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Abstract Hand, foot, and mouth disease (HFMD) is a signif-
icant public health issue in China and an accurate prediction of
epidemic can improve the effectiveness of HFMD control.
This study aims to develop a weather-based forecasting model
for HFMD using the information on climatic variables and
HFMD surveillance in Nanjing, China. Daily data on
HFMD cases and meteorological variables between 2010
and 2015 were acquired from the Nanjing Center for
Disease Control and Prevention, and China Meteorological
Data Sharing Service System, respectively. A multivariate
seasonal autoregressive integrated moving average

(SARIMA) model was developed and validated by dividing
HFMD infection data into two datasets: the data from 2010 to
2013 were used to construct a model and those from 2014 to
2015 were used to validate it. Moreover, we used weekly
prediction for the data between 1 January 2014 and 31
December 2015 and leave-1-week-out prediction was used
to validate the performance of model prediction. SARIMA
(2,0,0)52 associated with the average temperature at lag of
1 week appeared to be the best model (R2 = 0.936,
BIC = 8.465), which also showed non-significant autocorre-
lations in the residuals of the model. In the validation of the
constructed model, the predicted values matched the observed
values reasonably well between 2014 and 2015. There was a
high agreement rate between the predicted values and the
observed values (sensitivity 80%, specificity 96.63%). This
study suggests that the SARIMA model with average temper-
ature could be used as an important tool for early detection and
prediction of HFMD outbreaks in Nanjing, China.

Keywords SARIMA . Forecasting . Hand, foot andmouth
disease (HFMD) . Temperature . Infectious disease

Introduction

Hand, foot, and mouth disease (HFMD) is an infectious dis-
ease caused by various enteroviruses, with coxsackievirus
A16 (CV-A16) and enterovirus 71 (EV71) being the most
commonly reported (Puenpa et al. 2011; Wu et al. 2010).
HFMD is transmitted through close personal contact, expo-
sure to feces, contaminated objects, and surfaces of an infected
person (Wei et al. 2015). It usually affects infants and children
under 5 years old (Qian et al. 2016), and most patients expe-
rience self-limiting illness typically including fever, mouth
ulcers, and vesicles on the hands, feet, and mouth (Jiang

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00484-017-1465-3) contains supplementary
material, which is available to authorized users.

* Wenbiao Hu
w2.hu@qut.edu.au

* Fei Xu
frankxufei@163.com

1 Department of Social Medicine and Health Education, School of
Public Health, Nanjing Medical University, Nanjing 211166, China

2 Department of Epidemiology, School of Public Health, Nanjing
Medical University, Nanjing 211166, China

3 School of Public Health and Social Work, Queensland University of
Technology, Kelvin Grove, Brisbane, Queensland 4059, Australia

4 Department of Infectious Diseases, Nanjing Drum Tower Hospital,
The Affiliated Hospital of Nanjing Medical University,
Nanjing 210008, China

5 Institute of Health and Biomedical Innovation, Queensland
University of Technology, Brisbane, Queensland 4059, Australia

6 Department of Non-communicable Disease Prevention, Nanjing
Municipal Center for Disease Control and Prevention,
Nanjing 210003, China

Int J Biometeorol (2018) 62:565–574
https://doi.org/10.1007/s00484-017-1465-3

https://doi.org/10.1007/s00484-017-1465-3
mailto:frankxufei@163.com
mailto:frankxufei@163.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s00484-017-1465-3&domain=pdf


et al. 2012). However, some patients will rapidly develop
neurological and cardiopulmonary symptoms that can be fatal,
particularly when the cases are associated with EV71 (Ma
et al. 2010).

Over the past decades, HFMD epidemics are widespread in
Asian countries (Ho et al. 1999; Chan et al. 2000; Chan et al.
2003; Tu et al. 2007; Chua and Kasri 2011), with deaths pre-
dominantly among children. Numerous outbreaks of HFMD
have recently been reported in mainland China (Zhang et al.
2010; De et al. 2011; Liu et al. 2011) and HFMD has become
one of the leading causes of children’s mortality in China
(Chen et al. 2015a). In 2008, a large-scale outbreak of
HFMD occurred in Fuyang city of Anhui province (Zhang
et al. 2010), resulting 353 severe cases and 22 deaths, and then
rapidly spread throughout the mainland China. Since 2008,
the Chinese Ministry of Health has listed HFMD as a class
C communicable disease and cases must be reported to the
National Disease Surveillance Reporting and Management
System within 24 h of diagnosis. According to this system,
there were more than 7.2 million cases of HFMD during
2008–2012 in China, and the disease causes 500–900 deaths
each year (Xing et al. 2014). However, there is no vaccine or
specific curative treatment for HFMD at present. Thus, it is
important to develop an early warning system of HFMD out-
breaks which could help to target timely interventions to con-
trol and prevent the disease.

Many statistical models have been used for identifying and
predicting disease outbreaks, including time-series forecasting
models such as seasonal autoregressive integrated moving av-
erage (SARIMA) model. This model has been widely used to
predict the incidences of various infectious diseases, such as
dengue fever (Shi et al. 2016), malaria (Midekisa et al. 2012),
and hepatitis E (Ren et al. 2013). Such predictions are helpful
for mobilizing public health resources to prevent and control
these diseases. A previous study indicated that targeting pre-
ventive measures for HFMD can be developed by using
SARIMA model since it fits and predicts the changing trends
of HFMD and achieves good results (Liu et al. 2016). The
other study reported the climate-based SARIMA model is
useful for the implementation of routine surveillance of
HFMD and evaluation of new intervention strategies (Feng
et al. 2014). Many studies have demonstrated that climatic
parameters are among the most significant environmental fac-
tors associatedwith the incidence of HFMD (Deng et al. 2013;
Xing et al. 2014; Chen et al. 2015b). The relationship between
temperature and HFMD has been well documented. Studies
have suggested that increased temperature has been associated
with the occurrence of HFMD in Japan (Onozuka and
Hashizume 2011), China (Huang et al. 2013), and Singapore
(Hii et al. 2011), and non-linear dose-response curves with
temperature have also been noted (Xiao et al. 2017). Besides
temperature, there are positive associations between HFMD
infection and relative humidity and precipitation (Wang et al.

2016). In addition, evidence has also shown that high wind
speed was a risk factor for HFMD (Ma et al. 2010). Moreover,
a study found air pressure was negatively linked with HFMD
occurrence (Li et al. 2014). The impact of temperature and air
pressure on the incidence of HFMD might contribute to
changes of survival and reproduction of pathogens and influ-
ence people’s immune function and activity. However, emer-
gence of HFMD infection due to temperature variability in
China has been reported (Cheng et al. 2016; Xu et al. 2016)
but few studies have integrated HFMD surveillance and tem-
perature with SARIMA model to provide early signals for the
prediction of this disease.

Nanjing is the capital of Jiangsu province and the larger
mega city in eastern China. The HFMD incidence in the whole
population in Nanjing (1.6 cases per 1000 persons) was higher
than the national average in China (1.4 cases per 1000 per-
sons) in 2010 and 2.0 times higher than that reported in Japan
in 2010 (0.8 cases per 1000 persons) (Guo et al. 2016). Liu
et al. (2015a) analyzed spatiotemporal dynamics of HFMD in
Jiangsu Province, China, and their findings indicated that
Nanjing was the main epidemic area in Jiangsu province
which should strengthen surveillance and public health inter-
ventions to control and prevent this disease. However, no
study has focused on the prediction of HFMD epidemics in
Nanjing city of eastern China. Hence, in this study, we devel-
oped a weather-based forecasting model for HFMD using
SARIMA model coupled with the information on climatic
variables and disease surveillance in Nanjing, China.

Material and methods

Study site

Figure 1 shows the geographic location of Nanjing in eastern
China. Nanjing is an important central city in the economic
core area of the Yangtze River Delta and also the transporta-
tion and communication center of eastern China. It has a total
population of 8.2 million and an area of 6587.02 km2. Nanjing
is situated at 32° north latitude and 118° east longitude. The
city of Nanjing has a subtropical climate characterized by a
hot, humid summer and a cold, dry winter. Nanjing has four
distinctive seasons: spring (1 April–7 June), summer (8 June–
17 September), autumn (18 September–11 November), and
winter (12 November–31 March). The annual average tem-
perature ranges from 13.0 to 20.8 °C. The average annual
rainfall is 1091.1 mm, and the total sunshine is 1863.8 h.

Data collection

Daily reported cases of HFMD from January 2010 to
December 2015 were obtained from the Nanjing Centre for
Disease Control and Prevention. According to China’s
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notifiable infectious disease regulations, all HFMD cases are
required to be reported online to the infectious disease surveil-
lance system within 24 h of diagnosis, including demographic
information (name, sex, date of birth, and address); case clas-
sification (probable or confirmed); date of symptom onset;
date of diagnosis; date of death (if applicable); and virus type
(EV71, CV-A16, or other enterovirus) for confirmed cases
(Xing et al. 2014). The clinical criteria for diagnosis of
HFMD were provided in a guidebook published by the
Chinese Ministry of Health in 2010. Patients with the follow-
ing clinical symptoms are defined as having HFMD: papular
or vesicular rash on hands, feet, mouth, or buttocks, with or
without fever. A laboratory-confirmed case was defined as a
clinical case with laboratory evidence of enterovirus infection
completed by RT-PCR, real-time PCR, or virus isolation. The
HFMD cases include clinical-confirmed cases and laboratory-
confirmed cases. We also carefully conducted data checking
and cleaning, including deleting suspected cases and cases
from other areas.

Meteorological data of daily average temperature (°C), rel-
ative humidity (%), wind velocity (m/s), duration of sunshine
(h), total rainfall (mm), and air pressure (hPa) from January
2010 to December 2015 were downloaded from China
Meteorological Data Sharing Service System (http://data.
cma.gov.cn). We aggregated the daily data and obtained
average weekly data for temperature, relative humidity, wind
velocity, duration of sunshine, and air pressure. Total weekly
rainfall was aggregated using daily data.

Data analysis

Data analysis included two stages: descriptive and time-series
analyses. Daily counts of reported cases and daily

meteorological variable data were used to produce weekly
average values because there were zeros if daily counts of
HFMD cases were used. Descriptive analysis was used to
illustrate the distribution and correlation of meteorological
variables and HFMD cases. We estimated the correlations
between meteorological variables and HFMD at lag 1 week
because this infection typically has an incubation period
of 3–7 days (Wong et al. 2010).

Time-series analysis

We developed the multivariate SARIMA model to predict the
incidence of HFMD by using the weekly numbers of HFMD
cases as the dependent variable and climatic variables as the
independent variables. To facilitate the selection of climatic
variables to be used as external repressors, we computed
Pearson’s correlation coefficient between numbers of HFMD
cases and climatic variables. Average temperature and air
pressure that were highly correlated with HFMD cases were
included in the model (r = 0.413 and − 0.460 respectively,
P < 0.01). We then computed cross-autocorrelation analysis
to assess associations between HFMD cases and average tem-
perature and air pressure over a range of time lags. Lagged
climatic variables found to be significantly associated with
HFMD cases were tested as external predictors in multivariate
SARIMA model. To control for the impact of seasonality, we
decomposed the HFMD incidence into three series. That is
Yt = Tt + St + Et, where Yt denotes the HFMD incidence, Tt
denotes the trend component, St denotes the seasonal compo-
nent, and Et denotes the residual component. To control for the
impact of seasonality in SARIMA model, we input the St into
the SARIMA model as a seasonal factor. In general, three
important parts were included in the SARIMA model:

Fig. 1 Geographical location of
Nanjing, Jiangsu Province of
China
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autoregressive (AR), data of present and past time points to be
included in the model; differencing, transforming time series
from non-stationary to stationary; moving average (MA), er-
rors of present and past time points to be included in the
model. The SARIMA model is typically represented by (p,
d, q) × (P, D, Q) s (Box and Jenkins 1970): p, d, and q are
the orders of the AR, the differencing, and MA process, re-
spectively, whereas P,D, andQ are the seasonal orders of AR,
differencing, and MA process, respectively; s is the seasonal
period (s = 52 weeks in this study).

We used the Box-Jenkins approach to evaluate the
SARIMA model, which consists of a four-step process.
First, it is necessary to identify the stationary state of data in
series. Natural logarithm transformation was performed to sta-
bilize the variance of the time-series data. Second, the orders
of the model were identified initially by the analysis of auto-
correlation function (ACF) and partial autocorrelation func-
tion (PACF). Parameters of the model were estimated by using
the maximum likelihoodmethod. Third, the goodness-of-fit of
the models was examined through Ljung-Box test for white
noise in residuals. The Bayesian Information Criteria (BIC)
and the stationary R square (R2) were also conducted to com-
pare the goodness-of-fit of SARIMA models. A model with
the highest R2 and the lowest BIC was considered as the most
appropriate model to fit the data. Finally, the model was val-
idated through the validation process. The data file was divid-
ed into two datasets: the data from 1 January 2010 to 31
December 2013 (208 weeks in total) were used to construct
a SARIMA model and those between 1 January 2014 and 31
December 2015 (104 weeks in total) were used to validate the
model. The predictive validity of the models was evaluated by
using the mean absolute percentage error (MAPE). The small-
er the MAPE, the better the model is for forecasting. There
were two approaches to estimate the predicted values which
were called the 104-steps-ahead prediction and 1-step-ahead
prediction (Luz et al. 2008). The 104-steps-ahead prediction
used the fitted SARIMAmodel to predict the consecutive 104
observations that constitute the year 2014 and 2015. The 1-
step-ahead prediction used the SARIMA model to predict
1 week ahead, which means the next week predicted value
(the 1st week 2014). Then, as the observed value for the 1st
week 2014 was obtained, we updated the data to 1st week
2014, re-estimated the parameters of the SARIMA model,
and computed the next 1-step-ahead predicted value, the 2nd
week 2014. This process was continued until the 52nd week
of 2015. Both approaches were used to compare in this study.

Sensitivity analysis

Sensitivity analysis was also conducted in the validation pro-
cess. We defined an outbreak where the HFMD incidence rate
exceeded the third quartile (Q3) of the incidence rates plus one
standard deviation (SD). That is > = Q3 + 1 SD were set up on

outbreak of HFMD in Nanjing. To further test the model util-
ity and predictive validity, mean + 1 SD was also used to
compare the predictive results. We used the sensitively, spec-
ificity, and overall agreement rates to compare the model pre-
dictive power (Table S1). Finally, Q3 + 1 SD definition ap-
pears better predictive capability and was thus selected as the
outbreak threshold of HFMD in this study.

Descriptive analysis and SARIMA modeling were per-
formed using IBM SPSS version 23 (SPSS Inc.; Chicago,
IL, USA) with a significance level of P value < 0.05 (two
sides).

Results

Descriptive analysis

There were totally 102,751 HFMD cases in Nanjing between
1 January 2010 and 31 December 2015. Table 1 shows the
summary statistics of weekly data of HFMD and the meteo-
rological variables during the study period in Nanjing. The
weekly average number of HFMD was 328.3 (range, 7–
1093). The weekly average of temperature, relative humidity,
sunshine, wind velocity, and air pressure were 16.4 °C (range,
− 0.9–33.3 °C), 70.1% (range, 42–91%), 5.3 h (range, 0–
12.2 h), 2.8 m/s (range, 1.5–5.8 m/s), and 1012.4 hPa (range,
996.4–1029.0 hPa), respectively. The weekly total rainfall was
22.5 mm (range, 0–326.3 mm).

Table 2 reveals the Spearman correlations between weekly
meteorological variables at lag of 1 week and HFMD cases.
We found that the HFMD incidence was significantly associ-
ated with temperature, rainfall, and air pressure (r = 0.413,
0.155, and − 0.460 respectively, P < 0.01), but not significant-
ly with relative humidity, sunshine, and wind velocity
(P > 0.05).

Figure 2 illustrates the weekly incidences of HFMD and
weekly average temperature during the study period. Figure 3
shows seasonal distribution of weekly number of HFMD
cases, indicating a seasonal pattern. The peaks reached a

Table 1 Descriptive statistics of weekly data on meteorological
variables and HFMD cases in Nanjing, 2010–2015

Variables n Mean SD Min. Median Max.

Weekly HFMD cases 313 328.3 252.2 7 235 1093

Meteorological variables

Temperature (°C) 313 16.4 9.1 − 0.9 17.8 33.3

Relative humidity (%) 313 70.1 10.0 42.0 70.7 91.0

Sunshine (hour) 313 5.3 2.3 0 5.3 12.2

Wind velocity (m/s) 313 2.8 0.6 1.5 2.8 5.8

Rainfall (mm) 313 22.5 37.3 0 9.1 326.3

Pressure (hPa) 313 1012.4 8.6 996.4 1013.3 1029.0
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maximum during April to July and again spiked in October to
December.

Time-series analysis

In the development of a multivariate SARIMA model, natural
logarithm transformation was performed to stabilize the vari-
ance of the series. Average temperature and air pressure that
significantly correlated with HFMD cases were included as
external independent variables. Cross-autocorrelation analysis
was used to assess the associations between HFMD cases and
average temperature and air pressure over a range of time lags.
To estimate the parameters of the SARIMA model, we drew
the graphs of ACF and PACF based on the modeling results.
Furthermore, we fitted the data with different orders and ex-
cluded the models in which the residual was not likely to be
white noise. Among these models, the SARIMA (2,0,0)52
associated with the average temperature at lag of 1 week is
the most appropriate, which had the lowest BIC and the

highest R2 values (8.465 and 0.936, respectively).
Estimation of the SARIMA model parameters and their test-
ing results are presented in Table 3. The results of the
SARIMA model (2,0,0)52 show that autogression1
(β = 1.149, P value < 0.0001), autogression2 (β = − 0.284,
P value < 0.0001), and the average temperature at lag of
1 week (β = 0.012, P value < 0.05) were statistically signifi-
cantly associated with the weekly counts of HFMD cases. The
ACF and PACF of the residuals of SARIMA (2,0,0)52 are
presented in Fig. 4, which reveals that autocorrelations and
partial autocorrelations of residuals were near zero, indicating
that the residuals did not deviate significantly from a zero-
mean white noise process. Results of the Ljung-Box test con-
firmed that the autocorrelation coefficients were not statisti-
cally significantly different from zero (Q = 14.67, P = 0.549).
Goodness-of-fit analysis indicated that the SARIMA (2,0,0)52
model fitted the data reasonably well.

Finally, the model was used to predict the weekly inci-
dences of HFMD in Nanjing for the 104 weeks between

Table 2 Spearman correlations between weekly meteorological variables at lag of 1 week and HFMD cases in Nanjing, 2010–2015

Pressure Relative humidity Rainfall Wind velocity Sunshine Temperature

Relative humidity − 0.275**

Rainfall − 0.364** 0.668**

Wind velocity − 0.134* 0.048 − 0.215**

Sunshine − 0.195** − 0.649** 0.476** − 0.082

Temperature − 0.926** 0.257** 0.277** 0.032 0.293**

HFMD cases − 0.460** 0.087 0.155** 0.101 0.058 0.413**

*P < 0.05; **P < 0.01

Fig. 2 Weekly incidences of
HFMD and weekly average
temperature in Nanjing, China,
from January 2010 to December
2015. Solid lines indicate
incidence of HFMD. Dash lines
indicate the average temperature
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January 2014 and December 2015 and was validated using the
actual observations. Figure 5 shows a broadly good fit be-
tween observed and predicted data (MAPE = 18.024). The
SARIMA model’s 1-step-ahead predictions were closer to
the observed HFMD values than the 104-steps-ahead predic-
tions. Sensitivity, specificity, and overall agreement rate of 1-
step-ahead predictions were 80, 96.63, and 94.23%, respec-
tively, and those of 104-steps-ahead predictions were 60,
96.63, and 91.35%, respectively (Table 4).

Discussion

HFMD is one of the most common infectious diseases glob-
ally. In recent years, the outbreaks of HFMD in the Asia-
Pacific region attracted increasing attention. HFMD has been
an important public health issue inmainland China (Xing et al.
2014), and an accurate prediction of epidemic can improve the
effectiveness of disease control and prevention. Thus, it is
important to develop an early warning system of HFMD

outbreaks which could help to target timely public health in-
terventions to minimize the impact of this disease.

HFMD seemed to have two peaks per year. The first peak
occurred in April to July, followed by a second small peak in
October to December. According to Rajtar et al. (2008), en-
teroviruses are resilient to the environmental conditions of
the gastrointestinal tract, and that their stability in external
environmental conditions is dependent on temperature, hu-
midity, and UV radiation. Therefore, enteroviral infections
tend to develop during summer and early autumn in temper-
ate areas;meanwhile, enteroviral infectionsmightmaintain a
constant level throughout the year in tropical and subtropical
areas (Onozuka and Hashizume 2011). Furthermore,
Bertrand et al. (2012) also reported that temperature and
UV radiation are two main factors leading to enterovirus in-
activation. Hence, extremely high temperature may shorten
the survival time of enterovirus in the environment and then
reduce the risk of HFMD transmission. Another possible
explanation is that warm weather may increase the chances
for individuals’ contact with infectious individuals or con-
taminated environment. However, in summer time, people
tend to stay in air-conditioned settings which will decrease
the chances for transmission. The seasonality of HFMD in
Nanjing is similar to the patterns seen in other areas of China
(Xie et al. 2014). However, there are different seasonal pat-
terns in other regions. For instance, the disease peaks during
the summer in Japan (Onozuka and Hashizume 2011) and
during the autumn in Finland (Blomqvist et al. 2010). This
discrepancy might be attributed to some risk factors of the
disease such as climatic, geographic, social, and economic
factors (Liu et al. 2015b).

Fig. 3 Seasonal distribution of
weekly number of HFMD cases
after seasonal decomposition in
Nanjing, China, from January
2010 to December 2015. The x-
axis represents time (2010–2015)
and the y-axis the seasonal
component

Table 3 Parameter estimates and their testing results of the SARIMA
(2,0,0)52 model

Parameters Coefficients Standard error t P value

AR1 1.149 0.067 17.036 0.000

AR2 − 0.284 0.067 − 4.217 0.000

T{avg.}-Lag1 week 0.012 0.005 2.415 0.017

SARIMA seasonal autoregressive integrated moving average model, AR
autoregressive, T{avg.}-Lag1 week average temperature at lag of 1 week
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Fig. 4 Autocorrelation function
(ACF) and partial autocorrelation
function (PACF) of the residual
series of the SARIMA (2,0,0)52
model. The x-axis gives the value
of the correlation coefficient
comprised between − 1 and 1 and,
the y-axis, the number of lags in
weeks. Solid lines indicate 95%
confidence interval
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Weather factors have been proven to have significant influ-
ence on occurrence and transmission of HFMD. The current
study, which was conducted in Nanjing, demonstrated that
high temperature and low air pressure presented a higher risk
of HFMD infection. These findings are consistent with a pre-
vious study in Guangzhou, China, which suggested that each
1 °C rise in temperature corresponded to an increase of 9.38%
in the weekly number of HFMD cases and a 1 hPa rise in air
pressure corresponded to a decrease in the number of cases by
6.80% (Li et al. 2014). Other studies in mainland China (Chen
et al. 2015b; Feng et al. 2014) and Hong Kong (Ma et al.
2010) also reported the positive association between average
temperature and HFMD. However, few studies have been
published revealing the relationship between air pressure and
HFMD. A similar finding in the north of China indicated that
air pressure behaved in the opposite way to the HFMD inci-
dence (Wang et al. 2011). The exact mechanism about the
association between air pressure and HFMD has rarely been
investigated. Evidence has shown that low air pressure may
have the adverse impact on human immune system (Maes and
DeMeyer 2000). For example, the study by Styra et al. (2009)
indicated that the correlation between atmospheric pressure
decrease and atmospheric pressure increase of cardiovascular
disease in 1–2 days and on the same day was 25–44%.

In this study, we developed a multivariate SARIMA model
using average temperature and HFMD surveillance data from
2010 to 2013 for predicting the outbreak of HFMD between
2014 and 2015 in Nanjing, China. Our results suggest that the
SARIMA (2,0,0)52 model well reflected the trend of the inci-
dence of HFMD in Nanjing, China. The model also showed
that the average temperature was a key determinant of HFMD
transmission. As far as we know, this is the first study to apply
SARIMA model to forecast weekly incidences of HFMD in
Nanjing, China, whereas only Yu et al. (2015) examined the
relationship between HFMD and meteorological factors by
distributed lag non-linear model (DLNM) in this region.
Similar to our findings, Yu et al. (2015) reported average
temperature and air pressure were correlated with the
incidence of HFMD. However, comparing with the
SARIMA model which was widely used to predict the
incidences of infectious disease, DLNM is more appropriate
to estimate the total relative risks of delayed exposure to
climatic factors on HFMD. The results of study by Yu et al.
(2015) further indicated that lower temperature and air
pressure may have lag effects on HFMD incidences. In

current study, we have focused on forecasting the outbreak
of HFMD by using the SARIMA model and our findings
suggest that the predicted values matched the observed
values reasonably well.

To date, few studies used SARIMA model to predict
HFMD incidence in other regions, and the results varied
across different studies. For example, Liu et al. (2016) devel-
oped a univariate SARIMA model based on the monthly sur-
veillance data collected between 2010 and 2014 in Sichuan,
China, and found that the SARIMA (1,0,1) (0,1,0)12 model
was the best fitting model to estimate the HMFD incidence
trend. By using the data of 2932 hospitalized patients from
2008 to 2012, Feng et al. (2014) showed that the SARIMA
(0,1,0) (1,0,0)52 associated with average temperature at lag of
2 weeks was suitable to predict the weekly number of HFMD
hospitalizations in Zhengzhou, China. According to our re-
sults, the SARIMA (2,0,0)52 model with average temperature
at lag of 1 week was reliable with high validity (stationary
R2 = 0.936), which suggests that the SARIMA model could
be used to predict the future changing trends of HFMD in
Nanjing, China. We found that HFMD incidence is better
predicted when average temperature at lag of 1 week is in-
cluded as an external independent variable in the model. For
the lag effects, it is compatible with the incubation period of
enteroviruses and the possible delay for parents’ response to
the clinical symptoms of children (Huang et al. 2013).
Furthermore, the relationship between average temperature
and HFMD has also been reported in other studies (Huang
et al. 2013; Lin et al. 2013; Chen et al. 2014). Currently,
although the exact mechanism remains unknown, there are
several explanations for this association. Temperature could
not only influence children’s behavior but also has a potential
effect on the survival and transmission of the enteroviruses,
and then affects the transmission of the disease (Yin et al.
2016).

In this study, we have constructed the SARIMA model
which fitted HFMD data reasonably well in Nanjing, China.
Both the approach of 104-steps-ahead prediction and the ap-
proach of 1-step-ahead prediction were compared in the vali-
dation process. The forecast results indicate that the perfor-
mance of the 1-step-ahead prediction was slightly better than
that of the 104-steps-ahead prediction, although both sets of
results were generally acceptable (sensitivity, 80 and 60%,
respectively; specificity, 96.63% for both; overall agreement
rate, 94.23 and 91.35, respectively). The approach of 104-

Table 4 Sensitivity analysis of
the observed values and predicted
values

Observed values 1-step-ahead prediction values 104-steps-ahead prediction values

Outbreak Unoutbreak Outbreak Unoutbreak

Outbreak 12 3 9 6

Unoutbreak 3 86 3 86
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steps-ahead prediction failed to detect the peak of HFMD
during September and December 2014, while the approach
of 1-step-ahead prediction did well. According to Luz et al.
(2008), 1-step-ahead prediction can really reflect the on-going
nature of disease surveillance. The model allows the incorpo-
ration of the newly collected data, therefore increasing its
predictive power. This real-time forecasts could be used by
public health authorities to identify the outbreaks of HFMD
and consequently to implement timely interventions. With the
help of the SARIMA model, it is reasonable for the public
health authorities to allocate health resources to control the
epidemic efficiently. If prediction results continue to rise,
more human and material resources should be prepared for
health interventions in advance. HFMD morbidity and mor-
tality would be minimized through accurate forecasts.

This study has two strengths. Firstly, a sophisticated time-
series model was used in the attempt to develop an epidemic
forecasting system for the control and prevention of HFMD in
Nanjing, China. Secondly, the model developed in this study
appears to have a high degree of accuracy. Nevertheless, sev-
eral limitations of our study should also be acknowledged.
First, our surveillance data of HFMD do not capture all cases
because some asymptomatic and mildly affected patients may
not seek health care; thus, actual cases could be many times
higher and underreporting biases may not be completely ex-
cluded using existing official statistics. Second, this study is
based on the data from one city, so the results may not be
generalizable to other places with different climates. Multi-
city studies in different areas with diverse weather patterns
are needed to be undertaken in the future. Third, this investi-
gation is an ecological study, which does not enable us to
assess individual exposure level and exclude the potential un-
measured confounding variables. Finally, our study develops
a forecasting model for HFMD of Nanjing city without con-
sidering the intra-city difference. More attention in further
research should be paid to spatiotemporal characteristics of
HFMD so that the communities at high risk can be identified.
Thus, the local health authorities could formulate the more
regional specific interventions and mobilize limited resources
to prevent and control HFMD outbreaks. The model incorpo-
rating social economic factors and internet-based data will
improve our prediction capability to more precisely forecast
HFMD outbreaks in the future.

Conclusions

Our findings demonstrate that the SARIMA model coupling
with the data on climatic factors and disease surveillance
could be an important tool for early detection and prediction
of the HFMD outbreak. An effective warning system for
HFMD could reduce childhood morbidity and should be in-
corporated in disease control and prevention strategies for

HFMD in Nanjing and other areas with similar climatic
conditions.
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