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Abstract As one of themost popular vegetation indices tomon-
itor terrestrial vegetation productivity, Normalized Difference
Vegetation Index (NDVI) has beenwidely used to study the plant
growth and vegetation productivity around the world, especially
the dynamic response of vegetation to climate change in terms of
precipitation and temperature. Alberta is the most important ag-
ricultural and forestry province and with the best climatic obser-
vation systems in Canada. However, few studies pertaining to
climate change and vegetation productivity are found. The ob-
jectives of this paper therefore were to better understand impacts
of climate change on vegetation productivity in Alberta using the
NDVI and provide reference for policy makers and stakeholders.
We investigated the following: (1) the variations of Alberta’s
smoothed NDVI (sNDVI, eliminated noise compared to NDVI)
and two climatic variables (precipitation and temperature) using
non-parametric Mann-Kendall monotonic test and Thiel-Sen’s
slope; (2) the relationships between sNDVI and climatic

variables, and the potential predictability of sNDVI using climat-
ic variables as predictors based on two predicted models; and (3)
the use of a linear regression model and an artificial neural net-
work calibrated by the genetic algorithm (ANN-GA) to estimate
Alberta’s sNDVI using precipitation and temperature as predic-
tors. The results showed that (1) the monthly sNDVI has in-
creased during the past 30 years and a lengthened growing sea-
son was detected; (2) vegetation productivity in northern Alberta
was mainly temperature driven and the vegetation in southern
Alberta was predominantly precipitation driven for the period of
1982–2011; and (3) better performances of the sNDVI-climate
relationships were obtained by nonlinear model (ANN-GA) than
using linear (regression) model. Similar results detected in both
monthly and summer sNDVI prediction using climatic variables
as predictors revealed the applicability of two models for differ-
ent period of year ecologists might focus on.
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Introduction

Climate change has been proven to affect the plant growth,
vegetation productivity, water resources, and socio-economic
systems of many regions worldwide, and the impacts will likely
to continue to increase in the twenty-first century (Piao et al.
2010; Tanzeeba and Gan 2012). The Fifth Assessment Report
(AR5) of the Intergovernmental Panel on Climate Change
(IPCC) showed that the global surface air temperature had in-
creased by 0.85±0.21 °C from 1880 to 2012. High confident
evidences indicated that the period from 1983 to 2012was likely
the warmest 30-year period of the last 800 years in the Northern
Hemisphere (NH). A strong evidence of global warming was
the worldwide melting and increasing global anthropogenic
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CO2 emissions. For instance, the snow cover in the NH had
decreased from 1.6% per decade inMarch to 11.7% per decade
in June between 1947 and 2012. Total annual anthropogenic
greenhouse gas (GHG) emissions had grown on average by
1.0 GtCO2eq per year from 2000 to 2010 (IPCC 2013). Global
warming had been proven to affect the vegetation productivity,
and the changes of snow cover and anthropogenic GHG emis-
sions had shown to enhance productivity of terrestrial and bio-
logical systems over the past several decades in terms of wid-
ened vegetation cover and lengthened growing season in north-
ernmiddle and high latitudes (Nemani et al. 2003). As one of the
most popular vegetation indices used for monitoring short- and
long-term variations of plant growth and terrestrial vegetation
productivity (Jahan andGan 2011), NormalizedDifferenceVeg-
etation Index (NDVI) has been widely used to evaluate the
dynamic response of vegetation to changes in climatic variables
at both global (de Jong et al. 2011; Ichii et al. 2002) and regional
scales (Chuai et al. 2012; Jahan and Gan 2011; Canon et al.
2011; Latifovic et al. 2005). NDVI can be used as a proxy of
plant growth and vegetation productivity, partly because the
amount of solar radiation reflected by vegetation is related to
the wavelength, the chlorophyll, leaf interior tissues, and water
content in vegetation (Dorigo et al. 2012; Wang et al. 2003).

There have been studies on the variations of NDVI and its
relationships with hydroclimatic variables, such as precipita-
tion and temperature. Besides, soil moisture status also deter-
mines the plant growth and vegetation productivity. However,
the lack and limitation of long-term soil moisture observations
make it difficult to establish links between changes in soil
moisture availability and NDVI. Regional responses of vege-
tation at northern latitudes to moisture variability have typi-
cally been inferred indirectly by analyzing correlations be-
tween NDVI and climatic variables, mainly precipitation and
temperature (Barichivich et al. 2014; Jahan and Gan 2011;
Gómez-Mendoza et al. 2008; Prasad et al. 2005). For exam-
ple, using NDVI from the Pathfinder Advanced Very High
Resolution Radiometer (AVHRR) satellite sensors of National
Oceanic and Atmospheric Administration (NOAA), Ichii et al.
(2002) found significant correlations between interannual
NDVI and temperature variability during the growing season
in the northern middle and high latitude regions, and between
NDVI and precipitation in semiarid regions. With a rise in
temperature, NDVI increased in northern middle and high
latitude regions but decreased in southern semiarid regions
due to decreased precipitation. Wang et al. (2003) investigated
the temporal responses of NDVI data to precipitation and
temperature during 1989–1997 in Kansas, USA. The results
showed that the meanNDVI during growing seasonwas high-
ly correlated to precipitation and positively correlated to tem-
perature in the early and late growing season, but only weakly
and negatively correlated with temperature in the midst of
growing season. More recently, Gómez-Mendoza et al.
(2008) studied the NDVI variations in terms of precipitation

anomalies and assessed the onset and length of greening pe-
riod based on the NDVI-precipitation relationship for the state
of Oaxaca in southern Mexico.

Based on the above previous studies, the general strong
correlations between NDVI and climatic variables indicat-
ed the possibility to predict changes in NDVI with respect
to changes in climatic conditions. However, few studies
have been found to investigate the credibility of
predicting vegetation productivity (NDVI as a proxy)
using climatic variables as predictors based on the strong
relationships between NDVI and climatic variables under
climate change. The paper focus to investigate the links of
monthly and seasonal smoothed NDVI (sNDVI) with pre-
cipitation and temperature to reveal the impacts of climate
on the Alberta’s vegetation productivity, and to explore
the possibly predictability of terrestrial vegetation produc-
tivity using climatic variables as potential predictors
based on the correlations between sNDVI and climatic
variables. The primary objectives of this study are to (1)
investigate the trend magnitudes, spatial and temporal var-
iations of sNDVI for the period of 1982–2011 in Alberta
using the Mann-Kendall test and Thiel-Sen’s slope; (2)
study the relationships between monthly and summer
sNDVI and climatic variables (precipitation and tempera-
ture); and (3) develop two sNDVI predictive models in-
cluding a linear regression model and an artificial neural
network calibrated by genetic algorithm (ANN-GA) to
assess the predictability of vegetation productivity using
climatic variables as predictors.

Materials and methods

Study area

Alberta is cutoff at the southwest corner by the Canadian
Rocky Mountains, and it is located between 49°N-60°N
latitude and 110°W-120°W longitude, as shown in Fig. 1
(Jiang et al. 2014). It has a land area of about 661,
000 km2, of which more than one third is farmland and
the landscapes vary from glacial mountain lakes and
rolling foothills to vast boreal forests in the north and
grassland in the south (Jiang et al. 2015). It has a semi-
arid, continental climate partly because it is located in the
rain shadow of the Canadian Rocky Mountains, which
block the moist westerly winds from the Pacific Ocean,
causing orographic precipitation to occur on the windward
side. Therefore, located at the leeward side, Alberta is
relatively dry, with an annual mean precipitation ranging
from about 400 mm to over 500 mm in the north, and
from less than 350 mm to about 450 mm in the south
(Mwale et al. 2009). The hydrological conditions of Al-
berta are multifarious because of the diversity of its
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physiographic features and climate, which vary seasonally
and regionally (Gordon et al. 2005).

Climate and NDVI data

As one of the three Canadian Prairies provinces and the
fourth largest province in Canada, Alberta has the best
spatial coverage of climate observing stations with long
and reliable historical climate data that are crucial for
variation analysis (Hopkinson et al. 2012; Vincent and
Gullett 1999). High quality precipitation and temperature
data used in the study were obtained from the Canadian
Gridded Temperature and Precipitation Anomalies
(CANGRD) dataset, which have undergone rigorous qual-
ity control and have been adjusted for inhomogeneities
due to station relocation and station automation, changes
in instrumentation, station condition, and environment
(Vincent et al. 2012). The CANGRD data sets have a
50 km×50 km spatial resolution and a polar stereographic
projection for the period of 1982–2011. They were
gridded from 210 long-record temperature stations
(Vincent and Gullett 1999) and 491 precipitation stations
across Canada (Mekis and Vincent 2011), which were
normalized for individual station departure from the ref-
erence period of 1960–1990 and divided by the 1960–
1990 period mean, and then generated to gridded data sets
(Jiang et al. 2014; Zhang et al. 2000). Therefore,
CANGRD data sets are among the best available climate
data for Alberta, which have already been used in several

studies, e.g., Jiang et al. (2015); Jiang et al. (2014);
Vincent et al. (2012); Mekis and Vincent (2011); Zhang
et al. (2000).

NDVI is defined as the difference in reflectance between
visible (VIS) and near infrared (NIR) sections of solar spec-
trum (Eq. 1), ranging from −1.0 to 1.0. Bigger NDVI repre-
sents larger difference between the NIR and VIS bands, which
essentially indicates greener, denser, or more vigorous vege-
tation. Positive values represent vegetated conditions, while
negative and near zero values represent non-vegetated condi-
tions (e.g., water, snow, barren surfaces) (Chuai et al. 2012;
Dorigo et al. 2007).

NDVI ¼ NIR−VISð Þ= NIRþ VISð Þ ð1Þ

NDVI used in the study was derived fromNOAA-AVHRR
dataset based on the observations of seven polar-orbiting sat-
ellites, from NOAA-7 launched on June 23, 1981 to NOAA-
19 launched on June 2, 2009 (Kogan et al. 2013; Kogan et al.
2011). Because NDVI could be affected by noises resulted
from atmosphere constituents (e.g., cloud, aerosol, and water
vapor), unusual event (e.g., volcanic), view geometry, pre-
and post-launch calibrations, satellite orbital drift, and sensor
degradation, which reduce the reliability of NDVI, a sNDVI
data set developed by Kogan et al. (2011) was used in the
study. sNDVI has characteristics of global coverage at
16 km resolution and weekly composite, and it is appropriate
for the global or regional analysis of plant growth and vege-
tation productivity (de Jong et al. 2011). In our study, using the

Fig. 1 Location of Alberta
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weekly maximum composite from 1982 to 2011, sNDVI was
aggregated to monthly values and regridded to a resolution of
0.5°×0.5°.

Trend and correlation analysis

Mann-Kendall and Thiel-Sen methods

Trends of sNDVI, precipitation, and temperature were cal-
culated using the non-parametric Mann-Kendall monoton-
ic method at the 5 % significant level, which has been
widely used in detecting monotonic trends of climatic var-
iables time series. To eliminate the influence of serial cor-
relation on the trend detection of those data, the Mann-
Kendall test was used before the process of trend-free
prewhitening (TFPW). However, it essentially produced
the same results (Yue et al. 2002). As found by Bayazit
and Önöz (2007) which showed that the prewhitening pro-
cedure was not necessary for large data samples (n≥ 50) or
time series with large trend magnitudes.

The trend magnitude identified by theMann-Kendall meth-
od is estimated using Thiel-Sen approach, represented by
Sen’s slope β, which is defined as the median of all possible
combinations for the whole data set, as shown in Eq. 2 (Yue
et al. 2002; Gan 1998).

βk ¼ median X jk−X ik

� �
= j−ið Þ� �

; i; j∈ 1; n½ � ð2Þ

where X={x1,⋯, xi⋯ xn}, n is the length of X, k is the num-
ber of grid points, and i< j. β is the estimated trend magnitude
of X. Positive and negative values of β indicate increasing and
decreasing trend magnitudes, respectively.

Mann-Kendall test was applied to investigate the trends of
summer (from June to August) sNDVI at the 5 % significant
level for each grid point (at resolution of longitude-latitude
0.144°×0.144°) from 1982 to 2011 in Alberta. Sen’s slope
was used to analyze the trend magnitudes of monthly sNDVI
and climatic variables including precipitation and tempera-
ture, and to investigate the trend magnitudes of summer
sNDVI for each grid point.

Correlation analysis

Correlation analysis is commonly used to reveal the relation-
ship between two variables. The resulting values called corre-
lation coefficients range from −1 to +1. A correlation coeffi-
cient of +1 indicates that two variables are perfectly positively
related, while a correlation coefficient of −1 indicates that two
variables are perfectly negatively related. Correlation analysis
was used in this study to investigate the relationships between
Alberta’s monthly sNDVI and precipitation (temperature),
and between summer sNDVI and precipitation (temperature)
for each grid point in Alberta. The spatial patterns of trend

magnitudes of summer sNDVI and correlation coefficients
between summer sNDVI and precipitation (temperature) for
each grid point in Alberta were investigated using contour by
Kriging gridding method.

To provide more details of relationships between summer
sNDVI and precipitation (temperature), we further investigat-
ed the temporal series of mean summer sNDVI, total summer
precipitation, and mean summer temperature. The raw data
were standardized using z score normalization method before
analysis.

sNDVI predictive models

A linear regression model and an ANN-GA model were de-
veloped to predict sNDVI using climatic variables as potential
predictors for the period of 1982–2011 in Alberta. Because
sNDVI was strongly correlated to local precipitation and
temperature, it is possibly to predict sNDVI using
precipitation and temperature as potential predictors.
Previous studies, such as Barichivich et al. (2014) and
Gómez-Mendoza et al. (2008) showed that there was often a
lag between maximum vegetation productivity and climatic
variables. To reveal the lag effect of climatic variables to veg-
etation productivity, we tested several combinations of sNDVI
and climatic variables with 1- or 2-month lag time in the
sNDVI predictive models, and the combination of monthly
sNDVI and climatic variables with stronger correlations is
thought to be more suitable for the predictive models. Based
on the correlation analysis of summer sNDVI and climatic
variables, we tested three combinations including July sNDIV
and June climatic variables, August sNDVI and July climatic
variables at 1-month lag time, and August sNDVI and June
climatic variables at 2-month lag time. Preliminary analysis
showed that August sNDVI was stronger correlated to the July
climatic variables than other two combinations, so August
sNDVI had been used as the predictand, July precipitation
and temperature had been used as predictors for both linear
(multivariate regression) and nonlinear (ANN-GA) models.
Twenty-four years (1982–2005) of the data were used to cal-
ibrate the models and 6 years (2006–2011) of data were used
to validate the models.

Linear regression model

Equation 3 shows the linear regressionmodel between sNDVI
and the predictors.

sNDVI ¼ k0 þ k1 x1ð Þ þ k2 x2ð Þ þ…þ kn xnð Þ ð3Þ
where k0 is the intercept, and n is the number of predictors,
herein refers to precipitation and temperature, so n=2 in this
study. Preliminary analysis indicated 1-month lag between
vegetation productivity and climatic variables, so we used
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August sNDVI as the predictand, July precipitation and tem-
perature as the predictors. The xn and kn are predictors and
regression coefficients estimated using the simple least-
squares technique (Gong and Shi 2003). x1 and x2 indicate
precipitation and temperature, respectively.

ANN-GA model

Figure 2 shows the structure of the ANN-GA model for
predicting the sNDVI. It is called ANN-GA because a GA is
used to calibrate the parameters of an ANN (Kuo et al. 2010).
ANN has a forward three-layer structure consisting of input,
hidden, and output layer, with two nodes (precipitation and
temperature) in the input layer, five neurons in the hidden
layer, and one node (sNDVI) in the output layer. The number
of input nodes is two for precipitation and temperature, and
the output node is sNDVI. GA is used to optimize the model
parameters for the different layers by minimizing an objective
function and maximizing the correlation coefficients between
observed and predicted sNDVI. The solution space is

represented according to the finite lengths of strings called
chromosomes, and the solution is improved iteratively using
a combination of crossover and mutation (Kuo et al. 2010;
Mwale and Gan 2005).

As a global optimization algorithm, the GA has a three-
stage operation structure including selection, crossover, and
mutation. At the selection stage, an initial set of weights (W)
and biases (B) are randomly generated to produce an initial
population with diverse information. The initial population
size in this study is 200. All the neural networks considered
are ranked in a descending order from the best to the worst
performing neural networks according to their respective per-
formances evaluated using the objective function values. Typ-
ically, only the top 85 % of the ranked neural networks are
selected to generate offspring for the next generation. At the
crossover stage, weights and biases of neural networks pairs
selected from the population are exchanged using a one-point
crossover method. This procedure is repeated between all
pairs of neural networks in the selected population. At the
mutation stage, mutation is implemented to restore good
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Fig. 2 Flowchart of the artificial
neural network calibrated by the
genetic algorithm (ANN-GA)
model

Int J Biometeorol (2016) 60:1389–1403 1393



weights and biases which are eliminated at the crossover
stage. Only a small proportion (less than 1 %) of the total
neural networks is retained for random mutation. The above
three operations are repeated for many generations until more
than 95 % of the converged neural networks have equal
weights and biases. The weights and biases of the best remain-
ing neural networks are used for predicting sNDVI (Mwale
et al. 2004).

Pearson’s correlation coefficient (ρ, Eq. 4) and root-mean-
square error (RMSE, Eq. 5) are used to evaluate the perfor-
mances of two predictive models. Bigger ρ and smaller RMSE
indicate better predictive performances of predictive models.

ρ ¼

Xn

i¼1

Pi−Pi

� �
Oi−Oi

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

Pi−Pi

� �2

vuut �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

Oi−Oi

� �2

vuut
; ρ∈ −1; 1½ � ð4Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

Pi−Oið Þ2=n
vuut ð5Þ

where Pi and Oi are the ith predicted and observed sNDVI,
and Pi andOi are their mean values, n is the sample size. More
details of ρ and RMSE can be found in Albergel et al. (2013)
and Kuo et al. (2010).

Results and discussion

Monthly variations of sNDVI and climatic variables

Figure 3 shows the 30-year (1982–2011) monthly mean
values and trend magnitudes of sNDVI (Fig. 3a), precipitation
(Fig. 3b), and temperature (Fig. 3c), and the correlation coef-
ficients between sNDVI and precipitation (temperature)
(Fig. 3d).Monthly sNDVI and its pattern were similar to those

Fig. 3 Thirty-year mean values and trend magnitudes of monthly
smoothed NDVI (sNDVI) and climatic variables from 1982 to 2011 in
Alberta. a 30-year mean monthly sNDVI and trend magnitudes; b 30-

year mean monthly precipitation and trend magnitudes; c 30-year mean
monthly temperature and trend magnitudes; and d correlation coefficients
ρ between monthly sNDVI and monthly precipitation (temperature)
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of climatic variables. The largest value of mean sNDVI was
detected in July (0.3954), and sNDVI of winter season (from
December to February) were smaller (from 0.0905 to 0.0938)
than other seasons for the period of 1982–2011. The slopes of
monthly sNDVI trend were positive for all months, indicating
that the sNDVI had increased over the 30-year period, and the
largest slope was detected in October, which indicated a
lengthened growing season or delayed winter. The results
concurred with those of Ichii et al. (2002) which showed that
NDVI had increased in the northern middle and high latitudes
caused by the temperature rise. Piao et al. (2003) also showed
that photosynthetic activity had increased and the growing
season had extended over the past few decades in the northern
middle and high latitudes by investigating the variations of
terrestrial vegetation productivity. Monthly precipitation and
temperature showed similar patterns compared with sNDVI,
with the greatest value in July (77.43 mm for precipitation and
15.87 °C for temperature), greater values in summer, and rel-
atively small values in winter. However, both summer and fall
precipitation showed negative trend magnitudes. The largest
negative slope occurred in July, with an annual rate of
−0.62 mm, indicating that July precipitation had decreased
by 15.58 mm over the period 1982 to 2011 (Fig. 3b), which
echoed the inter- and intra-annual redistribution of precipita-
tion as reported by IPCC (2013). The largest slope of monthly
temperature was detected in November with an annual rate of
0.15 °C, which indicated that Alberta’s mean temperature in
November had increased up to 4.5 °C over the past 30 years.
However, the slopes of temperature were negative fromMarch
to June (Fig. 3c), which indicated that the warming trends had
slowed down, especially during spring. Previous study found
that the annual mean temperature in Canada had increased by
about 0.15 °C, and the greatest increasing trend of temperature
had occurred during the winter for the period of 1950–2010 in
Canada. However, a number of stations showed decreasing
trends of summer temperature in the Canadian Prairies includ-
ing Alberta, Manitoba, and Saskatchewan provinces (Vincent
et al. 2012).

It is important for the satellite-based plant phenology
analysis in view of the difference of NDVI values be-
tween the beginning and end of growing season. Assum-
ing 5 °C as the threshold of growing season, the duration
of growing season in Alberta starts at about April and
ends at approximate September, lasting about 5 months.
The corresponding sNDVI values were about 0.2 (at the
beginning of growing season) and 0.25 (at the end of
growing season), which are consistent with results of Piao
et al. (2003) and Mao et al. (2012). From Fig. 3a, we
detected that vegetation productivity peaked in the middle
of the growing season (summer). The relatively large
sNDVI increase occurred in the later growing season
(fall). The largest slope of sNDVI occurred in October
(+0.0024 per year), indicating that sNDVI in October

had increased about 0.07 for the past 30 years in Alberta,
followed by two adjacent months, November (+0.0022
per year) and September (+0.0019 per year), which indi-
cated that the growing season had lengthened during the
past 30 years. A trend of earlier vegetation greening in the
spring had been detected in many regions from the satel-
lite observations since early 1980s. Global warming might
be one of the causes of the widespread lengthening of the
growing season during recent decades. Vegetation produc-
tivity had improved because the photosynthetic activity
had increased either by an earlier or by a lengthening of
the growing season over the past few decades due to
warming caused by climate change, especially at the
northern middle and high latitudes (Barichivich et al.
2014; Neigh et al. 2007; Piao et al. 2003).

Figure 3d shows the correlation coefficients between
monthly sNDVI and monthly precipitation (temperature),
respectively. For temperature, all months except February
exhibited positive correlation coefficients and strong pos-
itive correlation coefficients mainly occurred in spring
(March, April, and May), August, and September. Both
sNDVI and temperature showed large trend magnitudes
in fall (Fig. 3a, c), indicating that increasing temperature
could enhance vegetation productivity. A statistically
meaningful relation between changes in NDVI and tem-
perature increase for vegetated areas was detected by
Zhou et al. (2001), which suggested that the relationship
between vegetation productivity and temperature varied at
different spatial and temporal scales. Kawabata et al.
(2001) investigated the climate change impacts on the
inter-annual variations of NDVI, and the results showed
that vegetation activities had increased due to a gradual
temperature rise in the northern middle and high latitudes.
On the other hand, the correlation coefficients between
sNDVI and precipitation fluctuated over the year for the
period of 1982–2011. Generally, sNDVI in two third of
the months had negatively correlated to precipitation. Cor-
relation coefficients were relatively small in winter, dur-
ing which time most of the vegetated areas were covered
by the snow pack in Alberta and the impacts of precipi-
tation on vegetation productivity were relatively weak.
Figure 3d indicates that sNDVI-temperature correlations
are stronger than those of sNDVI-precipitation, and tem-
perature is considered to have the dominant influence on
vegetation productivity in Alberta. A comparison of
sNDVI trends (Fig. 3a) and sNDVI-climate correlations
(Fig. 3d) indicated that sNDVI changes were mainly dom-
inated by temperature rise and precipitation decrease in
Alberta, especially during growing season. More details
on the increasing trends of sNDVI will be provided by
investigating trends of summer sNDVI for each individual
grid points in Alberta in the following section. The strong
correlations of sNDVI-climate relationships provided the
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basic for sNDVI prediction using precipitation and tem-
perature as predictors.

Spatiotemporal variability of summer sNDVI
and correlation analysis

Figure 4 shows the spatial patterns of trend magnitudes of
summer sNDVI for the period of 1982–2011 in Alberta. We
especially focused on summer because it is in the middle of
growing season, which had maximum sNDVI over the years
investigated. As shown in Fig. 4, a high degree of spatial
variability of summer sNDVI had been detected, and the spa-
tial patterns of trend magnitudes were scattered. Most of the
grid points (nearly 70 %) showed no significant trends at 5 %
significant level, and the percentage of grid points with sig-
nificantly increasing trend was about 20 %, while the rest of
grid points (approximately 10 %) exhibited significantly de-
creasing trends. Significantly positive trends of summer
sNDVI had mainly distributed in the south, parts of
northeast and central Alberta, and areas along the Canadian
Rocky Mountains. The largest slope was nearly 0.012 per
year, which showed that sNDVI had increased about 0.36
over the past 30 years. Using AVHRR satellite data, Pouliot

et al. (2009) evaluated the NDVI trends for the period of
1985–2006 in Canada, and the results showed that 22 % of
the vegetated area of Canada had an increasing NDVI trend.

Figure 5 shows the temporal series of mean summer
sNDVI, total summer precipitation, and mean summer
temperature for the period of 1982–2011 in Alberta. The
results indicated that summer sNDVI had been jointly
influenced by both precipitation and temperature, e.g.,
summer sNDVI decreased when precipitation and temper-
ature decreased from 1984 to 1988, and vice versa. Sum-
mer sNDVI was generally positively correlated to summer
temperature, e.g., summer sNDVI increased from 1982 to
1984 and exhibited a modest decrease followed by a
strong increasing trend until 1990, which might be due
to the temperature rise for the periods of 1982–1984 and
1988–1989, and fluctuating anomalies between 1984 and
1988. The similar summer sNDVI anomalies had also
occurred during 1991–1997 and 2000–2004. However,
the relationships between summer sNDVI and precipita-
tion were more complex than between summer sNDVI
and temperature. Low negative correlations between sum-
mer sNDVI and precipitation had been detected. The
complex relationships between summer sNDVI and

Fig. 4 Spatial patterns of trend
magnitudes of summer sNDVI
for the period of 1982–2011 in
Alberta. The grid points with red
dot have significantly increasing
trends at 5 % significant level, and
the grid points with yellow dot
have significantly decreasing
trends at 5 % significant level
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precipitation (temperature) might be caused by the com-
plexity and variability of precipitation and temperature.
Other climatic variables, such as soil moisture and solar
radiation, and human activity also have influences on
sNDVI.

Figure 6 shows the spatial patterns of correlation coef-
ficients between summer sNDVI and climatic variables
(Fig. 6a for precipitation and Fig. 6b for temperature) for
regridded data series from 1982 to 2011. The percentage

of grid points with positive correlations between summer
sNDVI and precipitation was 47 %, and a majority of
grid points (83 %) showed positive correlations between
summer sNDVI and temperature. Positive correlations
between summer sNDVI and precipitation mainly oc-
curred in the southern Alberta, and most of the negative
correlations occurred in the central Alberta and regions
along with the Canadian Rocky Mountains (Fig. 6a).
Positive correlations between summer sNDVI and

Fig. 5 Temporal series of mean
summer sNDVI, total summer
precipitation, and mean summer
temperature for the period of
1982–2011 in Alberta

Fig. 6 Spatial patterns of correlation coefficients between summer sNDVI and climatic variables: a precipitation and b temperature for the period of
1982–2011 in Alberta
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temperature had been detected in most areas of northern
and central Alberta, whereas negative correlations had
been mainly found in the southern Alberta (Fig. 6b). In
the southern Alberta, precipitation increase and
tempera ture decrease could ra ise the mois ture
availability for vegetation, leading to an increase of
sNDVI. Ichii et al. (2002) concluded that the areas with
negative correlations between NDVI and temperature co-
incided well with positive correlations between NDVI
and precipitation, which mainly occurred in semiarid re-
gions, where interannual NDVI variations had been de-
termined by both precipitation and temperature.

Predictability of sNDVI

The multivariate linear regression and ANN-GA models
have been used to predict August sNDVI for all grid
points in Alberta, and the results showed that the grid
points in the southeast of Alberta had better predictive
performances than grid points in other regions of Alberta.
The results were expected because stronger correlations
be tween Augus t sNDVI and July prec ip i ta t ion
(temperature) were detected in the southeast of Alberta
than other regions (Fig. 6). Given the predictive perfor-
mances of grid points in the southeast of Alberta were

Fig. 7 Spatial patterns of predictive performances of two predictive models: a ρ for linear regression model; b ρ for ANN-GAmodel; cRMSE for linear
regression model; and d RMSE for ANN-GA model to predict August sNDVI for the periods of 1982–2011 in the southeast of Alberta
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better than other regions, we used grid points located in
the southeast of Alberta to investigate which model and
where the models should be more applicable. Figure 7
shows the spatial patterns of predictive performances in-
cluding ρ and RMSE for both predictive models for grid
points located in the southeast of Alberta (Fig. 7a ρ for
linear regression model, Fig. 7b ρ for ANN-GA model,
Fig. 7c RMSE for linear regression model, and Fig. 7d

RMSE for ANN-GA model). Generally, the ANN-GA
model exhibited better predictive performances (bigger ρ
and smaller RMSE) between observed and predicted Au-
gust sNDVI than using linear regression model (Fig. 7b).
The ρ ranged from 0.372 to 0.781 for ANN-GA model
and from 0.09 to 0.737 for linear regression model, while
the RMSE ranged from 0.66 to 1.145 for ANN-GA model
and from 0.713 to 1.256 for linear regression model. In

Fig. 8 The observed and predicted August sNDVI for three grid points
(#247, #288, and #331) in the southeast of Alberta. The results of linear
regression model are presented in a~c for grid points #247, #288, and
#331, respectively, and the results of ANN-GA model are presented in

d~f for grid points #247, #288, and #331, respectively. The predictive
performances (ρ and RMSE) are given in each figure at both calibration
stage (1982–2005) and validation stage (2006–2011)
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the spatial scale, the results showed that the gird points
located between 51°N-52.5°N latitude and 110°W-
112.5°W, 113.5°W-114°W longitude had better predictive
performances than grid points located in other areas,
which was also expected because the correlation coeffi-
cients between August sNDVI and July precipitation
(temperature) of those grid points were bigger than others.

Three typical grid points including #247 (−114°W,
52.5°N), #288 (−113°W, 52.5°N), and #331 (−112°W,
52°N) in the southeast of Alberta had selected to provide
more details of the predictive performances of the linear
regression model (Fig. 8a~c) and ANN-GA model
(Fig. 8d–f). In general, better predictive performances
had been detected for grid points #247 and #331 than grid
point #288 because the correlation coefficients of grid
points #247 and #331 between August sNDVI and July
precipitation (temperature) were bigger than those of grid
point #288. The ANN-GA model had better predictive
performances (bigger ρ and smaller RMSE) than using
linear regression model at both calibration and validation
stages. At calibration stage, ρ between the observed and
predicted August sNDVI ranged from 0.5318 to 0.7270
for linear regression model and from 0.5616 to 0.7812 for
ANN-GA model. The RMSE between the observed and
predicted August sNDVI ranged from 0.7135 to 0.9743
for linear regression model and from 0.6603 to 0.6945 for
ANN-GA model. At validation stage, ρ between observed
and predicted August sNDVI ranged from 0.3447 to
0.7240, and the RMSE ranged from 0.7930 to 1.3270
for both models. For grid point #247, correlation coeffi-
cients between the observed and predicted August sNDVI
were 0.7546 and 0.7240 at calibration and validation
stages using the ANN-GA model, respectively, but they
dropped to 0.7255 and 0.6695 at both stages using linear
regression model. The values of RMSE had increased to
0.7240 and 1.0335 using the linear regression model with
respect to 0.6945 and 0.7930 of the ANN-GA model at
both calibration and validation stages. For grid point
#288, smaller ρ and bigger RMSE between the observed
and predicted August sNDVI had been detected, with re-
spect to the predictive performances of grid point #247
and #331, and the lowest ρ (0.3447) and the highest
RMSE (1.3270) had been found. For grid point #331,
correlation coefficients between observed and predicted

August sNDVI using ANN-GA model were larger than
using the linear regression model at both calibration and
validation stages, and vice versa for RMSE.

From Figs. 7 and 8, we conclude that both ANN-GA
and linear regression models can be used to predict
sNDVI using precipitation and temperature as predictors
based on the strong correlations of sNDVI-climate rela-
tionships. Considering some ecologists might focus on the
vegetation productivity for different period, e.g., summer,
we further investigated the possibility to predict summer
sNDVI using precipitation and temperature as predictors.
Again, we selected three typical grid points including
#247, #288, and #331 based on the correlation coeffi-
cients between summer sNDVI and climatic variables.
We did not test all the grid points in the southeast of
Alberta because summer sNDVI weakly correlated to cli-
matic variables for some grid points, which should not be
suitable for summer sNDVI prediction, as shown in
Fig. 6. Table 1 shows the predictive performances of three
typical grid points (#247, #288, and #331) for both ANN-
GA and linear regression models to predict summer
sNDVI using precipitation and temperature as predictors
over the period of 1982–2011 in the southeast of Alberta.
The results were similar with those in Figs. 7 and 8. The
ANN-GA model had better predictive performances (big-
ger ρ and smaller RMSE) than using linear regression
model. Taking grid point #288 for an example, the ρ of
ANN-GA model (0.675) is bigger than ρ of linear regres-
sion model (0.455), while the RMSE of ANN-GA model
(0.799) is smaller than RMSE of linear regression model
(1.019). The grid point #247 exhibited better predictive
performances that grid points #288 and #331, which was
also expected, because the correlation coefficients of grid
point #247 between summer sNDVI and precipitation
(temperature) were bigger that those of grid points #288
and #331.

To reveal the reason of ANN-GA model exhibited bet-
ter predictive performances than linear regression model
(as shown in Figs. 7 and 8), we investigated the scatter
plots between July precipitation and temperature
(predictors) and August sNDVI (predictands) for grid
points #247, #288, and #331 in the southeast of Alberta.
Figure 9 shows nonlinear relationships between August
sNDVI and July precipitation (temperature), which

Table 1 Predictive performances
of three typical grid points (#247,
#288, and #331) for both ANN-
GA and linear regression models
to predict summer sNDVI over
the period of 1982–2011 in the
southeast of Alberta

Grid no. Location ANN-GA model Linear regression model

Longitude Latitude ρ RMSE ρ RMSE

#247 −114°W 52.5°N 0.694 0.784 0.674 0.870

#288 −113°W 52.5°N 0.675 0.799 0.455 1.019

#331 −112°W 52°N 0.549 0.977 0.463 1.071

1400 Int J Biometeorol (2016) 60:1389–1403



implied that a nonlinear model (e.g., the ANN-GA model)
should be more suitable than a linear model (e.g., linear
regression model) for modeling the sNDVI-climatic rela-
tionships of Alberta. However, precipitation and tempera-
ture explained variances of between 30 and 43 % (i.e., ρ
of 0.548 and −0.656) (Mwale et al. 2007), it is still a
challenge calibrating the ANN-GA model even though it
is a nonlinear model (Kuo et al. 2010). More climatic
variables might improve the predictive performances, as
found by Jahan and Gan (2011) which used two vegeta-
tion indices including NDVI and Enhanced Vegetation
Index (EVI) from Moderate-resolut ion Imaging
Spectroradiometer (MODIS) to monitor temporal re-
sponses of vegetation to climate over a boreal forest of
western Canada. The results demonstrated a potential for
monitoring the patterns of terrestrial vegetation productiv-
ity using climatic variables. They also found that the pre-
dictive performances were better using multiple climatic

variables than using a single climatic variable as predic-
tors to predict vegetation indices for a boreal mixed wood
forest of western Canada.

Summary and conclusions

Using Mann-Kendall, Thiel-Sen slope, correlation analy-
sis, linear regression, and ANN-GA, this study investigat-
ed the monthly variations of sNDVI and climatic variables
(precipitation and temperature) and their relationships,
based on which we studied the spatial patterns of trend
magnitudes of summer sNDVI and correlations between
summer sNDVI and climatic variables over the period of
1982–2011 in Alberta. Two models, linear regression and
ANN-GA, were used to evaluate the potential predictabil-
ity of August sNDVI using July precipitation and

Fig. 9 Scatter plots of the August sNDVI and July climatic variables
(precipitation and temperature) for three typical grid points. a~c August
sNDVI and July precipitation for grid points #247, #288, and #331,

respectively. d~f August sNDVI and July temperature for grid points
#247, #288, and #331, respectively
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temperature as predictors at 1-month lag time and summer
sNDVI. Our findings are summarized as follows:

(1) In general, the sNDVI had increased over the past 30
years (Fig. 3a), especially from September to November,
which indicated a lengthened growing season or delayed
winter in Alberta. The pattern of monthly sNDVI was
similar with monthly precipitation and temperature, with
the biggest value in July, relatively bigger values in sum-
mer, and smaller values in winter. The correlations be-
tween monthly sNDVI and climatic variables (precipita-
tion and temperature) varied from month to month,
which suggested limited predictability of vegetation
using precipitation and temperature as predictors
(Fig. 3d).

(2) The spatial patterns of trend magnitudes for summer
sNDVI were scattered. The percentages of grid points
that showed significantly increasing trend, no significant
trends, and significantly decreasing trend at 5 % signifi-
cant level were approximately 20, 70, and 10 %, respec-
tively. It seems that the trends of summer sNDVI are
mainly associated with the trends of precipitation and
temperature. Significant increasing trends mainly oc-
curred in the southern Alberta, along Canadian Rockies,
and parts of northeast Alberta (Fig. 4). The temporal
series of mean summer sNDVI, total summer precipita-
tion, and mean summer temperature indicated the com-
plex relationships between sNDVI and climatic variables
(Fig. 5). Summer sNDVI exhibited positive (negative)
correlations with temperature (precipitation) in northern
Alberta, and vice versa in southern Alberta (Fig. 6). Veg-
etation productivity in northern Alberta is mainly tem-
perature driven and the vegetation in southern Alberta is
predominantly precipitation driven. Temperature in-
crease and precipitation decrease could promote the
growth of vegetation. The precipitation decrease gener-
ally accompanied by an increasing incoming solar
radiation.

(3) Two predictive models (linear regression and ANN-GA
models) have been developed to predict August sNDVI
using July precipitation (temperature) as predictors, to
investigate the possible prediction of vegetation produc-
tivity using climatic variables. In general, the predictive
performances differed for different areas and models.
The ANN-GA model exhibited better predictive perfor-
mances (bigger ρ and smaller RMSE) between observed
and predicted August sNDVI than using linear regres-
sion model (Fig. 7), especially for gird points located
between 51°N-52.5°N latitude and 110°W-112.5°W,
113.5°W-114°W longitude, where the sNDVI was stron-
ger correlated to precipitation (temperature) than other
areas. The results of August sNDVI for three grid points
(#247, #288, and #331) provided more details of the

predictive performances for both predictive models at
both calibration and validation stages (Fig. 8). The scat-
ter plots between August sNDVI and July precipitation
(temperature) of grid points indicated that the nonlinear
model was more suitable for modeling the NDVI and
climatic variables relationships than linear model
(Fig. 9). As demonstrated by Jahan and Gan (2011) and
Zhang et al. (2007), human activity and other climatic
variables (e.g., potential evapotranspiration, radiation,
aridity index, and soil moisture) had important influences
on vegetation growth. More climatic variables such as
potential evapotranspiration, diurnal temperature range,
and soil moisture may provide more insights, which will
be explored in our future research. The similar results
detected in the summer sNDVI prediction (Table 1) with
those of August sNDVI prediction (Figs. 7 and 8) indi-
cated that both ANN-GA model and linear regression
models are applicative used to sNDVI for different peri-
od of year based on the strong correlations between
sNDVI and climatic variables.
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