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Abstract Climate change continually affects our capabilities
to feed the increasing population. Rising temperatures have
the potential to shorten the crop growth duration and therefore
reduce crop yields. In the past decades, China has successfully
improved crop cultivars to stabilize, and even lengthen, the
crop growth duration to make use of increasing heat resources.
However, because of the complex cropping systems in the
different regions of China, the possibility and the effectiveness
of regulating crop growth duration to reduce the negative im-
pacts of future climate change remain questionable. Here, we
performed a projective analysis of the staple food crop pro-
ductivity in double-rice, wheat-rice, wheat-maize, single-rice,
and single-maize cropping systems in China using modeling
approaches. The results indicated that from the present to the
2040s, the warming climate would shorten the growth dura-
tion of the current rice, wheat, and maize cultivars by 2–24,
11–13, and 9–29 days, respectively. The most significant
shortening of the crop growth duration would be in
Northeast China, where single-rice and single-maize cropping
dominates the croplands. The shortened crop growth duration
would consequently reduce crop productivity. The most sig-
nificant decreases would be 27–31, 6–20, and 7–22% for the
late crop in the double-rice rotation, wheat in the winter
wheat-rice rotation, and single maize, respectively. However,
our projection analysis also showed that the negative effects of
the warming climate could be compensated for by stabilizing

the growth duration of the crops via improvement in crop
cultivars. In this case, the productivity of rice, wheat, and
maize in the 2040s would increase by 4–16, 31–38, and 11–
12%, respectively. Our modeling results implied that the pos-
sibility of securing future food production exists by adopting
proper adaptation options in China.
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Introduction

Global warming has continued for more than 200 years as a
result of an accelerated increase in atmospheric greenhouse
gases (GHGs). Projections of global circulation models
(GCMs) have shown that temperature will continue to rise in
the next 100 years, with the amplitude depending on the
amount of anthropogenic GHG emissions (IPCC 2013). The
warming climate will have fundamental impacts on global
environments and ecosystems. In the agricultural sector, re-
ducing the possible negative effects of global warming on
crop productivity is extremely important to meet the increas-
ing need for agricultural products from the expanding popu-
lation (Ortiz et al. 2008).

China is a nation of multiple climate zones that support
diverse cropping systems. In the past decades, increases in
crop productivity were achieved mainly by fertilizer applica-
tion, progress in agronomic techniques, and improved crop
cultivars. These advances have played a vital role in
guaranteeing the food security of the nation and the world
(Piao et al. 2010). However, excessive mineral fertilizer appli-
cation has resulted in severe environmental problems (Ju et al.
2009). Further increases in crop productivity are therefore
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subject to the ability of crops to adapt to the warming climate
(Lobell et al. 2008; Challinor et al. 2014).

Crops accumulate biomass via photosynthesis during the
period of crop growth; therefore, the longer the period, the
more the biomass accumulates (Yang et al. 2007).
Physiologically, the growth duration (GD, the period between
the sowing and harvesting dates) of a given cultivar is intrin-
sically controlled by its effective accumulated temperature
(EAT, the sum of the positive differences between the daily
temperature and a cultivar-specific threshold temperature).
Therefore, warmer temperatures usually shorten the growth
duration of a given crop (Liu et al. 2010; Zhang et al. 2013),
reducing crop biomass accumulation (Asseng et al. 2014;
Field et al. 2014).

In the past three decades, the annual mean air temperature
has risen by 0.45 ± 0.13 °C per decade in China (Li et al.
2010). This warming is thought to have led to a shortened
crop GD and decreased crop productivity (Liu et al. 2010,
2012). However, observations have shown that warming has
not always shortened crop GD but has more likely stabilized
or even extended it in the past decades (Liu et al. 2010, 2012),
owing to adaptations in agronomic management (Meza et al.
2008; Liu et al. 2013) and cultivar renewal (Lobell et al. 2008;
Wang et al. 2012). In southern China, where rice dominates
the croplands, although warming shortened the GD of rice, the
negative impacts of the shortened GD have been compensated
for by cultivar improvement with a magnitude of 0.5–
0.6 days °C−1 (Zhang et al. 2013). In Northeast China, the
GD of maize was even lengthened by approximately 3 days
per decade during 1961–2007 (Liu et al. 2013).

The observed changes in crop GD suggest that the EAT of
the crops has been augmented by cultivar improvement. In
Northern China, the EAT of winter wheat has shown the most
significant increase (Sun et al. 2014). Adaptation strategies,
such as improving the photosynthetic efficiency of crops and
appropriately manipulating sowing/harvesting dates, have had
the greatest effect on compensating the negative effects of
climate warming and have furthermore enhanced crop produc-
tivity (Tao and Zhang 2010; Wang et al. 2012). In consider-
ation of projected future climate warming, Lin et al. (2015)
reported that replacing a maize cultivar with those having a
longer growth period could compensate for the negative im-
pacts of climate warming in northeastern China. In compari-
son to the scenario of a shortened GD caused by rising tem-
perature, maize yield would increase by 9.9–15.2% if the GD
remained unchanged (Tao and Zhang 2010). On the national
scale, Xiong et al. (2009) estimated with the CERES-Rice
model that even with CO2 fertilization effects, the rice
yield in China would decrease by up to 26.2% during the
2080s without adaptation. Lv et al. (2013) reported that
under rainfed conditions, the wheat yield would decrease
in the northern regions but would increase in the southern
regions of China.

While observational and modeling studies have shown that
the impacts of the warming climate on crop production differ
among crops, it is important to analyze how the productivity
of the staple food crops of rice, wheat, and maize will vary
with climate change in different cropping systems in China.
Although improvements in technology and management have
increased crop yields in China, model simulations can isolate
the climate signal by holding all inputs and management con-
stant, with the exception of climate information. In the present
study, we attempted to evaluate the potential productivity of
rice, wheat, andmaize in China and its spatial variation. As the
first step, the crop model Agro-C (Huang et al. 2009) was re-
calibrated to make the model consistent with up-to-date culti-
vars. Afterward, the crop productivities under different crop
calendar scenarios that are directly correlated with climate
change were simulated.

Materials and methods

The modeling approach

The Agro-C model (Huang et al. 2009) is a process-based
model for simulating crop photosynthesis, respiration, and
other processes involved in crop growth and carbon/nitrogen
dynamics in soils. It takes climatic, edaphic, atmospheric CO2

concentration; crop calendar; and field management data as
inputs. The outputs of the model include crop biomass, leaf
area index (LAI), gross primary productivity (GPP), crop res-
piration, and net primary productivity (NPP). The model used
in the present study has two functional modules to simulate
crop photosynthesis and respiration. These modules incorpo-
rate impacts of the environmental variables of temperature,
solar radiation, soil moisture, and atmospheric CO2 concen-
tration on crop growing. The effect of air temperature on pho-
tosynthesis is expressed by a piecewise function and is deter-
mined by the lower and upper temperature limits and optimum
temperature subject to specific crop varieties. The optimum
temperatures for the photosynthesis of rice, wheat, and maize
are 29, 18, and 30 °C, respectively (Huang et al. 2009).
Additional details of the model can be found in Huang et al.
(2009).

Model calibration and validation

Field observations

Crop improvement efforts have resulted in rapid crop cultivar
renewal in China (Zhou et al. 2007; Liu et al. 2010; Yu et al.
2012). To re-calibrate the model, we used field observations
from 16 agricultural stations within the Chinese Ecosystem
Research Network (CERN) (Appendix Table 7). The obser-
vations spanned the period from 2004 to 2010 and covered the
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representative cropping systems in China. The observations
included crop calendar (sowing, heading, harvesting, etc.),
LAI, leaf weight, and aboveground and belowground bio-
mass. The methods of irrigation and synthetic fertilizer appli-
cation and the amounts of organic manure and residue reten-
tion were also recorded. The soil properties relevant to crop
growth, i.e., the total soil nitrogen and organic carbon, bulk
density, pH, and sand/clay fractions, were site-specific. The
meteorological data, including the daily maximum and mini-
mum temperature, solar radiation, and precipitation from 2004
to 2010, were measured simultaneously at the stations along
with the crop growth measurements.

Calibration of model parameters

The parameters of the Agro-C model that were re-calibrated
included specific leaf area (SLA), the fraction of photosynthe-
sis allocated to leaves (PL), and the photosynthetic efficiency
(α) of the crops. The three parameters were calibrated with a
priori values from the literature (Huang et al. 2009), and the
posterior values were determined by minimizing the deviation
(see Eq. 2) of the simulated crop aboveground biomass (AGB)
and the LAI from the observed values. The posterior values of
SLA, PL, and α are shown in Appendix Table 8.

Validating the model performance

Three statistical indexes (Brisson et al. 2002), the root mean
square error (RMSE), the relative mean deviation (RMD), and
the model efficiency (EF), were used to evaluate the model
performance. The RMSE was computed to measure the coin-
cidence between the observed and the simulated results. The
RMD was computed to evaluate the systematic bias of the
model. The EF was calculated to estimate model performance
in relation to the observed mean. A higher positive EF indi-
cates better model performance, while a negative EF indicates
that the model is worse than simply averaging the observa-
tions (Smith et al. 1997).
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where Pi and Oi represent the simulated and observed values,

respectively. O and n are the mean of the observed values and
the number of observations, respectively.

To obtain more details regarding the composition of the
modeling error, we decomposed the mean square error into
three components (Allen and Raktoe 1981; Smith and Rose
1995):
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The first component P−O
� �

2 represents the bias in the
modeling procedure. The value will be large if a model under-
estimates or overestimates the simulated values relative to the
observed data and will be zero if the mean of the observed data
is equal to that of the simulated results. The second component
Sp − rSO was the error due to the imperfection of the regression
between the simulated values and the observations, which will
be close to zero when the regression between the observed and
the simulated data is close to the line of 1:1. The third compo-
nent (1 − r2)SO2 was a measure of pure random noise and will
be zero if either r = ±1 or if SO

2 = 0. The above three compo-
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and hence

UM þ UR þ UE ¼ 1 ð11Þ

where UM, UR, and UE represent the modeling bias, the re-
gression bias, and the random error, respectively. One would
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expect UM and UR to account for a small fraction of the total
error and hence for UE to be large (Allen and Raktoe 1981). If
either UM or UR (or both) were large, the parameters of the
model should be further adjusted.

To perform the model re-calibration and validation, the
measured crop LAI and ABGbetween the crop durations were
assumed independent here, though the environmental factors,
e.g., the soil properties (i.e., the total soil nitrogen and organic
carbon, bulk density, pH, and sand/clay fractions), were nearly
the same from one crop to the other at a location. Owing to the
complexity of the dependence among the measured values, it
is hard to specifically quantify the impacts of the dependence
on the statistical analysis. Here, we split the observations dur-
ing the period from 2004 to 2010 into two parts. Those from
the odd years were used for model calibration and the rest for
model validation. When there was only 1 year available at a
station, the observation was used for model validation.

Modeling changes in crop productivity

With the re-calibrated Agro-C model, the productivity of rice,
wheat, and maize at five sites in China was simulated for a 5-
year baseline historical climate (2006–2010) and an alterna-
tive future climate period (2011–2050). The five sites,
Changshu (31.53° N, 120.68° E) with a winter wheat-rice
rotation, Taoyuan (28.92° N, 111.45° E) with a double-rice
rotation, Fengqiu (35° N, 114.4° E) with a winter wheat-
maize rotation, Sanjiang (47.58° N, 113.52° E) with single-
rice cultivation, and Hailun (47.43° N, 126.63° E) with single-

maize cultivation, represent the typical cropping systems of
the main cultivation regions of China (Fig. 1).

Observed meteorological data and climate change scenarios

The observed meteorological data (daily maximum and min-
imum temperatures, precipitation, and solar radiation) and the
atmospheric CO2 concentration of the baseline period (2006–
2010) were taken from the CERN. To fill the data gap in the
observed solar radiation at the CERN stations, we estimated
the solar radiation with the method utilized in Zhang et al.
(2007).

The future climate change scenario used in this study was
the Representative Concentration Pathway (RCP) 4.5 of the
Intergovernmental Panel on Climate Change fifth assessment
report (IPCC AR5) over the next four decades (2011–2050),
which was projected by the Flexible Global Ocean-
Atmosphere-Land System (FGOALS) climate model (Yu
et al. 2004). The FGOALS is a GCM with a spatial resolution
of 1.65° in latitude and 2.8° in longitude and a temporal step
of daily output. The projected data of FGOALS was provided
by the State Key Laboratory of Numerical Modeling for
Atmospheric Sciences and Geophysical Fluid Dynamics
(LASG) within the Institute of Atmospheric Physics (IAP)
of the Chinese Academy of Sciences (CAS). The outputs of
FGOALS were spatially downscaled to the five sites using the
delta changemethod (Hay et al. 2000; Prudhomme et al. 2002;
Beldring et al. 2008).

Fig. 1 Location of the five
stations for future adaptive
analysis in relation to the
cropping systems
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Scenarios of crop calendar changes

To evaluate the impacts of crop improvement on productivity in
the future, we assigned two crop GD scenarios in comparison to
the baseline scenario. The baseline scenario, S0 (2006–2010),
was simulated using the dataset from the CERN, including the
meteorological data, field management data, cultivar data, and
crop phenology data (transplanting, heading, harvesting dates).
The two scenarios, S1 and S2, were designed to distinguish the
different responses of crop productivity to different GD scenarios
from 2011 to 2050. In scenario S1, the EAT of crops was held
constant over the next four decades and, therefore, the crop GD
varied with the changing climate. The EATof a given crop in S1
was calculated according to the crop phenology data from the
CERN stations during the period from 2006 to 2010. In scenario
S2, the crop calendar and the crop GDwere fixed to be the same
as those in S0, whichmeans the crop EAT varied with the chang-
ing climate to reflect the capacity for crop adaptation.

Results

Model performance

Figure 2 compares the LAI and AGB of rice, wheat, andmaize
before and after the model calibration. The re-calibration sig-
nificantly improved the model performance in terms of the
regression between the model simulation and the field obser-
vations (Fig. 2), which suggested the necessity of the model
re-calibration before being used to project future crop bio-
mass. After re-calibration, 80% of the observed variation in
crop AGB was accounted for by the model output at all 16
sites (Fig. 2b, d, f). Against the observations, the RMSE,
RMD, and EF for the modeled AGB were 32.52%, −0.95%,
and 0.87, respectively, and UM,UR, andUE were 0.1, 0.9, and
99%, respectively (Table 1).

The simulated LAI and AGB of rice at different sites were
close to field observations (Fig. 2a, b). After model calibration,
the regression of the simulated values against the observed rice
AGB showed an R2 of 0.87 (n = 138, p < 0.001). The RMSE,
RMD, and EF of the model simulation were 31.96%, −6.23%,
and 0.87, respectively. Of the estimation error (RMSE), 93.8%
was the random error (UE), withUM andUR accounting for only
3.8 and 2.4%, respectively (Table 1). The performance of the
model in simulating wheat growth was similar to that in rice.
The regression of the simulated values against the observed
wheat AGB showed an R2 of 0.81, and the RMSE, RMD, and
EF were 41.33%, −0.77%, and 0.79, respectively. The error
components ofUM,UR, andUE were 0.03, 9.5, 90.47%, respec-
tively. When modeling maize, the RMSE, RMD, and EF were
22.41%, 6.29%, and 0.94, respectively. Within locations, the
simulated AGB for different crop species were close to the field
observations. We presented the comparison of the simulated and

observed AGB for different crop species at the five locations
chosen for the future scenario analysis (Fig. 3). The RMSE,
RMD, and EF of the modeling results were 32.52%, −0.95%,
and 0.87, respectively (Table 1).

Responses of crop growth to climate change

Responses of crop growth to scenarios of unchanged EAT

In scenario S1, the EAT of the cultivars remained unchanged,
and therefore, warming would lead to a shortened crop GD
(Tables 2 and 3), and the shortened GD would result in a
decrease in AGB for all crops (Table 4, Fig. 4).

In Northeast China, where rice is planted singly in
summer (Sanjiang site), its GD would shorten by 18.5%
in response to significant rises in temperature through
the 2040s, and the AGB would thus decrease by 5.1%.
In the region where rice rotates with winter wheat with-
in a single year (Changshu site), the GD was expected
to shorten (by 8.7%); however, this resulted in a mini-
mal decrease in AGB. Southward to the warm temperate
region (Taoyuan site) where the double cropping of rice
dominates, the GD of the late rice would shorten by
15.7% in the 2040s (Table 3), with the AGB decreasing
by approximately 30% because of the shrink in GD
(Table 4). For early rice, the impacts of rising tempera-
ture would be minor, and the GD would shorten by
only 2.6% with the AGB decreasing by 8.3% (Table 4).

In North China (Fengqiu site), where a wheat-maize rota-
tion is the main cropping system, the GD of the wheat would
shorten by 4.7%, accompanied by the AGB decreasing by
1.4% by the 2040s. In the region where wheat rotates with
rice year-round (Changshu site), the GD and AGB of wheat
would decrease by 5.9 and 6.1%, respectively, with rising
temperature. It should be noted that the AGB of the wheat
might alternate between −6.1 and −20.4% from the 2010s to
the 2040s (Table 4).

In Northeast China, the GD of the singly planted maize
(Hailun site) would shorten by 21.9% in the 2040s, and the
shortened GD would then result in a decrease in crop AGB by
22.4%. In the wheat-maize rotation, the GD and AGB of maize
would decrease by 8.8 and 13.8%, respectively (Tables 3 and 4).

As a whole, the crop AGB of different cropping systems
showedmore or less a decrease under scenario S1 (Fig. 4). For
the double-rice rotation and the single-maize systems, the crop
AGB would obviously decrease by 18.4 and 22.4%, respec-
tively, by the 2040s. The crop AGB of the single-rice and
winter wheat-rice rotation systems showed a slight decrease,
with the crop AGB decreasing by only 5.1 and 3.0% by the
2040s, respectively. For the winter wheat-maize rotation sys-
tem, the crop AGB would decrease by 8.2% in the 2040s
(Fig. 4).
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Response of crop growth to scenarios of unchanged GD

In scenario S2, the crops’ GDs were held constant, and the crop
EATwould consequently rise alongwith climate warming by 4.6
to 24.5% (Tables 2 and 3). The AGB of rice, wheat, and maize

would increase by 4.4–16.4, 30.9–37.6, and 11.4–11.7%, respec-
tively, by the 2040s (Table 4, Fig. 4), by making full use of the
resource of increased EAT.

From the 2010s to the 2040s, the EAT of the single-rice crop
in Northeast China would increase by 24.5% in response to the

Fig. 2 Modeled vs. observed LAI (a, c, e) and AGB (b, d, f) for rice (a,
b), wheat (c, d), and maize (e, f) at different sites. Black dashed lines and
hollow circles for model pre-calibration.Black solid lines and solid circles
for model post calibration. The vertical bars are standard errors from four

to six fields in each site. Gray dashed lines are 1:1. The measurements of
LAI and AGB were assumed independent for simplicity, and this
undermines the model validity owing to the unquantified correlations
between the measurements in a time series (Fig. 3)
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significant temperature rise in the region (Appendix Table 9).
With the stabilized GD in the warm temperate region of South
China where double rice dominates, the EATof the early and late
rice would increase by 4.6 and 14.5% (Table 3), respectively. In
the wheat-rice cropping system in East China, the increase in rice
EATwould be 6.5% (Table 3), comparable to that of early rice in
the double-rice rotation. Along with the increased EAT, the AGB
of the rice in the single-crop, double-rice, and wheat-rice

Table 1 Statistical characteristics of model performance for AGB

RMSE% RMD% EF UM (%) UR (%) UE (%)

Rice 31.96 −6.23 0.87 3.80 2.40 93.80

Wheat 41.33 −0.77 0.79 0.03 9.50 90.47

Maize 22.41 6.29 0.94 7.86 0.61 91.53

All 32.52 −0.95 0.87 0.10 0.90 99.00

Fig. 3 Comparison of the simulated and observedAGB for different crop
species. a Single rice (Changshu, Jiangsu Province). b Single rice
(Sanjiang, Heilongjiang Province). c Early rice (Taoyuan, Hunan
Province). d Late rice (Taoyuan, Hunan Province). e Winter wheat

(Changshu, Jiangsu Province). f Winter wheat (Fengqiu, Henan
Province). g Maize (Fengqiu, Henan Province). h Maize (Hailun,
Heilongjiang Province)

Int J Biometeorol (2017) 61:1445–1460 1451



cropping systems would increase by 16.4, 4.4, 6.0, and 14.2%,
respectively (Table 4).

In the wheat-rice cropping system that dominates in East
China, the EAT and AGB of wheat would increase by 20.5
and 37.6%, respectively, which was higher than the increases
expected in the wheat-maize cropping system in North China,
which were 10.0 and 30.9%, respectively (Tables 3 and 4).
Among the three major crops, the increase in the AGB of
winter wheat would be the most significant.

In Northeast China, the EATof the single crop maize would
increase by 18.6%, which would result in an 11.4% increase in
the maize AGB (Table 4). In the wheat-maize rotation of
Northern China, the EATof maize would increase less, by only

6.6%, but the increase in maize AGB would be 11.7%, which
was comparable to the single crop maize (Tables 3 and 4).

In general, under scenario S2, the crop AGB of the
different cropping systems would increase in the future
(Fig. 4). For the winter wheat-rice rotation and the win-
ter wheat-maize rotation systems, the crop AGB would
obviously increase by 25.1 and 21.0% in the 2040s,
respectively, while the crop AGB of the double-rice ro-
tation system would increase by only 4.7% in the 2040s
and would even decrease before the 2030s. For the
single-maize and single-rice systems in Northeast
China, the crop AGB would increase by 11.4 and
16.4% in the 2040s, respectively (Fig. 4).

Table 2 The average effective accumulative temperature and phenology information of crops during 2006 to 2010

Sites Crops EAT (°C day−1)a Phenology (MM/DD)

Emergence/
transplanting-
heading

Heading-
harvesting

Emergence/
transplanting

Heading Harvesting

Changshu (Jiangsu) Single rice 1451 2163 6/14 8/28 10/22

Winter wheat 778 1587 10/28 4/15 5/29

Sanjiang (Heilongjiang) Single rice 521 1038 5/17 7/29 9/25

Taoyuan (Hunan) Early rice 594 1068 4/26 6/15 7/10

Late rice 866 1364 7/14 9/2 10/10

Fengqiu (Henan) Winter wheat 727 1567 10/24 4/20 6/8

Summer maize 975 1818 6/12 8/7 9/25

Hailun (Heilongjiang) Spring maize 755 1430 5/22 7/24 10/3

a The average effective accumulative temperature of crops: rice (≥12 °C), winter wheat (≥3 °C), and maize (≥9 °C)

Table 3 Changes of growth duration and effective accumulative temperature in two scenarios

Sites Crops Change of GD in scenario S1a Change of EAT in scenario S2b

Baselinec

(days)
2010s
(%)d

2020s
(%)

2030s
(%)

2040s
(%)

Baseline
(°C·d)

2010s
(%)

2020s
(%)

2030s
(%)

2040s
(%)

Changshu
(Jiangsu)

Single rice 130 −0.8 −6.6 −5.5 −8.7 2163 3.1 3.6 4.0 6.5
Winter

wheat
213 −4.3 −3.1 −5.9 −5.9 1587 16.7 11.2 19.2 20.5

Sanjiang
(Heilongjiang)

Single rice 131 −2.4 −12.7 −12.7 −18.5 1038 3.7 11.7 9.8 24.5

Taoyuan
(Hunan)

Early rice 76 −0.8 −0.5 −1.6 −2.6 1068 1.5 1.8 3.5 4.6
Late rice 88 −14.0 −12.7 −14.3 −15.7 1364 11.4 9.6 11.1 14.5

Fengqiu
(Henan)

Winter
wheat

227 −3.2 −3.0 −4.5 −4.7 1567 5.4 0.2 9.5 10.0

Summer
maize

105 −1.1 −5.8 −4.7 −8.8 1818 2.0 5.3 3.0 6.6

Hailun
(Heilongjiang)

Spring maize 134 −7.8 −16.8 −12.6 −21.9 1430 4.0 10.9 9.1 18.6

a S1 is the scenario with fixed effective accumulative temperature
b S2 is the scenario with fixed growth duration
c Baseline is the period from 2006 to 2010
d The relative change to the value of baseline
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Discussion

The improvement in crop photosynthetic efficiency

Crop productivity is linearly related to the photosynthetically
active radiation (PAR) absorbed by the crop canopy and the
efficiency with which this radiation resource is transformed
into crop biomass through net photosynthesis (Madani et al.

2014). The photosynthetic efficiency also varies with the en-
vironment. Over the past few decades, the photosynthetic ef-
ficiency of crops has been greatly improved through cultivar
renewal to make use of increased light and thermal resources
(Brady and Provart 2007). Since the 1980s, the photosynthetic
rates of rice cultivars have improved by more than 20% in
North China (Cao et al. 2001) and South China (Wu et al.
2009), with an increased annual growth rate of 0.5–1.5% in

Table 4 Changes of crops aboveground biomass in two scenarios

Sites Crops Present AGB
(g C m−2)

Change of AGB in scenario S1a (%)b Change of AGB in scenario S2c (%)b

2006–2010 2010s 2020s 2030s 2040s 2010s 2020s 2030s 2040s

Changshu (Jiangsu) Single rice 615 −4.3 −8.0 −1.1 −0.2 3.2 1.6 10.2 14.2

Winter wheat 540 −17.2 −7.2 −20.4 −6.1 23.5 18.9 22.8 37.6

Sanjiang (Heilongjiang) Single rice 794 −3.7 −6.0 −4.1 −5.1 6.6 9.9 8.9 16.4

Taoyuan (Hunan) Early rice 493 −2.6 −8.8 −10.6 −8.3 1.8 −0.4 1.5 4.4

Late rice 547 −29.0 −30.3 −30.9 −27.4 −9.2 −5.8 0.3 6.0

Fengqiu (Henan) Winter wheat 647 8.0 −4.8 −9.2 −1.4 13.5 4.5 21.5 30.9

Summer maize 796 −3.5 −13.9 −5.3 −13.8 2.5 0.6 9.6 11.7

Hailun (Heilongjiang) Spring maize 965 −7.2 −13.8 −12.7 −22.4 1.3 6.9 9.0 11.4

a S1 is the scenario with fixed effective accumulative temperature
b The relative change to the average value from 2006 to 2010
c S2 is the scenario with fixed growth duration

Fig. 4 Box plot of future AGB change (%) (relative to the baseline
period) in the typical cropping systems in the main cultivation regions
of China, with the red (blue) representing the AGB change under
unchanged GD (EAT). The upper and lower hinges of the box indicate

the 75th percentile and 25th percentile of the dataset, respectively. The
black spots inside the boxes indicate the median values for each 10-year
analysis period

Int J Biometeorol (2017) 61:1445–1460 1453



T
ab

le
5

C
om

pa
ri
so
ns

of
pr
oj
ec
te
d
im

pa
ct
s
fo
r
cr
op
s
in

C
hi
na

w
ith

C
O
2
fe
rt
ili
za
tio

n
(w

ith
ou
tc
ul
tiv

ar
re
ne
w
al
)

R
eg
io
n

Y
ie
ld
/p
ro
du
ct
iv
ity

im
pa
ct
s

St
ud
y
pe
ri
od

C
lim

at
e
ch
an
ge

sc
en
ar
io

C
ro
p
m
od
el

B
as
el
in
e

R
ef
er
en
ce

R
ic
e
cu
lti
va
tio

n
ar
ea
s

ac
ro
ss

C
hi
na

R
ic
e,
−1

0~
3.
3,
−1

6.
1~

2.
5,

an
d
−1

9.
3~

0.
18
%

+
1,
+
2,
an
d
+
3
°C

hi
gh
er

th
an

th
e
gl
ob
al
m
ea
n
te
m
pe
ra
tu
re

Pr
ob
ab
ili
st
ic
cl
im

at
e
sc
en
ar
io
s

ge
ne
ra
te
d
by

a
M
on
te
C
ar
lo

te
ch
ni
qu
e

C
E
R
E
S-
R
ic
e

19
61
–1
99
0

Ta
o
et
al
.(
20
08
)

Y
an
gt
ze

R
iv
er

IR
ic
e*
,−

3.
3%

R
R
ic
e*
,−

4.
1%

20
21
–2
05
0

PR
E
C
IS
;B

2
O
R
Y
Z
A
20
00

19
61
–1
99
0

Sh
en

et
al
.(
20
11
)

E
as
te
rn

C
hi
na

R
ic
e,
6.
5%

W
he
at
,2
4.
9%

M
ai
ze
,1
8.
6%

20
71
–2
10
0

R
eg
C
M
3;

A
2

E
PI
C

19
61
–1
99
0

C
ha
va
s
et
al
.(
20
09
)

So
ut
he
rn

C
hi
na

R
ic
e,
5~

20
%

20
71
–2
09
0

PR
E
C
IS
;B

2
C
E
R
E
S-
R
ic
e

19
61
–1
99
0

Y
ao

et
al
.(
20
07
)

N
an
jin

g/
L
ua
nc
he
ng

W
he
at
,−

4~
−1

an
d

−8
~−

4%
/−
4~

−1
an
d

−1
2~

−8
%

+
2
an
d
+
4
°C

hi
gh
er

th
an

th
e

se
ri
es

of
cl
im

at
e
da
ta
fr
om

19
81

to
20
10

+
2
an
d
+
4
°C

ab
ov
e
th
e
cl
im

at
e

da
ta
fr
om

19
81

to
20
10

E
ns
em

bl
e
of

30
cr
op

m
od
el
s

19
81
–2
01
0

A
ss
en
g
et
al
.(
20
14
)

H
ua
ng
-H

ua
i-
H
ai
Pl
ai
n

W
he
at
,0
.2
an
d
0.
8
M
g/
ha

20
15
–2
04
5;

20
70
–2
09
9

H
ad
C
M
3;

A
2,
B
2

E
PI
C

19
61
–1
99
0

T
ho
m
so
n
et
al
.(
20
06
)

R
ic
e,
w
he
at
,a
nd

m
ai
ze

cu
lti
va
tio

n
ar
ea
s
ac
ro
ss

C
hi
na

IR
ic
e*
,3
.8
,6
.2
,a
nd

7.
8%

(A
2)
/−
0.
4,
−1

.2
%
,

an
d
−4

.9
%

(B
2)

IW
he
at
*,
13
.3
,2
5.
1,
an
d

40
.3
%

(A
2)
/1
1.
0,
14
.2
,

an
d
25
.5
%

(B
2)

IM
ai
ze
*,
−0

.6
,−

2.
2,

an
d
−2

.8
%

(A
2)
/−
0.
1,
−1

.3
,

an
d
−2

.2
%

(B
2)

20
10
–2
01
9;

20
40
–2
04
9;

20
70
–2
07
9

P
R
E
C
IS
;A

2,
B
2

C
E
R
E
S

19
61
–1
99
0

L
in

et
al
.(
20
05
)

R
ic
e
cu
lti
va
tio

n
ar
ea
s

ac
ro
ss

C
hi
na

R
ic
e,
15
.8
,8
.0
,a
nd

−
5.
6%

(A
2)
/3
.4
,0
.0
2,
an
d

−0
.9
%

(B
2)

20
11
–2
04
0;

20
41
–2
07
0;

20
71
–2
10
0

P
R
E
C
IS
;A

2,
B
2

C
E
R
E
S

19
61
–1
99
0

X
io
ng

et
al
.(
20
09
)

N
or
th

C
hi
na

P
la
in

M
ai
ze
,−

9.
7~

−9
.1
,−

19
.0
~−

15
.7
,

an
d
−2

5.
5~

−2
4.
7%

20
11
–2
04
0;

20
41
–2
07
0;

20
71
–2
10
0

E
ns
em

bl
e
of

5
G
C
M
s;
A
1F

1,
B
1

M
C
W
L
A
-M

ai
ze

19
61
–1
99
0

Ta
o
et
al
.(
20
09
)

M
ai
ze

cu
lti
va
tio

n
ar
ea
s
ac
ro
ss

C
hi
na

IM
ai
ze
*,
1.
0,
−2

.8
,a
nd

−6
.6
%

(A
2)
/−
2.
0,
−1

.9
,

an
d
−4

.8
%

(B
2)

20
11
–2
04
0;

20
41
–2
07
0;

20
71
–2
10
0

P
R
E
C
IS
;A

2,
B
2

C
E
R
E
S
-M

ai
ze

19
61
–1
99
0

X
io
ng

et
al
.(
20
07
)

M
ai
n
pr
od
uc
tio

n
ar
ea
s

of
ri
ce
,w

he
at
,a
nd

m
ai
ze

R
ic
e,
−0

.2
~−

27
.4
%

W
he
at
,−

1.
4~

−6
.1
%

M
ai
ze
,−

13
.8
~−

22
.4
%

20
41
–2
05
0

FG
O
A
L
S;

R
C
P4

.5
A
gr
o-
C

20
06
–2
01
0

T
hi
s
st
ud
y

*I
ir
ri
ga
te
d,
R
ra
in
fe
d

1454 Int J Biometeorol (2017) 61:1445–1460



different areas (Peng et al. 2008). This is part of the reason for
the increase in rice yield from 3.98 t ha−1 in 1980 to 6.99 t ha−1

in 2009 (Yu et al. 2012).
In the Agro-C model we used in the current study, the crop

photosynthetic efficiency was defined by the model parameter
α (Huang et al. 2009). We re-calibrated the model parameters
including α (Appendix Table 8) to keep up with up-to-date
crop cultivars. Compared to the averageα of the crop cultivars
over the past few decades, from 1980 to 2006, current culti-
vars have improved photosynthetic efficiency, with α increas-
ing by 8% (single rice) to 50% (spring wheat). Apart from
maintaining a stabilized crop GD, improving crop photosyn-
thetic efficiency may also be one of the most effective options
in mitigating the negative impacts of climate change on crop
production. In the current study, however, the possible further
increase in crop photosynthetic efficiency was not assumed
because our emphasis was on the impacts of changes in crop
GD and EAT, which are directly associated with climate
change.

Impact assessments and adaptive options

Although many studies have been carried out using crop
models with different climate change scenarios (Tables 5
and 6), estimates of the potential impact of future climate
change on agricultural productivity remain highly uncertain
(Piao et al. 2010; Field et al. 2014). Owing to the differences
in study areas, time duration, climate change scenarios, and
crop models used, and whether adaptive adjustments have
been taken into account (Tables 5 and 6), direct comparisons
between the studies are quite difficult. A greater proportion of
the uncertainty in climate change impact projections is due to
a variation among crop models than to a variation among
downscaled general circulation models (Asseng et al. 2013).
In China, the majority of staple food production is from well-

irrigated and fertilized croplands, and the adaptive adjustment
of the crop calendar may be the main option to mitigate im-
pacts of climate change.

The modeling results for rice showed mixed estimates
in different studies (Tables 5 and 6) and in different
cropping systems (Table 4). For single rice at the
Sanjiang site, the current temperature is lower than the
optimum for rice growing. Therefore, rising tempera-
tures would promote the growth of rice and would com-
pensate for the negative impact on rice growth caused
by the shortening of GD. The loss of rice AGB, which
was estimated to be −5.1% in scenario S1, was much
less than the projected maize loss of −22.4% (Table 4).
Also benefiting from rising temperatures, the mid/late-
maturing rice cultivars may move northward in north-
eastern China, with a 46% rice yield increase in the
2080s under the Specia l Report on Emissions
Scenarios (SRES) B2 scenario of climate change (Wu
et al. 2014). In East China, the warm climate supports
double cropping, mainly of winter wheat and rice. Crop
productivity might decrease by 2.5–12% with a flexible
crop calendar (Chavas et al. 2009; Yu et al. 2014),
analogous to scenario S1 in the current study.
However, the CO2 fertilization effect could reverse the
decrease in rice and enhance the rice productivity by
6.5–20.9% (Table 5). However, whether the CO2 fertil-
ization effect overrides the negative impacts of rising
temperature depends also on the magnitude of atmo-
spheric CO2 and the temperature increase in the climate
change projections. The temperatures in the SRES A2/
B2 scenarios were projected to increase by approximate-
ly 1 °C in China, and the CO2 concentration was
projected to be as high as 550–600 ppm in the 2040s,
which resulted in greater CO2 fertilization effects on
rice productivity in Yu’s simulation (Table 6, Yu et al.

Table 6 Comparisons of projected impacts for crops in China with CO2 fertilization (with cultivar renewal)

Regions Yield/productivity impacts
(%)

Periods GCMs/RCMs;
scenarios

Crop model Baseline Reference

Rice cultivation areas
across China

Rice, 28.6% 2041–2050 PRECIS; A2, B2 Agro-C 2000–2009 Yu et al. (2014)

Eastern China Rice, +7.5~17.5, 0~25,
and −10~25%

2011–2040;
2041–2070;
2071–2100

Ensemble of
5 GCMs;
A1F1, B1

MCWLA-Rice 1961–1990 Tao et al.
(2013a)

North China Plain Wheat, 37.7, 67.8,
and 87.2%

2011–2040;
2041–2070;
2071–2100

Ensemble of
5 GCMs;
A1F1, B1

MCWLA-Wheat 1961–1990 Tao et al.
(2013b)

North China Plain Maize, −2.4~45.6% 2011–2040;
2041–2070;
2071–2100

Ensemble of
5 GCMs;
A1F1, B1

MCWLA-Maize 1961–1990 Tao et al. (2010)

Main production areas
of rice, wheat, and
maize

Rice, 4.4~16.4%
Wheat, 30.9~37.6%
Maize, 11.4~11.7%

2041–2050 FGOALS;
RCP4.5

Agro-C 2006–2010 This study
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2014). The RCP 4.5 used in the current study produced
a 1.0–1.6 °C rise in temperature at different locations in
China (Appendix Table 9). Rice productivity would
therefore decrease without cultivar renewal (Table 4),
even with the CO2 fertilization effect. In southern
China, where the current temperature is near the critical
point for rice physiology (Wassmann et al. 2009), a
slight increase in the air temperature would bring an
obvious decrease in productivity (Gammulla et al.
2010; Lanning et al. 2011). This is the reason why late
rice in Taoyuan would be the most negatively affected
when no adaptive option was adopted (Table 4), which
indicated the urgent need to improve the heat tolerance
of late rice.

Global wheat production was estimated to fall by 6% for
each 1.0 °C of additional temperature increase without adap-
tion (Asseng et al. 2014), and the medians of 30 crop models
demonstrated that expected declines in wheat yield in re-
sponse to temperature impacts were likely to be larger than
previously thought and should be expected earlier and became
more variable over space and time. For wheat, most previous
studies showed a positive effect of warming under different
scenarios, even without cultivar improvement (Table 5). Our
results here also showed a declining trend in future wheat
productivity in the absence of cultivar change.

Most of the projected maize productivity decreased when
no adaptive adjustment was included, even with the benefits
from CO2 fertilization and increasing rainfall (Table 5). In the
North China Plain, maize productivity might decrease by 9.7–
9.1% (during the period from 2011 to 2040) if crop cultivars
and management practices were assumed to be the same as the
level during the baseline period from 1961 to 1990 (Tao et al.
2009). Even in consideration of CO2 fertilization, maize pro-
ductivity would decrease by 1.2–2.2% in well-irrigated lands,
and the productivity drop could be 0.4–11.9% if there was no
CO2 fertilization (Lin et al. 2005). It also decreased in the
2040s without cultivar renewal in this study (Table 3). It
seems generally inevitable that maize productivity would de-
crease along with the rise in temperature if no adaptive option
was taken, as shown in previous studies (Table 5) and in the
current study (Table 3). However, improving maize cultivars
to maintain a stable GD had the effect of guaranteeing maize
productivity in single or double cropping systems (Table 4).

Over the past few decades, there have been many changes
in agronomic activities, such as renewed cultivars (Zhou et al.
2007; Liu et al. 2010), optimized fertilizers (Reilly and
Schimmelpfennig 1999; Huang et al. 2007), and expanded
irrigation (Wang et al. 2009). These non-climatic factors all
contributed to the observed changes in crop productivity over
the past decades (Liu et al. 2010; Yu et al. 2012; Song et al.
2014). The IPCC AR5 suggested locally appropriate adaptive
strategies for crops to address climate change (Challinor et al.
2014; Field et al. 2014). Improvement in cultivars may be an

effective option to address the problems, even there are uncer-
tainties in specific breeding technologies. Limits may be also
found in facilitating the compensatory changes of GD
modeled here. With the experiences in the past (Liu et al.
2013; Tao and Zhang 2010; Zhang et al. 2013), there are
possibilities that the crop GD would be retained/lengthened
in the future by crop renewal and/or agronomic improvement.
The modeling results (Table 6) provided suggestions to alle-
viate the negative impacts of climate change on crop produc-
tion. However, adaptive options are variable in time and
space, and potential crop productivity may also have other
possibilities differing from known findings (Zhang et al.
2015).

The effects of climate change in the future will be highly
uncertain, and the choice of a specific projection from one or
an ensemble of climate models may add to the overall uncer-
tainty in impact assessments by crop modeling (Lobell et al.
2008; Masutomi et al. 2009; Asseng et al. 2013; Vanuytrecht
et al. 2014). Here, we provided a possible trend in crop pro-
ductivity based on one climatic scenario, RCP 4.5 of
FGOALS. However, the possible increases in extreme weath-
er events caused by global warming, which may pose an in-
creasing risk to global crop production (Lesk et al. 2016;
Wang et al. 2015), are not sufficiently addressed in the climate
projections. Crop productivity may also be affected by other
factors, such as the occurrence of pests and diseases, which are
closely associated with climate change (Reidsma et al. 2010).

Conclusions

China is one of the largest nations for crop production in the
world and is facing the challenge of future crop productivity
loss with climate change. Our modeling showed that the GD
of the current cultivars of the staple food crops of rice, wheat,
and maize would be shortened by the warming climate in all
of the main crop cultivation regions. Crop productivity would
also be substantially reduced if no cultivar improvement oc-
curs. However, the negative effects of climate change on crops
in China could be compensated for if new cultivars could
stabilize the cropGD tomake full use of this increased thermal
resource. In this case, the demands of the crop EATof different
crops would increase by 5 to 25%, and the productivity of
winter wheat in China would increase significantly, followed
by maize, while the productivity of rice in South China
showed only a minor increase.
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Appendix 1

Appendix 2

Table 7 General information for the stations selected for model parameterization

Site (province) Latitude Longitude Altitude (m) Crop system Crop data period

Changshu (Jiangsu) 31° 32′ N 120° 41′ E 1.3 Winter wheat-rice 2005–2010

Qianyanzhou (Jiangxi) 26° 45′ N 115° 04′ E 100 Double-rice 2004–2010

Sanjiang (Heilongjiang) 47° 35′ N 133° 31′ E 56.2 Single-rice 2004, 2006, 2007, 2009

Shenyang (Liaoning) 41° 31′ N 123° 24′ E 31 Rice, maize 2005–2010

Taoyuan (Hunan) 28° 55′ N 111° 27′ E 77.5 Double-rice 2005–2010

Yanting (Sichuan) 31° 16′ N 105° 27′ E 460 Rice, winter wheat-maize 2005–2007

Yingtan (Jiangxi) 28° 15′ N 116° 55′ E 35.6 Late rice 2005–2010

Changwu (Shaanxi) 35° 12′ N 107° 40′ E 1120 Winter wheat-maize 2004–2010

Fengqiu (Henan) 35° 00′ N 114° 24′ E 67.5 Winter wheat-maize 2005–2010

Luancheng (Hebei) 37° 53′ N 114° 41′ E 50.1 Winter wheat-maize 2005–2010

Linze (Gansu) 39° 04′ N 99° 35′ E 1120 Spring wheat-maize 2005–2010

Lasa (Xizang) 29° 40′ N 91° 20′ E 3668 Winter wheat 2005, 2009, 2010

Naiman (Neimenggu) 43° 55′ N 120° 42′ E 358 Spring wheat 2006

Yucheng (Shandong) 36° 40′ N 116° 22′ E 21 Winter wheat-maize 2005–2009

Ansai (Shaanxi) 36° 51′ N 109° 19′ E 1189 Spring maize 2005–2009

Hailun (Heilongjiang) 47° 26′ N 126° 38′ E 240 Spring maize 2005, 2007, 2009

Table 8 Key calibrated parameters of Crop-C for rice, wheat, and maize

DVI Rice Spring wheat Winter wheat Spring maize Summer maize

SLA PL SLA PL SLA PL SLA PL SLA PL

0.0 35 (25) 0.42 18 (22) 0.43 (0.5) 20 (24) 0.43 (0.5) 16 (22) 0.50 (0.47) 20 (22) 0.50 (0.47)

0.1 33 (25) 0.42 18 (22) 0.43 (0.5) 20 (24) 0.43 (0.5) 16 (22) 0.50 (0.47) 20 (22) 0.50 (0.47)

0.2 31 (25) 0.42 18 (22) 0.43 (0.5) 20 (24) 0.43 (0.5) 16 (22) 0.50 (0.47) 20 (22) 0.50 (0.47)

0.3 30 (25) 0.42 18 (22) 0.43 (0.5) 20 (24) 0.43 (0.5) 16 (22) 0.50 (0.47) 20 (22) 0.50 (0.47)

0.4 29 (25) 0.42 18 (22) 0.43 (0.5) 20 (24) 0.43 (0.5) 16 (22) 0.50 (0.44) 20 (22) 0.50 (0.44)

0.5 28 (25) 0.42 18 (22) 0.43 (0.5) 20 (24) 0.43 (0.5) 16 (22) 0.46 (0.40) 20 (22) 0.46 (0.40)

0.6 27 (25) 0.34 18 (22) 0.34 (0.4) 20 (24) 0.34 (0.4) 16 (22) 0.40 (0.35) 20 (22) 0.40 (0.35)

0.7 26 (25) 0.26 18 (22) 0.26 (0.3) 20 (24) 0.26 (0.3) 16 (22) 0.32 (0.28) 20 (22) 0.32 (0.28)

0.8 25 (25) 0.17 18 (22) 0.17 (0.2) 20 (24) 0.17 (0.2) 16 (22) 0.23 (0.19) 20 (22) 0.23 (0.19)

0.9 24 (25) 0.09 18 (22) 0.09 (0.1) 20 (24) 0.09 (0.1) 16 (22) 0.11 (0.10) 20 (22) 0.11 (0.10)

1.0 23 (25) 0.00 18 (22) 0.00 (0.0) 20 (24) 0.00 (0.0) 16 (22) 0.00 (0.00) 20 (22) 0.00 (0.00)

Crop Single rice Single rice Early rice Late rice Winter wheat Spring wheat Spring maize Summer maize

α 13 (12) 13 (12) 15 (12) 16 (12) 16 (12) 18 (12) 17 (18) 21 (18)

The values in (out) the parentheses represent a priori (posterior) values of the parameters
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