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Abstract Air quality and thermal stress lead to increased
morbidity and mortality. Studies on morbidity and the com-
bined impact of air pollution and thermal stress are still rare.
To analyse the correlations between air quality, thermal stress
and morbidity, we used a two-stage meta-analysis approach,
consisting of a Poisson regression model combined with dis-
tributed lag non-linear models (DLNMs) and a meta-analysis
investigating whether latitude or the number of inhabitants
significantly influence the correlations. We used air pollution,
meteorological and hospital admission data from 28 adminis-
trative districts along a north-south gradient in western
Germany from 2001 to 2011. We compared the performance
of the single measure particulate matter (PM10) and air tem-
perature to air quality indices (MPI and CAQI) and the bio-
meteorological index UTCI. Based on the Akaike information
criterion (AIC), it can be shown that using air quality indices
instead of single measures increases the model strength.
However, using the UTCI in the model does not give addi-
tional information compared to mean air temperature.
Interaction between the 3-day average of air quality (max
PM10, max CAQI and max MPI) and meteorology (mean
air temperature and mean UTCI) did not improve the models.

Using the mean air temperature, we found immediate effects
of heat stress (RR 1.0013, 95% CI: 0.9983–1.0043) and by
3 days delayed effects of cold stress (RR: 1.0184, 95% CI:
1.0117–1.0252). The results for air quality differ between both
air quality indices and PM10. CAQI and MPI show a delayed
impact on morbidity with a maximum RR after 2 days (MPI
1.0058, 95% CI: 1.0013–1.0102; CAQI 1.0068, 95% CI:
1.0030–1.0107). Latitude was identified as a significant me-
ta-variable, whereas the number of inhabitants was not signif-
icant in the model.
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Introduction

According to the European Environment Agency (EEA
2013), air pollution leads to a reduction in life expectancy of
8.6 months per person in Europe. Together with the changing
climate that will increase air temperature and hence thermal
stress (Smith et al. 2013; Lokys et al. 2015a), air pollution is
one of the major health concerns according to the World
Health Organisation (Quantification of the Health Effects of
Exposure to Air Pollution 2000). The effect of air pollution
and thermal stress on mortality has been subject to numerous
research projects throughout the past years (Vanos et al. 2014,
2015; Lelieveld et al. 2015; Williams et al. 2014; Guo et al.
2011; Gabriel and Endlicher 2011; Ruckerl et al. 2011). The
high number of recent publications on this topic indicates that
the effects of air pollution and thermal stress are of high
interest, but not yet completely understood. The study by
Grass (2008) shows that there are mainly two approaches to
analyse health effects caused by air pollution and
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biometeorological variables: (1) early studies treat either ther-
mal components or air pollution as independent variable,
without considering confounders. Later, this changed to the
use of the other variable as a confounder. (2) Recent studies
(Buchholz et al. 2010; Vanos et al. 2014, 2015; Breitner et al.
2014) analyse the simultaneous effects of meteorological and
air quality variables. However, these studies are still rare and
especially the combined, but also, the single effects can vary
across locations and population characteristics (Liu et al.
2011; Li et al. 2015a).

The combined effects of air pollutants, especially particu-
late matter (PM10) and ozone, with temperature on mortality
were shown to be significant by some studies (Breitner et al.
2014; Baccini et al. 2008; Vanos et al. 2014, 2015), while
others did not find a significant confounding effect of air pol-
lution to the impact of temperature on mortality (Basu et al.
2008). Only few studies suggested a possible interaction be-
tween air pollutants and temperature on the effect on mortality
(Ren et al. 2006, 2008; Park et al. 2011). There is a lack of
studies on the combined effect of air pollution and thermal
stress on morbidity. Firoz et al. (2013) highlight the fact that
mortality is only a small fraction of the burden of morbidity.
As morbidity is, in most cases, a precursor for mortality, the
understanding of air quality and thermal stress as drivers for
morbidity can help to reduce the burden of both health
endpoints.

Neither air quality nor human thermal stress is sufficiently
described by a single pollutant or thermal measure like air
temperature, respectively (de Freitas and Grigorieva 2014).
Therefore, several indices have been developed to describe
air quality and human thermal stress in total instead of using
singlemeasures. Air quality indices with verbal categories like
Bgood^, Bmoderate^ or Bpoor^ and biometeorological indices
with categories like Bcold stress^, Bno thermal stress^ or Bheat
stress^ are easy to understand for the public. They are widely
used in Europe for policy support or direct information for the
public about air quality and thermal stress (van den Elshout
et al. 2008; Jendritzky et al. 2012). In this context, Li et al.
(2015b) showed that the Air Pollution Index (API) is suited to
communicate the health risks of air pollution. As this is a less
common index in Europe, we investigate if the indices used in
Europe are equally suited. Lokys et al. (2015b) compared
different health impact-related air quality indices. The authors
showed that the indices are correlated but differ especially at
higher air pollution levels. The current study assesses if the
BCommon air quality index^ (CAQI) (van den Elshout et al.
2008), the BMulti Pollutant Index^ (MPI) (Gurjar et al. 2008)
and the BUniversal Thermal Climate Index^ (UTCI)
(Jendritzky et al. 2012) are suited to describe the associations
between air quality, thermal stress and morbidity. In particular,
we were interested if air quality and thermal indices are equal-
ly or even better suited than single measures (PM10 and air
temperature) to determine the health impact of air pollution

and thermal stress on humans at the level of morbidity based
on hospital admissions.

The numerous studies on the correlations between air qual-
ity or thermal stress on the one hand and human health on the
other reveal that there are many factors that confound the
relationships. Besides confounding factors such as influenza
(Guo et al. 2011) or holidays, the composition of particulate
matter (Krein et al. 2007, 2008) or socio-economic factors
(Stafoggia et al. 2006) as well as geographic aspects (Perez
et al. 2015; Gasparrini et al. 2015; Cakmak et al. 2016) may
influence the relationship. To address geographic dependence
and the influence of population size as a proxy for the socio-
economic situation, we analysed if latitude and the number of
inhabitants can significantly reduce the heterogeneity amongst
study regions.

In our study, we address the following three research ques-
tions: (1) Can biometeorological indices and air quality indi-
ces (compared to single measures) improve regression models
for the relationship between air quality, thermal stress and
non-accidental morbidity? (2) Which time lag or lag period
is leading to the maximum increase in relative risk (RR) for
morbidity as caused by air quality and thermal stress? (3) Can
we characterize the impact of latitude and population size on
the relationship between air quality, thermal stress and non-
accidental morbidity?

Materials and methods

Data

The analysis was conducted in 28 administrative districts
along a north-south gradient in the western part of Germany
(Fig. 1) covering the period from 2001 to 2011. The total
number of inhabitants in the study is 3.7 million, with a daily
average of 6.17 (SD 0.72) all-case hospital admissions and
1.30 (SD 0.21) hospital admission related to cardiovascular
and respiratory diseases per 10,000 inhabitants.

Datasets for each district included data on air quality, me-
teorology and non-accidental hospital admissions (morbidity).
Regular doctor visits were not taken into account, as reliable
statistics on these are not available. The air quality and mete-
orological data was provided by regional air quality monitor-
ing networks of the federal states of Lower Saxony
(Niedersächsisches Ministerium für Umwelt, Energie und
Klimaschutz), Rhineland-Palatine (Landesamt für Umwelt
Rheinland-Pfalz) and BAirBase – the European air quality
database^ provided by the European Environment Agency
(EEA Airbase) for Rhineland-Palatine. Monitors for air qual-
ity and thermal data can be different, due to local measurement
setups. The concentrations of NO2, SO2, O3 and PM10 were
reported on an hourly or daily basis. Data on air temperature,
wind speed, relative humidity and global radiation was
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obtained on an hourly basis. In case of hourly data, the daily
mean, maximum andminimumwere calculated if at least 75%
of the data was available (2001/752/EC). Otherwise, the day
was marked with missing data. In addition, we calculated
daily values of common air quality and biometeorological
indices. The indices to describe air quality and human thermal
comfort are used to assess if these are equally or even better
suited than the single measures PM10 and mean air tempera-
ture to determine effects of air pollution and thermal stress on
hospital admissions.

For air quality, we calculated the non-aggregating
BCommon Air Quality Index^ (CAQI) (van den Elshout
et al. 2008) and the aggregating BMulti Pollutant Index^
(MPI) (Gurjar et al. 2008) based on the daily maximum pol-
lution levels. An aggregating index takes into account the
conjoint effect of all pollutants included in the index, while
the non-aggregating index is only based on the highest daily
sub-index per pollutant (Plaia and Ruggieri 2010). Lokys et al.
(2015b) demonstrated that both indices show a linear correla-
tion, but the spread between them increases at high pollution
levels. Hence, we expect differences in the regression at least
at high index levels.

To assess the short-term effects of biometeorological stress on
hospital admission, we used dailymean air temperature and daily
mean UTCI. Mean air temperature is common in many studies
that analyse the effect of thermal stress on morbidity or mortality
(Ye et al. 2012; Breitner et al. 2014). Comparisons of different
temperature measures conducted by Anderson and Bell (2009)
and Guo et al. (2011) showed that mean air temperature was the
best predictor for mortality. However, de Freitas and Grigorieva
(2014) concluded from the high number of existing biometeoro-
logical indices that the thermal environment for humans is not
sufficiently described by air temperature. Therefore, the
BUniversal Thermal Climate Index^ (UTCI, Jendritzky et al.
2012) that does not only take into account the air temperature
but also wind speed, relative humidity and mean radiant temper-
ature was calculated. Regression results for mean air temperature
andUTCIwere compared.We used the freely available RayMan
Promodel Ver. 2.1 (Matzarakis et al. 2007) to calculate the UTCI
based on mean hourly data for air temperature, wind speed,
relative humidity and global radiation. For the calculations, we
used a clothing value of 0.1 clo, an activity of 80W (standing).

Hospital admission data was provided by the BRDC of the
Federal Statistical Office and the Statistical Offices of the
federal states^, [Krankenhausstatistik (Teil II: Diagnosen)],
[2000–2011] on request and is only available for academic
use, restricted to personal use of the applicant and only avail-
able for temporary use within the premises of the data centre.
The dataset includes gender, age (categorized in 5-year
groups), date of admission and main diagnosis according to
the International Classification of Diseases (ICD-10) on a dai-
ly basis per administrative district. We analysed non-
accidental hospital admissions that can be related to air pollu-
tion or thermal stress including cardiovascular and respiratory
diseases (ICD-10: A15-16 (tuberculosis); A37 (whooping
cough); H01-H11 (disorders if eyelid, lacrimal system, orbit
and conjunctiva); I05-I99 (diseases of the circulatory system);
J05-J84 (diseases of the respiratory system); O03, O05-O06
(pregnancy with abortive outcome); R00-R07, R09 (symp-
toms and signs involving the circulatory and respiratory sys-
tems); R51 (headache); R53 (malaise and fatigue)).

Data analysis

To analyse the 28 districts, we used a two-stage meta-analysis
approach proposed by Gasparrini et al. (2012) using the R
statistics package Bmvmeta^. The first stage consists of
district-specific Poisson regression models, controlled for
overdispersion, combined with distributed lag non-linear
models (DLNMs) (Gasparrini 2011) to analyse the correlation
between air quality, thermal stress and morbidity based on the
selected non-accidental hospital admission. We compare
models using air quality and thermal indices to models includ-
ing the single pollutants and meteorological data. The first

Fig. 1 Twenty-eight analysed administrative districts along a north-south
gradient in the western part of Germany located in Lower Saxony and
Rhineland-Palatine
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model includes the covariates CAQI and UTCI as measures
for air quality and human thermal comfort. The second model
uses the aggregating air quality index MPI instead of the
CAQI. Both models were compared to a third model contain-
ing maximum daily PM10 and daily mean air temperature.
The models can be summarized as follows:

LogE Y t=X tð Þ∼β1X 1t−l þ β2X 2t−l þ ns time; d fð Þ
þ DOWt þ Holt þ Inf lt ð1Þ

With Yt being daily number of hospital admission related to
the diseases selected by ICD-10 codes. X1 describes the air qual-
ity component (max CAQI, max MPI or max PM10) and X2 is
the thermal component (mean UTCI, mean air temperature). In
all models, we controlled for a long-term and seasonal trend
using a natural cubic spline with 7 degrees of freedom (df) per
year (Bhaskaran et al. 2013), day of the week (DOWt), holidays
(Holt) and influenza (Inflt). To control for influenza, we used the
hospital admission for ICD-10 codes J09-J11. An occurrence of
influenza in the respective region leads to the whole week being
marked for influenza (Guo et al. 2011). Within the DLNM, we
choose a cubic B-spline to model the non-linear effects of air
pollution and thermal stress with equally spaced knots placed at
the quantiles. For the lag space, we selected a natural spline with
knots placed along the logarithmic scale to account for a higher
variability at lower lags up to amaximum lag of 14 days. Analitis
et al. (2008), Baccini et al. (2008) and Breitner et al. (2014)
showed that a maximum lag of 14 days is sufficient to represent
the delayed effects of cold stress. The degrees of freedom for the
covariates and lag were determined using the minimum of the
Akaike information criterion (AIC) summed over all districts.
Resulting degrees of freedom for the lag was 4 and 5 for all other
covariates. To calculate the relative risks, we centred the DLNMs
on the mean of each air quality covariate. For the thermal covar-
iates such as UTCI, we used 17.5 °C, the mean of the BNo
thermal stress^ category and 17.0 °C for temperature
(Gasparrini and Armstrong 2013).

In addition to the three basic models, we test all models for
interaction between a 3-day average (main impact period) for
the air quality and thermal measure. The model including the
interaction can be described as follows:

LogE Y t=X tð Þ∼β1X 1t−l þ β2X 2t−l þ β1X 1avgX 2avg

þ ns time; d fð Þ þ DOWt þ Holt þ Inf lt ð2Þ

With X1avg being the average of the air pollution compo-
nent (max CAQI, max MPI or max PM10) from t-3 to t and
X2avg being the average of the thermal component (mean
UTCI or mean air temperature) from t-3 to t.

The second stage consists of a multivariate meta-analysis
based on the Bmvmeta^ package for R statistics provided by
Gasparrini et al. (2012). The meta-analysis enables us to

determine the effect of the covariates in all districts and its
confidence interval based on the first-stage analysis per dis-
trict. In addition, we can compare the districts and include
meta-variables such as latitude or the number of inhabitants
in the study. The estimation and interpretation of the meta-
analysis are similar to linear mixed models, where the fixed
part of the model represents the population-averaged out-
comes. The random part of the model described by the
between-study (co)variance matrix explains the deviation
from the population averages (Gasparrini et al. 2012). We
choose the restricted maximum likelihood (REML, Patterson
and Thompson 1971) method to estimate the between-study
(co)variance matrix as it is suitable for small sample sizes and
takes into account only the random effects between study sites
by accounting for the loss in degrees of freedom resulting
from the estimated fixed effects (Harville 1977). The results
of the multivariate meta-analysis are summarized overall and
for the 10th and 90th percentile of the covariates. In order to
analyse the variation between districts, we calculated the I2

statistic (Higgins and Thompson 2002), which determines
the heterogeneity also for smaller sample sizes than
Cochran’s Q (Cochran 1950).

To assess if the meta-variables latitude and the number of
inhabitants per district explain parts of the heterogeneity, we
included them in the meta-analysis separately. We introduced
the meta-variable Bcensus^, describing the number of inhabi-
tants in the administrative district, as a proxy for urban and
rural districts with different population density and different
exposure patterns to air pollution. The meta-variable Blati-
tude^, calculated as the centroid’s latitude value of each ad-
ministrative district, is used to assess if differences regarding
the impact of air pollution and thermal stress occur along the
north-south gradient.

We calculated the effects over all districts as well as the effects
at the 25th and the 75th percentile of the meta-variables. The
analyses were done for the whole range of the covariates as well
as their 10th and 90th percentile. The Wald statistic was calcu-
lated to determine if the introduced meta-variables describe a
significant modification to the original model. To identify amod-
ification in remaining heterogeneity, we calculated the I2 statistic
(Higgins and Thompson 2002) in order to compare it to the
models without meta-variables.

Results

Based on the AIC, the strongest model is model 2 including
MPI and UTCI (summed AIC for all regions: 397.950),
followed bymodel 1 (CAQI, UTCI, AIC: 397.966). The mod-
el 3 withmax PM10 andmean air temperature ranks third with
an AIC of 521.211. This gives a first indication that the use of
indices instead of single air pollutants is beneficial to deter-
mine the impact of air pollution and thermal stress on human
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morbidity. Significant interactions between the 3-day average
of air quality and the 3-day average for thermal stress were not
found.

The meta-analysis for the 28 regions shows the overall effects
of every variable based on the three-dimensional results from the
DLNMs in the predictor and lag space. The overall cumulative
summary does not show the lag space but considers the overall
effect of the variable over the whole lag of 14 days (Fig. 2). All
models show an increased RR for air pollution higher than the
average air pollution level of CAQI = 43 (Fig. 2a), MPI = −0.67
(Fig. 2c) and PM10 = 36.6 (Fig. 2e). The increased RR for the
MPI is not significant regarding the 95% confidence interval.
The increase in RR below the average air quality is not

significant for any of the three models. The thermal stress is
shown on the right hand side of Fig. 2. The results for the
UTCI are similar for model 1 (Fig. 2b) and model 2 (Fig. 2d).
Both show a slightly, but not significantly increased RR for
UTCI below 17.5 and a slightly decreased RR for UTCI above
that value. The decreased RR above the centre value of 17.5 °C
results from the fact that the harmful effect of high temperatures
occurs immediately after the event and remains only for a few
days. A detailed analysis of this fact will be performed based on
the predictor-specific summary for the variables along the lag
space. The mean air temperature (Fig. 2f) shows a similar pattern
as theUTCI.Mean air temperature suggests though that very low
temperatures, below −5 °C, reduce the RR.
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The impact of air pollution and thermal stress along the lag
space was analysed using the predictor-specific summary at
the 10th and 90th percentile of each variable. Figure 3 shows
that UTCI and air temperature show the same patterns at low
and high values. At the 10th percentile, air temperature
(Fig. 3a) and UTCI (Fig. 3c) have a delayed adverse effect
on human morbidity with an increased RR after 1–2 days with
a maximum RR (1.0110, 95% CI 1.0066–1.0153 for mean air
temperature, RR: 1.0184, 95% CI: 1.0117–1.0252 UTCI) af-
ter 3 days. The impact of high temperatures and high UTCI at
the 90th percentile is immediate but overall lower than the
effect of cold stress. The maximum RR at the 90th percentile
of UTCI is 1.0011 (95%CI: 1.0005–1.0018) (Fig. 3d), where-
as it is slightly higher for mean air temperature (RR 1.0013,
95% CI: 0.9983–1.0043) but with a wider confidence interval
(Fig. 3b). As the overall patterns are similar, the use of mean

UTCI is valid to identify the impact of thermal stress on hu-
man morbidity. Furthermore, it is able to detect significant
changes in RR, when mean air temperature is not (heat stress).

The predictor-specific summary for air quality shows dif-
ferences between the air quality indices and PM10 especially
at high air pollution levels (Fig. 4). All three air quality mea-
sures have an increased RR at the 90th percentile from lag 0.
The indices CAQI (Fig. 4a) and MPI (Fig. 4b) have the max-
imum RR (CAQI: 1.0068, 95% CI: 1.0030–1.0107, MPI:
1.0058, 95% CI: 1.0013–1.0102) after a lag of 2 days, while
the maximum RR of 1.0021 (95% CI: 0.9976–1.0068) for
PM10 occurs immediately. The effect of PM10 is not signif-
icant at any lag and percentile. The RR at 10th percentile over
14 days is 0.989 (95% CI: 0.96–1.018) while high PM10
concentrations lead to a slight increase in RR (RR at 90th
percentile over 14 days: 1.001, 95% CI: 0.982–1.021). The
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confidence interval for PM10 always includes values below
an RR of 1 (Fig. 4c). Therefore, we conclude that the use of
the PM10 to describe air quality does not allow the detection
of adverse effects of air pollution on human morbidity along
the lag space.

The assessment of heterogeneity between the 28 adminis-
trative districts based on I2 revealed that there is moderate
heterogeneity (Higgins et al. 2003) for the air quality variables
(I2 between 36.7 and 48.7%), whereas thermal-stress-related
measures only show low heterogeneity amongst the study
regions (I2 between 9.7 and 28.5%). The introduction of the
meta-variable Bcensus^ did not explain the detected heteroge-
neity amongst regions as it did not significantly decrease I2 for
most predictor variables. Only for the MPI, the Wald test
showed a significant decrease in the overall I2 (W = 0.034).
For 10th and 90th percentile, the Wald test does not result in a
significant decrease in I2. We conclude that the number of
inhabitants does not significantly influence the impact of air
pollution and thermal stress on human morbidity. It has to be
analysed in detail, if this is due to the fact that there is no
difference in the correlation in urban and rural areas or due
to the fact that the number of inhabitants is an inappropriate
proxy for urbanization.

The introduction of the meta-variable Blatitude^
representing the north-south gradient within the studied ad-
ministrative districts leads to a significant (UTCI W = 0.03,
CAQI W = 0.01, MPI W = 0.005) or highly significant
(PM10 W = 0) reduction of heterogeneity for all predictor
variables (UTCI I2 = 20.1%, CAQI I2 = 32.0%, MPI
I2 = 39.0%) except temperature. This means a reduction in
heterogeneity by 2.7 to 4.7%.

The results from the meta-analysis including latitude reveal
that overall the increase in RR is higher in the northern re-
gions. The effect of air pollution, described by the CAQI,
shows different patterns between northern and southern dis-
tricts (Fig. 5a, b). The northern districts, at the 75th percentile
of latitude, show a similar pattern as in the original model

(Fig. 4). The southern districts, at the 25th percentile, exhibit
a different pattern, not showing the delayed effect of high
CAQI values after 2 days (Fig. 5b). High MPI values at the
75th percentile (Fig. 5d) show the delayed effect of air pollu-
tion at higher and lower latitude. Despite this pattern, the MPI
shows a lower RR at all lags and for both high and low MPI
values for the southern regions (Fig. 5c, d).

The results from the models including the meta-variable
Blatitude^ indicate that the regional differences significantly
influence the models. It is therefore important to detect the
correlations between air quality, thermal stress and human
morbidity based on the specific region of interest. In case a
generalized association between those variables is needed, the
driving factors for these differences have to be identified first,
in order to be included in the models.

Discussion

We show that the short-term correlations between air quality,
thermal stress and human health can be described by a DLNM
using morbidity data. We included the variables max PM10 and
mean air temperature in aDLNMwith amaximum lag of 14 days
for 28 regions in western Germany. Model strength improved
using indices that include more than one pollutant or meteoro-
logical measures. The model including the aggregating air qual-
ity index MPI and the biometeorological index UTCI was iden-
tified as the strongest model out of the three calculated ones to
describe the correlations along the north-south gradient in west-
ern Germany. This shows the suitability of these indices to de-
scribe the impact of air pollution and thermal stress on human
health, also on health endpoints precedent to death. Li et al.
(2015b) also showed the suitability of an air quality index for
southern China, using mortality data. The model using the non-
aggregating air quality index CAQI was only slightly worse than
the previously mentioned model. The AIC for the model
consisting of max PM10 and mean air temperature is about 1.3
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times higher, showing that the use of the indices is not only useful
to communicate the current air quality or thermal stress level to
the public. In order to clearly determine if indices or single mea-
sures perform better in the regression, it would be necessary to
perform regressions for all possible combinations. Hence, it re-
mains unclear if amodel using for example theMPI andmean air
temperaturewould perform even better than the three tested ones.

Comparing our study to studies on the correlation of air
quality and or thermal stress on morbidity, we confirmed the
findings (Breitner et al. 2014; Li et al. 2015a) that high and
low temperatures lead to an increased relative risk. Also, the
pattern of immediate response to high (Hajat and Kosatky
2010), but delayed response to cold temperatures was con-
firmed. Our findings are in line with the results from Perez
et al. (2015), who showed a higher adverse effect of cold over
heat stress. The pattern and resulting relative risks at the 10th
and 90th percentile of mean air temperature and UTCI are
similar, indicating that the use of the UTCI does not provide
any additional information to the use of air quality in the
model. However, the results for the 90th percentile of PM10
are not significant during the first 2 days. This indicates that
for immediate effects of heat stress, the additional variables
used in the UTCI improve the results. This underlines the

findings of Blazejczyk et al. (2012) who compare different
more and less complex thermal indices. According to their
work, the UTCI is suited to describe human thermal comfort
in any situation, whereas more simple approaches may be
suitable under specific meteorological conditions. Heat stress
due to air temperature may be amplified by increased
humidity or decreased by increased wind, leading to
difficulties to solely describe heat stress by air temperature.
Notwithstanding the missing significance for immediate heat
stress represented by mean air temperature, we suggest using
mean air temperature rather than a biometeorological index in
order to improve and maintain comparability to other studies.

The studies from Li et al. (2015a, 2015b) showed an im-
mediate impact of air pollution on morbidity with harvesting
effects after 2–3 days. Contrary to this, our study showed a
delayed effect of 2 days for the air quality indices, while
showing an immediate effect for PM10. The 95% confidence
interval for the non-aggregating index CAQI resembles the
results of the non-aggregating air quality index used in the
study by Li et al. (2015b). The delayed effect of the aggregat-
ed air quality index MPI might be caused by the fact that
besides PM10 also ozone, NO2 and SO2 are always taken into
account, even if they do not represent the highest pollutant on
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this day. The use of indices increases model strength. Together
with the significant increase in RR for both air quality indices
compared to only PM10, this justifies the use of indices com-
pared to single measures. As both air quality indices show a
similar behaviour along the lag-response and dose-response
relationship, it cannot be determined if an aggregating or non-
aggregating index is performing better. As non-aggregating air
quality indices are more frequently used, we suggest using this
type of indices to ease comparison of the results.

The inclusion of the meta-variable latitude, describing the
north-south gradient from Lower Saxony to Rhineland Palatine
further improved the model results. Latitude significantly re-
duced the heterogeneity amongst the analysed 28 regions, and
hencewas identified as an importantmeta-variable for themodel.
This underlines the findings of Baccini et al. (2008), who
analysed the effects of heat on mortality in 15 European cities
and showed that the temperature-mortality relationship varies
across geographical locations and climate conditions. A geo-
graphical dependence based on spatial synoptic classification,
giving similar results to latitude, for the relationship between
air quality and cardiovascular mortality was shown by Cakmak
et al. (2016). The number of inhabitants per region, however, did
not significantly reduce heterogeneity. Our analysis showed that
the population at higher latitudes is more vulnerable to air pollu-
tion. Regarding thermal stress, no significant differences were
found. The cause of the geographically different impact of air
pollution on human morbidity could not be determined by this
study, but the remaining heterogeneity might be associated to
environmental conditions such as the composition of particulate
matter (Krein et al. 2007, 2008) or other socio-economic factors
(Stafoggia et al. 2006). Due to data protection issues in Germany,
it is very difficult to acquire a complete dataset including socio-
economic factors with a high spatial resolution. It might be con-
sidered to study these relationships in other European countries,
e.g. Denmark (Lynge et al. 2011), where datasets are more com-
plete and easily available for scientific purposes.

Investigating the interaction between the air quality and
thermal stress variables, we did not find a significant effect
for any of the three models. This finding is contrary to the
findings of Li et al. (2015a), Park et al. (2011) and Qian
et al. (2008) who analysed the interaction for the association
with mortality. The lack of accordance may be due to the fact
that morbidity is less prone to interactive effects than mortal-
ity. In addition, Park et al. (2011) found the strongest effect
modifications for SO2 which was not analysed in the present
study. All three aforementioned studies were conducted out-
side Europe. Regional differences in relations between air
quality thermal stress and human health may contribute to
the differences in the results. However, our results go in line
with Breitner et al. (2014) who showed no significant interac-
tion between air pollution and thermal stress on mortality in
Germany. This underlines the assumption that the study area
influences the results.

Conclusion

We found that using the indices MPI for air quality and UTCI
for thermal stress increases the strength of the association
between air quality, thermal stress and morbidity compared
to a model using the single measures PM10 and mean air
temperature. To determine if a combination of one index and
a single measure would further increase the strength of the
model, additional analyses are needed. The results showed
heterogeneity along a north-south gradient within Germany,
which was significantly reduced by including the meta-
variable latitude, underlining the influence of geographical
location on the association. The agreement of our findings
with studies regarding mortality underlined the importance
of these studies, while also showing some differences, regard-
ing for example the interaction. Missing agreement with some
other studies regarding interactions highlights the importance
of studies in different regions and regarding the different
health endpoints mortality and morbidity. Therefore, we sug-
gest further investigation of the correlation between air qual-
ity, thermal stress and certain diseases such as cardiovascular
or respiratory diseases.
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