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Abstract Photooxidative damage to the needle leaves of ev-
ergreen trees results from the absorption of excess excitation
energy. Efficient dissipation of this energy is essential to pre-
vent photodamage. In this study, we determined the fluores-
cence transients, absorption spectra, chlorophyll contents,
chlorophyll a/b ratios, and relative membrane permeabilities
of needle leaves of Pinus koraiensis, Pinus tabulaeformis, and
Pinus armandi in both cold winter and summer. We observed
a dramatic decrease in the maximum fluorescence (Fm) and
substantial absorption of light energy in winter leaves of all
three species. The Fm decline was not correlated with a de-
crease in light absorption or with changes in chlorophyll con-
tent and chlorophyll a/b ratio. The results suggested that the
winter leaves dissipated a large amount of excess energy as
heat. Because the cold winter leaves had lost normal physio-
logical function, the heat dissipation depended solely on
changes in the photosystem II supercomplex rather than the
xanthophyll cycle. These findings imply that more attention
should be paid to heat dissipation via changes in the photo-
system complex structure during the growing season.
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Introduction

Evergreen pine (Pinus spp.) trees are widely distributed through-
out the world and play important ecological roles. Although
some species have stronger tolerance to cold than others, their
needle leaves are often damaged during winter (Öquist and
Huner 1991; Lehner and Lütz 2003; Rammig et al. 2010). This
damage is due not only to low temperature, but also to strong
light (Garcı́a-Plazaola et al. 1999; Blennow and Lindkvist 2000),
with intense radiation often compounding the damage by low
temperature (Yamazaki et al. 2003). In contrast, the needle leaves
can endure lower temperatures under weak illumination. Light is
the energy source for plant photosynthesis, but light energy will
damage the photosynthetic apparatus when more is absorbed by
leaves than is consumed by photosynthesis (Murata et al. 2007).
This process is referred to as photoinhibition. The excess excita-
tion energy that is not used by photosynthesis generates reactive
oxygen species (ROSs) and results in photooxidation damage of
the photosynthetic apparatus (Nishiyama et al. 2001; Horton
2012; Tyystjarvi 2013). The degree of the photodamage depends
on the clearance of ROSs (Mishra et al. 1993; Hwang et al. 2004;
Murata et al. 2012), protection of the photosynthetic apparatus
(Murchie and Niyogi 2011; Ruban et al. 2012), and repair of
damaged structures and proteins (Takahashi and Badger 2011;
Allahverdiyeva and Aro 2012; Goh et al. 2012). However, the
first line of defense against photodamage is to decrease the ex-
cess energy.

Plants have several mechanisms to avoid excitation energy
surplus, including: (1) decreasing the absorption of light
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energy (Jiang et al. 2006) by, in some species, altering the
angle of their leaves under strong light (Rubio et al. 2007);
(2) enhancing photorespiration (Osmond et al. 1997); and (3)
increasing the dissipation of excess energy (Allahverdiyeva
and Aro 2012). In the growing season, some plants can engage
all three mechanisms. However, in cold winters with very low
temperature (−10 to −20 °C), evergreen leaves lost or seriously
weaken the ability to regulate their physiological activities and
depend mainly on the dissipation to reduce the energy surplus.

The excess energy absorbed by plant leaves is dissipated as
fluorescence and heat (Allahverdiyeva and Aro 2012).
Fluorescence release is common when photosynthesis is im-
peded by strong light. The amount of released fluorescence
varies with the changes in the structure of the photosystem
complex, for instance, the disassociation of the photosystem
II (PSII) l ight-harvesting complex from the PSII
supercomplex (Tikkanen and Aro 2012). For heat dissipation
during the growth season, the excess energy is released via the
xanthophyll cycle (Eskling et al. 1997; Jahns and Holzwarth
2012), which involves the enzymatic interconversion between
violaxanthin and zeaxanthin in higher plants and depends on
the pH differential across the thylakoid membrane (Bratt et al.
1995; Büch et al. 1995). However, the same leaves of ever-
green trees are quite different in physiological status such as
photosynthesis, respiration, enzyme activity, and membrane
permeability between in cold winter and in summer.
Therefore, they may have a different mechanism of excess
energy dissipation and the process in the cold winter might
involve less enzymatic reactions. In this experiment, we com-
pared the fluorescence transients, light absorption spectra,
chlorophyll contents, and relative membrane permeabilities
of the needle leaves of three Pinus species in the cold winter
and summer to analyze their mechanisms of excess energy
dissipation during cold winter.

Materials and methods

Plant samples

The plants used in this study were specimens of Pinus
koraiensis (height 7.2–8.5 m, diameter at breast height 16.3–
18.1 cm, tree age 48 years), Pinus tabulaeformis (height 10.1–
11.3 m, diameter at breast height 26.9–29.4 cm, tree age
31 years), and Pinus armandi (height 7.9–9.1 m, diameter at
breast height 21.0–23.3 cm, tree age 41 years) growing in the
botanic garden of Shenyang Agricultural University,
Shenyang city, Liaoning Province, China (41° 82′ N, 123°
56′ E). P. koraiensis and P. tabulaeformis are native species
and widespread in the northeast of China (38°N-56°N) and P.
armandi is an introduced species with less cold resistance.
Three plants were chosen for measurement from each species.
Twigs were cut off from the top of branches on the sunlit side

and taken to the laboratory. The test was replicated three times.
The winter samples were taken in late January 2012, when the
air temperature ranged from −20 to −7 °C (average, −17.8 °C).
The summer sampling was in late June 2013 (air temperature,
18–31 °C; average 23 °C).

Measurement of fluorescence transients

Needle leaves from the bases of twigs were subjected to dark-
ness for 15min and then exposed to 3000μmolm−2 s−1 photon
flux density generated by a Plant Efficiency Analyzer (Handy-
PEA) (Hansatech, Kings Lynn, Norfolk, UK) for 1 s (Strasser
and Strasser 1995) to determine fluorescence induction curves.
According to the fluorescence transients (OJIP) (Guissé et al.
1995; Strasser et al. 2004), the following parameters were ob-
tained: (1) Fo, the initial fluorescence yield; (2) Fm, the maxi-
mum fluorescence; and (3) Fv, the variable fluorescence.

Measurement of absorbance spectra, chlorophyll content,
and relative membrane permeability

Absorbance spectra were measured with a portable Unispec SC
spectrometer (PP Systems, Amesbury, MA, USA). Data were
analyzed byMultispec 5.1.5. Chlorophyll content and the chlo-
rophyll a/b ratio were measured according to Arnon (1949).
The relative membrane permeability of the middle parts of
needle leaves was measured according to Bao et al. (2009).

Data analysis

Statistical analyses were performed using SPSS 13.0 (IBM,
Chicago, IL, USA).

Results

Fluorescence transients and parameters

Fluorescence transients reflect the excitation energy distribu-
tion in the photosynthetic energy absorption and transfer sys-
tem. As shown in Fig. 1, the needle leaves in cold winter
showed atypical OJIP curves. The values of the O points
(Fo), P points (Fm) and Fv (Fm − Fo), and the ranges of the
Fv/Fm ratio in the winter needles were much lower than in the
summer ones (Table 1). The analysis of variance showed that
the differences of these chlorophyll fluorescence parameters
were significant or extremely significant between in the winter
and summer as shown in Table 1. These results suggested that
the photochemical activities (Fv) in the winter needles were
extremely weak. Notably, Fm values in the winter were re-
markably lower than in the summer; this decrease might result
from lower light energy absorption or greater release of
absorbed energy release in forms other than fluorescence.
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Absorption spectra

During very cold winter, photochemical activity is limited by
low temperatures, and the needles cannot convert light energy
to chemical energy via the photosynthetic electron transfer
chain. In this circumstance, all light energy absorbed by leaves

is excess excitation energy. To reduce this excess, the needles
may decrease light energy absorption. As Fig. 2 shows, in cold
winter, the needles absorbed less light energy in the visible
range (400–740 nm) than in summer. For instance, the absor-
bances in summer and winter were, respectively, 92.7 and
86.7 % in P. koraiensis, 91.8 and 85.9 % in P. tabulaeformis,

Fig, 1 The comparison of
chlorophyll fluorescence
transients of needles in Pinus
trees between in cold winter and
summer
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and 92.9 and 86.3 % in P. armandi. These results
showed that the leaves in winter still absorbed a large
amount of light energy and needed to dissipate a great
deal of excess energy. In addition, the decrease in light
energy absorption in the winter was not proportional to
that in Fm. In all three species, we also observed a sig-
nificant decrease in absorption in the winter in the infra-
red light region. The significant decreases in absorption
in the UV range were also found in the winter in
P. koraiensis and P. tabulaeformis, but P. armandi main-
tained the same low absorption in the winter and sum-
mer. The significance of these changes could not be
interpreted.

Chlorophyll content and chlorophyll a/b ratio

In this study, the chlorophyll contents and chlorophyll a/b
ratios of the needle leaves from the three pine species did
not change consistently between the cold winter and summer
(Fig. 3). The analysis of variance showed that the values of
both parameters in P. koraiensis were not significantly differ-
ent (P ≥ 0.05) in the winter and summer, both values in P.
tabulaeformiswere significantly higher (P ≤ 0.05 or ≤0.01) in
winter than in summer and both values in P. armandi were
significantly lower (P ≤ 0.01) in winter than in summer.
Obviously, changes in the chlorophyll content and chlorophyll
a/b ratio were not correlated with the Fm decrease in the
winter.

Relative membrane permeability

Relative membrane permeability reflects the structural integ-
rity and functional status of the cell membrane. In severe cold,
the cell membrane loses its normal double-layer structure and
normal function. In winter, the relative membrane permeabil-
ities of the needle leaves from P. koraiensis, P. tabulaeformis,
and P. armandi were 74.2, 57.8, and 62.2 %, respectively
(Fig. 4). The analysis of variance showed that the relative
membrane permeabilities in winter were significantly higher
(P ≤ 0.01) than in summer. These results showed that the
leaves had lost normal physiological activity in winter.

Discussion and conclusions

Normally, light energy absorbed by leaves is mainly used to
reduce carbon dioxide during photosynthesis. When the
absorbed energy exceeds the photosynthetic need, the excess
energy will dissipate in the form of fluorescence and heat
(Allahverdiyeva and Aro 2012; Horton 2012). Although the
amount of energy released in fluorescence is a small part of the
total energy dissipation, the fluorescence intensity varies with
environmental changes (Murata et al. 2007) and with the
physiological status of the leaves (Jiang et al. 2006). In this
study, the leaf Fm values in winter leaves were much lower
than those in summer in three pine species (Fig. 1 and
Table 1). The lower Fm values may be caused by a decrease
in light energy absorption or an increase in photochemical
reactions and heat dissipation. Nevertheless, the chlorophyll
contents and chlorophyll a/b ratios varied with species be-
tween the winter and summer (Fig. 3) and did not show a
coincident change. Obviously, chlorophyll was not the cause
of the Fm decrease in winter. The leaves in winter could not
have increased their photochemical reaction rate either, be-
cause their biomembranes were non-functional (Fig. 4). In
addition, the decrease in light energy absorption in the winter
(Fig. 2) was not proportional to the decline in Fm value (Fig. 1
and Table 1). Therefore, the lower Fm was mainly attributed to
an increase in heat dissipation.

The xanthophyll cycle is an important mechanism for dis-
sipating excess excitation energy as heat (Eskling et al. 1997)
during mild winters (Martínez-Ferri et al. 2004). This process
involves the enzyme-catalytic interconversion between
violaxanthin and zeaxanthin in higher plants (Jahns et al.
2009; Jahns and Holzwarth 2012). During excess light stress,
violaxanthin is converted to the intermediate antheraxanthin
and then zeaxanthin by violaxanthin de-epoxidase, which re-
quires an acidic pH to bind to the thylakoid membrane (Bratt
et al. 1995); the reverse reaction is catalyzed by zeaxanthin
epoxidase (Schaller et al. 2012), which functions at pH 7.5
and needs a supply of nicotinamide adenine dinucleotide
phosphate, flavin adenine dinucleotide, and O2 (Büch et al.
1995). Thus, the operation of the xanthophyll cycle depends
on the integrity and normal function of the chloroplast mem-
brane. But in the present study, the relative membrane

Table 1 The comparison of
chlorophyll fluorescence
parameters of needles in Pinus
trees between in cold winter and
summer

Species Season Fo Fm Fv Fv/Fm

P. koraiensis Winter 109 ± 19.85** 136 ± 25.02** 27 ± 10.30** 0.20 ± 0.06**

Summer 260 ± 27.83** 1621 ± 203.44** 1361 ± 180.10** 0.84 ± 0.01**

P. tabulaeformis Winter 135 ± 22.50** 154 ± 17.78** 18.67 ± 4.73** 0.12 ± 0.05**

Summer 200 ± 15.93** 1209 ± 83.78** 1009 ± 76.01** 0.83 ± 0.01**

P. armandi Winter 121 ± 3.06** 147 ± 6.93** 26.33 ± 4.16** 0.17 ± 0.02**

Summer 255 ± 27.91** 1625 ± 213.53** 1370 ± 215.53** 0.84 ± 0.03**

**Significance at P ≤ 0.01
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permeability of the winter needles was 57.8–74.2 %, suggest-
ing the chloroplast membranes had lost their normal structure
and physiological functions. Lütz (1996) reported that green
leaves of Eriophorum that experienced a sudden frost and
strong irradiation suffered yellow leaf areas, and high zeaxan-
thin levels in the affected areas did not prevent the damage.

Therefore, we inferred that the heat dissipation of excess en-
ergy in the cold winter did not depend on cell function and
enzyme activity.

The PSII supercomplex in higher plants contains a reaction
center and several light-harvesting pigment complexes
(LHCII) (Caffarri et al. 2009). When the green leaves

Fig. 2 The comparison of
absorbance spectra of needles in
Pinus trees between in cold winter
and summer
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photosynthesize, light energy absorbed by LHCII is trans-
ferred to the PSII reaction center, then passes through the
cytochrome b6-f complex and other transfer intermediates to
reach photosystem I (PSI), and is finally used to reduce
NADP. While the reaction centers are in close state, the

amount of fluorescence released is Fm, which represents the
photochemical reaction potential (Strasser and Strasser 1995).
Several factors influence the value of Fm, including the state
transition and changes in the PSII supercomplex structure
(Tikkanen and Aro 2012). During the state transition, LHCII

Fig. 3 The comparison of
chlorophyll content and
chlorophyll a/b ratio of needles in
Pinus trees between in cold winter
and summer. The error bar is SD.
a, b significance at P ≤ 0.01, 0.05,
respectively

Fig. 4 The comparison of
relative membrane permeability
of needles in Pinus trees between
in cold winter and summer. The
error bar is SD. a significance at
P ≤ 0.01
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is phosphorylated, moves to the PSI complex (Tikkanen and
Aro 2012; Cui et al. 2014), and transfers its energy to PSI
reaction center so as to decrease Fm. However, in the low
temperatures of the present study, the winter leaves were un-
able to perform the state transition. Heat release from the PSII
supercomplex is an important pathway of energy dissipation,
and a relevant protein had been ident i f ied from
Chlamydomonas reinhardtii (Elrad et al. 2002). Therefore,
the decrease in leaf Fm in winter in these three pine species
was mainly a result of changes in the PSII complex structure.

In conclusion, the maximum fluorescence of the leaves of
the three pine trees decreased substantially in winter. The de-
crease was not due to a decline in light energy absorption, state
transition, or heat dissipation via the xanthophyll cycle.
Therefore, the Fm decrease possibly involved the changes in
the PSII supercomplex. This result implies that more attention
should be paid to heat dissipation resulting from alterations to
the PSII complex architecture during the growing season.
Further work is needed to explore the characteristics of the
PSII complex architecture in winter and the mechanism of
the structural alteration as air temperature declines seasonally.
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