.05 0.030 1.00 1.10 1.03 0.407 0.96 1.12

South East & KI 1.04 0.000 1.02 1.05 1.01 0.770 0.96 1.06 1.13 0.000 1.07 1.20

Adelaide Hills 1.07 0.000 1.05 1.08 1.03 0.060 1.00 1.07 1.16 0.000 1.09 1.22

Yorke & Lower Eyre 1.05 0.000 1.03 1.07 1.09 0.000 1.04 1.14 0.98 0.616 0.90 1.07

Mid North 1.06 0.000 1.04 1.08 1.10 0.000 1.05 1.15 1.17 0.000 1.10 1.25

Adelaide metro 1.01 0.000 1.01 1.02 1.03 0.000 1.02 1.05 1.03 0.010 1.01 1.05

Heat-Related Hospital Admissions1

North 2.69 0.000 2.31 3.15 5.10 0.000 4.00 6.51 4.53 0.000 3.14 6.52

Murray and Mallee 3.03 0.000 2.56 3.58 4.18 0.000 3.06 5.69 9.70 0.000 7.12 13.2

South East & KI 2.68 0.000 2.26 3.19 4.57 0.000 3.25 6.42 7.97 0.000 5.94 10.7

Adelaide Hills 2.50 0.000 2.13 2.94 4.37 0.000 3.35 5.69 7.96 0.000 5.68 11.1

Yorke & Lower Eyre 2.64 0.000 2.23 3.14 3.51 0.000 2.53 4.87 7.64 0.000 5.19 11.2

Mid North 3.06 0.000 2.57 3.65 4.02 0.000 2.89 5.60 8.46 0.000 6.13 11.7

Adelaide metro 2.43 0.000 2.31 2.56 4.34 0.000 3.97 4.74 8.63 0.000 7.77 9.58

*Severity is defined on the basis of normalised EHF intensity: No heatwave: EHF severity<0; Low: 0>severity<1; Moderate: 1≤ severity< 2; High:
severity ≥ 2
1 Results from zero-inflated Poisson Regression Models

Table 11 Effect estimates (IRRs) for the association between heatwave
exposure (low, moderate and high severity) and 3-daily emergency
presentations (all-cause and heat-related) by region in South Australia,

for warm months (Oct to Mar), 2000-2016. IRRs for significant p-values
(<0.05) are indicated in bold font

Outcome /Region Heatwave Severity*

Low Moderate High

IRR p-value 95% CI IRR p-value 95% CI IRR p-value 95% CI

Emergency

North 1.04 0.000 1.02 1.06 1.05 0.008 1.01 1.09 0.91 0.013 0.85 0.98

Murray and Mallee 1.01 0.537 0.99 1.03 0.98 0.509 0.94 1.03 1.02 0.734 0.93 1.12

South East & KI 1.01 0.608 0.98 1.03 1.05 0.134 0.99 1.12 0.96 0.198 0.90 1.02

Adelaide Hills 1.03 0.000 1.02 1.05 0.99 0.648 0.96 1.03 1.00 0.989 0.94 1.07

Yorke & Lower Eyre 1.07 0.000 1.04 1.10 0.99 0.840 0.93 1.06 0.78 0.001 0.67 0.90

Mid North 1.03 0.007 1.01 1.05 1.00 0.912 0.96 1.05 1.06 0.137 0.98 1.15

Adelaide metro 1.03 0.000 1.02 1.03 1.03 0.000 1.02 1.04 1.04 0.000 1.02 1.05

Heat-Related Emergency1

North 3.58 0.000 2.64 4.86 4.20 0.000 2.67 6.61 6.31 0.000 3.51 11.3

Murray and Mallee 2.60 0.000 1.82 3.72 3.07 0.000 1.71 5.52 12.2 0.000 6.29 23.7

South East & KI 1.46 0.104 0.93 2.31 3.48 0.008 1.38 8.81 3.15 0.011 1.30 7.63

Adelaide Hills 2.23 0.000 1.72 2.89 4.22 0.000 2.87 6.21 3.99 0.000 2.08 7.67

Yorke & Lower Eyre 1.48 0.211 0.80 2.74 2.72 0.055 0.98 7.55 5.75 0.002 1.94 17.1
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