
ORIGINAL PAPER

Searching for the best modeling specification for assessing
the effects of temperature and humidity on health: a time series
analysis in three European cities

Sophia Rodopoulou & Evangelia Samoli &
Antonis Analitis & Richard W. Atkinson &

Francesca K. de’Donato & Klea Katsouyanni

Received: 22 September 2014 /Revised: 9 January 2015 /Accepted: 9 January 2015 /Published online: 1 February 2015
# ISB 2015

Abstract Epidemiological time series studies suggest daily
temperature and humidity are associated with adverse health
effects including increased mortality and hospital admissions.
However, there is no consensus over which metric or lag best
describes the relationships. We investigated which tempera-
ture and humidity model specification most adequately pre-
dicted mortality in three large European cities. Daily counts of
all-cause mortality, minimum, maximum and mean tempera-
ture and relative humidity and apparent temperature (a com-
posite measure of ambient and dew point temperature) were
assembled for Athens, London, and Rome for 6 years between
1999 and 2005. City-specific Poisson regression models were
fitted separately for warm (April–September) and cold
(October–March) periods adjusting for seasonality, air pollu-
tion, and public holidays. We investigated goodness of model
fit for each metric for delayed effects up to 13 days using three
model fit criteria: sum of the partial autocorrelation function,
AIC, and GCV. No uniformly best index for all cities and
seasonal periods was observed. The effects of temperature

were uniformly shown to be more prolonged during cold pe-
riods and the majority of models suggested separate tempera-
ture and humidity variables performed better than apparent
temperature in predicting mortality. Our study suggests that
the nature of the effects of temperature and humidity on mor-
tality vary between cities for unknown reasons which require
further investigation but may relate to city-specific population,
socioeconomic, and environmental characteristics. This may
have consequences on epidemiological studies and local
temperature-related warning systems.
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Abbreviations
CI Confidence interval
Df Degrees of freedom
ICD International classification of diseases
NO2 Nitrogen dioxide
O3 Ozone
DLNM Distributed lag nonlinear model
GAM Generalized additive model
AIC Akaike information criterion
GCV Generalized cross-validation
PACF Partial autocorrelation function

Introduction

A large number of studies have investigated the effects of
temperature on health (Gasparrini and Armstrong 2010),
many focusing on the effects of high temperatures which are
often associated with climate change (Basu 2009). Health
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outcomes assessed to date include more often mortality
(Curriero et al. 2002; Analitis et al. 2008; Baccini et al.
2008), but also hospital admissions (Michelozzi et al. 2007)
and reproductive outcomes (Lajinian et al. 1997; Tam et al.
2008). The general pattern conveyed by these studies shows
that the association of temperature with mortality is U- or J-
shaped, i.e., increased mortality has been associated with very
high or low temperatures (Curriero et al. 2002). Interestingly,
the changing point of the curve, i.e., the temperature point
corresponding to the minimum daily number of deaths, de-
creases in locations with colder climates, indicating that pop-
ulations adapt to the prevailing meteorological conditions
(Curriero et al. 2002; Baccini et al. 2008). Additionally, the
effects of heat are more immediate than those of cold: cold
effects are identified at longer lags (up to more than 15 days),
while heat effects are usually evident on the same day and
persist up to 3 days (Armstrong 2006; Analitis et al. 2008;
Baccini et al. 2008).

Studies have indicated that humidity levels are linked to in-
creased discomfort and thus it is worth exploring whether tem-
perature health effects differ according to humidity levels (Budd
2008; Vaneckova et al. 2011). Most health studies have either
included a humidity variable in their models in addition to a
temperature measure (Armstrong 2006; Basu et al. 2005; Braga
et al. 2001; Curriero et al. 2002) or used an index calculated as
the combination of one or more temperature and humidity vari-
ables (Analitis et al. 2008; Baccini et al. 2008; Michelozzi et al.
2007). Steadman (1979a, b) first introduced an index of
Bapparent temperature,^ which included wind speed, tempera-
ture, and humidity. Several other indices, mainly including tem-
perature and humidity, were subsequently developed and de-
scribed (Anderson et al. 2013). Although all have been intro-
duced or used within the context of environmental research,
few have been applied in health studies. Most health studies
employing an index have used apparent temperature as intro-
duced by Kalkstein and Valimont (1986) (Anderson et al. 2013).

A limited number of studies have attempted to evaluate
the performance of different ways of modeling temperature
and humidity in estimating health effects. Kim et al. (2011)
compared the use of temperature and two indices in esti-
mating heat-related effects in two Korean cities; Vaneckova
et al. (2011) compared the use of temperature and five
indices in Brisbane Australia also in estimating heat-
related effects; Hajat et al. (2010) investigated how well
different methods used by heat watch warning systems
worldwide to predict days with excessive heat-related mor-
tality agree; Lin et al. (2013), on the other hand, investi-
gated cold-related mortality models in several regions in
Taiwan. The most extensive study to date is by Barnett
et al. (2010) for 107 U.S. cities using annual data and
comparing models with average, minimum and maximum
temperature and two composite indices. These studies reach
no clear conclusion and identify inconsistent results from

models using various expressions for temperature and hu-
midity, which may depend on the local conditions and the
health outcomes analyzed. One important environmental
variable and potential confounder is air pollution, as it is
associated with temperature and with many relevant health
variables (Cheng and Kan 2011; Mackenbach et al. 1993;
O’Neill et al. 2005; Ren et al. 2008; Stafoggia et al. 2008;
Thurston and Ito 2001). As Europe is characterized by
different and variable environmental conditions, a study
investigating the performance of the various modeling spec-
ifications for temperature and humidity may add very use-
ful insights.

We report here the first multi-city study in Europe investi-
gating the performance of different methods to assess temper-
ature and humidity effects at different lag structures, both for
cold and warm periods. The study includes data from Athens
(a south-eastern city with warm and dry climate), London (a
north-western city with relatively cold and humid climatic
conditions), and Rome (a southern city with warm climate
and higher relative humidity levels).

Materials and methods

Data

We used data from Athens (Greece) and London (U.K.) for
2000–2005 and from Rome (Italy) for 1999–2004. For each
city, daily counts of all-cause mortality, excluding deaths from
external causes (International Classification of Diseases, 10th
Revision, ICD-9 < 800, ICD-10 A00-R99), for all ages, were
collected.We also collected daily data on the mean, minimum,
and maximum values of ambient temperature (°C) and the
mean relative humidity (%). Hourly data on ambient and
dew point temperature (°C) were recorded to allow the calcu-
lation of apparent temperature using the formula as follows:

AT ¼ −2:653þ 0:994⋅T þ 0:0153⋅ DTð Þ2; ð1Þ

where ATstands for apparent temperature in °C, T for ambient
temperature in °C, and DT for dew point temperature in °C.
We initially calculated the hourly values of apparent
temperature and then the mean, maximum, and minimum
daily values. We have chosen this composite index of
ambient and dew point temperature, introduced by Kalkstein
and Valimont (1986) because it has been most widely used in
epidemiological studies as shown in the comprehensive re-
view of Anderson et al. (2013) and correlates very well (cor-
relation coefficient > 0.94) with most other indices which have
been described in the literature but have been less used in
health studies. Additionally, it is coherent with Steadman’s
apparent temperature index under the usual weather
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conditions in the U.S. cities included in Anderson et al.
(2013). Weather conditions characterized by temperature and
humidity levels in the three cities studied in the present paper,
overlap with those referred to as Busual^ in the Anderson et al.
paper.

Finally, to adjust for the potential confounding effects of
air pollution, we collected time-series data on the main
regulated pollutants, specifically on the daily concentrations
of nitrogen dioxide, ΝΟ2 (μg/m3, 24 hr mean), particulate
matter with an aerodynamic diameter <10 μm (PM10, μg/
m3, 24 h mean) and ozone, O3 (μg/m3, maximum 8 hr
moving average) from the fixed monitoring sites operating
in each city. NO2 is an indicator of traffic-related pollution
(Analitis et al. 2008; Chiusolo et al. 2011; Katsouyanni
et al. 2001), thus adequately reflecting the major source
of pollution in the cities involved, while O3 is a secondary
pollutant whose formation is related to high temperature
(Bell et al. 2005; Gryparis et al. 2004; Ren et al. 2008).
The choice of NO2 and O3 was supported by the large
number of monitors providing complete times series data,
since less than 1 % of days had missing data in all cities.
PM10 was available from a smaller number of monitors,
and regarding Athens, it was available only for the period
2001–2005, but since particulate pollution is very important
for the study of health effects (WHO 2013), we chose to
adjust for PM10 as well.

Data on the day of the week and on dates of bank
holidays were also collected. These variables are known
to be associated with mortality (Katsouyanni et al. 1996)
since they affect health service provision and people’s re-
sponse to feeling unwell (may not go to doctors at week-
end but wait a day or so longer); therefore, controlling for
them accounts for an important explanatory variable in the
temporal pattern of mortality. What is more, the day of the
week and dates of bank holidays may modify the popula-
tion exposure to outdoor temperature due to different pre-
vailing population time activity patterns during the various
days of the week and on holidays.

Methods

We applied Poisson regression models allowing for over-dis-
persion. The comparison between the various temperature-
humidity model specifications was based on the models’
goodness of fit and partial autocorrelation criteria (Samoli
et al. 2013; Touloumi et al. 2006). For each of the three cities
analyzed, we compared the mean, minimum, and maximum
ambient temperature including mean relative humidity in the
model and mean, minimum, and maximum apparent
temperature.

The analysis was conducted separately for the cold period,
defined as October through March, and the warm period, de-
fined as April through September. The general form of the

Poisson generalized linear models that were used was the
following:

log E Yc
t

� �� � ¼ βc j
0 þ NS timect ; 3⋅6

� �þX
i

gi x
c j
it

� �þX
i

hi RH
c j
it

� �
þ lag01:POLct
� � þ HOLc

t þ DOWc
t ;

ð2Þ

where E[Yt
c] is the expected value of the Poisson distributed

variable Yt
c indicating the daily mortality count on day t at city

c, with Poisson variance allowing for overdispersion (ϕ)
Var(Yt

c)=ϕE[Yt
c]; NS(timet

c,3 ⋅6) represents the seasonality
control using a natural cubic spline of time as a continuous
variable (timet=1, 2,…, 2192) with 3 degrees of freedom (df)
per period (cold and warm) per year, that is 18 df per period
for the 6 years under study; xit

cj is temperature index j on day t
at city c, and RHit

cj is the mean relative humidity. If the index j
was the mean, minimum, or maximum apparent temperature,
the term of relative humidity was excluded from the model.
The index of summation i refers to the lag structure in each
specific model meaning that when relative humidity is includ-
ed, it has the same lag structure as temperature, while the
functions g and h described the relation of mortality with the
corresponding index and mean relative humidity, respectively.
The confounding effect of air pollution was taken into account
by including the average value of the concentration of each
pollution variable alternatively (NO2, PM10, O3) in the same
(lag 0) and the previous (lag 1) day of exposure in the form of
the linear term (lag01.POLt

c), where POL is the corresponding
pollutant. We also included dummy variables for official hol-
idays (HOLt

c, 1 for official holidays other than Sundays, 0 for
all other days) and for the day of the week effect (DOWt

c, six
dummy variables using Sunday as reference category).

It should be noted that in regression models, very highly
correlated variables cannot be included simultaneously due to
multicollinearity problems (Allen 1997); thus, we checked all
correlations before building the final model.

We used lag structures previously identified in the
literature after verifying them by Distributed Lag
Nonlinear Models (DLNMs) separately for the cold
and warm periods, while the shape of mortality-temper-
ature/humidity associations was verified using general-
ized additive models (GAM). When these were deter-
mined, we used models of form (2) with specific sum-
mation indices i and g and h functions to compare the
temperature\humidity model specifications. All models
were fit in R v.2.15.1 (R development Core Team
2012). More specifically, the modelling procedures for
each step were as follows:

Choice of lag structures

Based on previous results (Analitis et al. 2008: Baccini et al.
2008; Goodman et al. 2004), it was hypothesized that plausible
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lag structures for the cold period were as follows: a) the average
exposure for the same and 13 previous days (lags 0–13) and
alternatively the average exposure for the 13 previous days (lags
1–13) with exposure of the same day (lag 0) as a separate vari-
able, b) the average exposure for the same and two previous days
(lags 0–2), c) the average exposure for 4-day period ranging from
the third to the sixth consecutive prior day (lags 3–6), d) the
average exposure for the same and six previous days (lags 0–
6), and e) the average exposure for 7-day period ranging from the
seventh to the 13th consecutive prior day (lags 7–13); and for the
warm period: a) the same day exposure (lag 0), b) the previous
day exposure (lag 1), c) the exposure of 2 days back (lag 2), d)
the exposure of 3 days back (lag 3), and e) the average exposure
for the same and three previous days (lags 0–3) (Analitis et al.
2008; Baccini et al. 2008). In order to verify the temporal distri-
bution of the effects on mortality, we applied DLNMs as imple-
mented by Gasparrini et al. (2010) in R. The implementation of
these models requires the determination of two bases; one for the
space of mortality dependency on temperature and one for the
space of temperature effect time lag (Gasparrini 2011). Hence,
based on previous findings, we fitted a linear term for the asso-
ciation of each index with mortality during the cold period and a
threshold term during the warm period (Analitis et al. 2008;
Baccini et al. 2008). The threshold values for the DLNMs were
chosen a priori based on the inspection of graphs showing the
association of each index and the daily number of deaths in each
city (graphs not shown). The lagged effect of temperature on
mortality was estimated by a polynomial of 5th degree in time,
where the effect on a specific day was considered as the result of
at most 15 consecutive preceding days of exposure (which is the
maximum lag reported in the literature to date) in both the cold
and warm periods. When the index under study was the mean,
minimum, or maximum temperature, we additionally included a
term for the effect of relative humidity (lag 0 based on results of
previous studies (Barnett et al. 2010; Vaneckova et al. 2011).

The general form of the DLNMs was as follows:

log E Yc
t

� �� � ¼ βc j
0 þ NS timect ; 3⋅6

� �þ p
X15
i¼0

g xc jit
� �

; 5

 !

þ RHc j
t þ HOLc

t þ DOWc
t

ð3Þ

as a specific case of (2) where the mean relative humidity was
included as a linear termwithout time lag, while the g function

was linear for the cold period and followed a threshold asso-

ciation for the warm period. The term p ∑
15

i¼0
g xc jit
� �

; 5

� �
accounted for the temporal distribution of temperature effect
on mortality, where p was the 5th degree polynomial with a
maximum time lag of 15 days. There was no control for the
confounding effect of air pollution in these models.

Verification of the shape of the association

GAMs, as implemented by Wood (2000; Wood and Augustin
2002) in R, were used to verify that the association between
mortality and the temperature\humidity model specifications
is adequately expressed as linear in the cold period and as a J
shape in the warm. Under these models, we applied penalized
regression splines to describe the above associations. We ap-
plied these models for all temperature\humidity indices and
relevant lag structures that resulted from the DLNMs. Each
temperature index was included in as a penalized regression
spline with up to 10 df using cubic splines as basis functions.
When the mean, minimum, or maximum temperature was the
index applied, we also included a penalized regression spline
for the mean relative humidity, with the same lag structure as
for temperature.

The general form of the GAMs was as follows:

log E Yc
t

� �� � ¼ βc j
0 þ NS timect ; 3⋅6

� �þX
i

si x
c j
it ; ki

� �
þ
X

i

si RH
c j
it ; ki

� �þ HOLc
t þ DOWc

t

ð4Þ

as a specific case of (2) where the functions representing the
effect of each temperature index and of relative humidity on
mortality were penalized regression splines si with ki degrees
of freedom, while the index i referred to the time lag structure.
There was no term for the confounding effect of air pollution
in these models.

Choice of best model specification (index and lag)

Having determined the plausible expressions for the lags of
each index’s effect on mortality and the shape of the associa-
tion with mortality per period, we applied models of the form
(2) for every index and lag structure separately.

For the final models with threshold terms (i.e., for the warm
period), we used the iterative algorithm of Muggeo (2003,
2008) to estimate the threshold values. Setting an initial value
for every changing point, this algorithm estimates broken line
models (slope parameters and break points). We used three
different starting points for each index and lag structure per
city. The initial values’ choice was based on graphs (not
shown) representing the shape of association between each
index and number of deaths during warm period and varied
between cities. The algorithm estimated three potential thresh-
old values (one for every initial value) from which we chose
the minimum one per index and lag structure.

To evaluate the best temperature\humidity model specifi-
cation, we compared the models expressed by (2) using the
following criteria: 1) the Akaike information criterion (AIC)
for over-dispersed data (Bolker 2009; Peng et al. 2006), 2) the
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generalized cross-validation (GCV) as determined in the R
gam function (mgcv package; Wood 2001, 2004), and 3) the
partial autocorrelation function (PACF) criterion calculated as
the absolute value of the sum of the partial autocorrelations of
the residuals from lags 1 to 30 (Samoli et al. 2013; Touloumi
et al. 2006). Among the above criteria for model selection, the
AIC and GCV assess goodness of fit, while the PACF inves-
tigates the remaining autocorrelation. Our selection procedure
was based on sequential steps. We selected the best lag struc-
ture based on AIC for each index and then compared the
models with the selected lag structure. The values of GCV
and PACF criteria were estimated for all models with the lag
structure indicated by best AIC. For each city and period
(warm and cold), we define as Bbest^ the model specification
with the minimum model’s AIC, GCV, and PACF values
when the three criteria agreed. We expect AIC and GCV to
agree since they both assess model fit, but in case of discor-
dance between the two, we selected the model in which either
GCVor AIC and PACF are minimum. If the PACF and model
fit criteria (AIC and GCV) disagreed, then no model choice is
made.

Results

Descriptive statistics

City characteristics by season are presented in Table 1. The
population of the three cities together was almost 13 million
people. The mean daily total number of deaths ranged from 54
in Rome to 137 in London in warm season and from 62 in
Rome to 158 in London in the cold season and was slightly

elevated in all cities in the cold period. During the cold period,
the lowest mean values of ambient and apparent temperature
(8.6 and 6.5 °C, respectively) were observed in London, while
in the warm period, the highest mean levels were observed in
Athens (24.5 and 25.1 °C, respectively). The highest mean
levels of relative humidity were observed in Rome in both
periods and, although mean relative humidity declined during
the warm period in all cities, the mean value in Rome
remained above 70 %. The highest mean concentration of
NO2 was observed in Rome during the cold period (73.2 μg/
m3). NO2 mean concentration levels were lower in London
and Rome during the warm period, while they did not differ
by season in Athens. Mean levels of PM10 varied from
25.1 μg/m3 in London during warm period to 46.2 μg/m3 in
Rome during the cold period. Seasonality was inverse in
Athens and Rome between the warm and cold period; in
Athens, PM10 was highest in the warm period; in Rome, it
was highest in the winter, while no seasonality was observed
in London. O3 mean concentration levels were consistently
higher in the warm period compared to the cold for all cities.
The highest mean value of O3 concentration was observed in
Rome (108.0 μg/m3). These differences are due to the local
sources and their distribution as well as local climatic condi-
tions and topography (Harrison et al. 2006; Karanasiou et al.
2014).

In Table 2, the correlations between the temperature and
apparent temperature variables, mean relative humidity, and
mean dew point temperature are shown by season separately
for the three cities. It can be observed that the correlation
coefficients between the metrics of temperature are very high
in all cities. Mean relative humidity is moderately inversely
correlated with most of temperature metrics with the highest

Table 1 Mean value (standard deviation) for the city characteristics by season (cold period: October to March, warm period: April to September)

Variable Athens London Rome

Population: 3,073,000 Population: 6,905,000 Population: 2,775,000

Cold period Warm period Cold period Warm period Cold period Warm period

Daily number of deaths 81.6 (13.9) 73.8 (11.9) 157.6 (22.1) 137.1 (16.5) 61.7 (10.7) 53.8 (9.8)

Mean temperature (°C) 13.3 (5.0) 24.5 (5.2) 8.6 (3.7) 16.1 (4.1) 10.9 (4.7) 21.0 (4.70)

Minimum temperature (°C) 10.7 (4.9) 20.7 (4.9) 6.4 (3.7) 12.6 (3.8) 7.2 (5.0) 16.2 (4.4)

Maximum temperature (°C) 16.4 (5.7) 29.0 (5.8) 11.0 (3.9) 20.0 (4.8) 14.8 (4.7) 25.7 (5.3)

Mean apparent temperature (°C) 12.0 (6.2) 25.1 (6.5) 6.5 (4.1) 14.9 (4.9) 9.6 (5.9) 21.9 (6.0)

Minimum apparent temperature (°C) 9.2 (5.8) 20.9 (6.1) 4.1 (4.0) 11.3 (4.7) 5.5 (5.8) 16.5 (5.7)

Maximum apparent temperature (°C) 15.3 (6.9) 29.9 (7.3) 8.9 (4.4) 18.7 (5.6) 13.7 (5.9) 26.4 (6.3)

Relative humidity (%) 73.2 (11.9) 55.4 (13.4) 74.9 (8.4) 65.7 (9.7) 82.4 (11.2) 71.8 (12.7)

NO2 (μg/m
3) 57.5 (19.2) 58.1 (19.8) 47.8 (15.4) 39.0 (13.0) 73.2 (14.0) 63.9 (14.0)

PM10 (μg/m
3) 37.5 (18.0)a 44.8 (20.0) 25.5 (9.9) 25.1 (9.4) 46.2 (19.0) 40.7 (14.2)

O3 (μg/m
3) 43.0 (17.5) 79.2 (18.5) 25.2 (15.7) 41.3 (15.0) 46.5 (24.3) 108.0 (25.3)

a PM10 data available for the period 2001-2005
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Table 2 Pearson correlation coefficients between the temperature and apparent temperature variables, mean relative humidity and mean dew point
temperature in Athens, London, and Rome by cold and warm period

Mean
temperature

Minimum
temperature

Maximum
temperature

Mean apparent
temperature

Minimum
apparent
temperature

Maximum
apparent
temperature

Mean relative
humidity

Cold
period

Warm
period

Cold
period

Warm
period

Cold
period

Warm
period

Cold
period

Warm
period

Cold
period

Warm
period

Cold
period

Warm
period

Cold
period

Warm
period

Athens

Mean temperature 1 1

Minimum
temperature

0.97 0.98 1 1

Maximum
temperature

0.97 0.98 0.90 0.94 1 1

Mean apparent
temperature

0.97 0.97 0.97 0.96 0.95 0.94 1 1

Minimum
apparent
temperature

0.97 0.95 0.99 0.98 0.90 0.91 0.98 0.98 1 1

Maximum
apparent
temperature

0.97 0.94 0.92 0.92 0.99 0.95 0.98 0.98 0.93 0.94 1 1

Mean relative
humidity

–0.01 –0.48 0.03 –0.42 –0.09 –0.50 0.09 –0.27 0.10 –0.25 0.04 –0.26 1 1

Mean dew point
temperature

0.88 0.63 0.87 0.66 0.81 0.60 0.91 0.79 0.90 0.78 0.88 0.78 0.47 0.36

London

Mean temperature 1 1

Minimum
temperature

0.96 0.95 1 1

Maximum
temperature

0.96 0.97 0.87 0.86 1 1

Mean apparent
temperature

1.00 0.99 0.96 0.96 0.95 0.95 1 1

Minimum
apparent
temperature

0.96 0.94 1.00 0.99 0.86 0.86 0.96 0.97 1 1

Maximum
apparent
temperature

0.96 0.98 0.88 0.90 0.99 0.98 0.96 0.97 0.88 0.90 1 1

Mean relative
humidity

0.14 –0.19 0.20 0.00 0.03 –0.30 0.17 –0.08 0.22 0.05 0.09 –0.17 1 1

Mean dew point
temperature

0.91 0.83 0.91 0.89 0.83 0.73 0.92 0.88 0.91 0.91 0.86 0.81 0.53 0.39

Rome

Mean temperature 1 1

Minimum
temperature

0.95 0.95 1 1

Maximum
temperature

0.93 0.97 0.81 0.88 1 1

Mean apparent
temperature

0.99 0.98 0.95 0.97 0.92 0.93 1 1

Minimum
apparent
temperature

0.95 0.92 0.99 0.98 0.81 0.84 0.95 0.96 1 1

Maximum
apparent
temperature

0.95 0.96 0.85 0.92 0.98 0.95 0.95 0.98 0.85 0.90 1 1

Mean relative
humidity

0.22 –0.50 0.28 –0.33 0.10 –0.57 0.25 –0.33 0.29 –0.24 0.18 –0.35 1 1

Mean dew point
temperature

0.90 0.70 0.90 0.78 0.80 0.61 0.92 0.82 0.90 0.83 0.84 0.78 0.61 0.26
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correlation values observed for Rome in warm period.
Correlation coefficient of mean dew point temperature with
other temperature metrics is rather high and exceeds the value
of 0.80 in most cases. Thus, more than one temperature metric
or dew point and ambient temperature cannot be included in
the same regression model due to multicollinearity.

Final models

The lag structures chosen a priori based on the literature were
verified by the DLNMs. The shape of the association of mor-
tality with temperature and humidity used separately or as
apparent temperature was estimated by inspection of the shape
of the penalized regression splines in the framework of GAMs
for all the above lag structures. There was a linear association
between mortality and mean relative humidity irrespective of
the period, while between mortality and temperature, the as-
sociation was linear and inverse during the cold months and
was characterized by a J function for the warm period, i.e.,
absence of association for values less than a threshold and
linear and positive thereafter. This shape of association char-
acterized all indices in all three cities, with minor deviations
under different lag structures.

From the investigation of the temporal and functional form
of the association between mortality and temperature/humid-
ity, the resulting model for the cold period was model (5a) and
for the warm period model (5b)

log E Yc
t

� �� � ¼ βc j
0 þ NS timect ; 3⋅6

� �þX
i

xc jit

þ
X

i

RHc j
it þ lag01:POLc

t

� �þ HOLc
t þ DOWc

t

ð5aÞ

log E Yc
t

� �� � ¼ βc j
0 þ NS timect ; 3⋅6
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where u+=u if u>0 and 0 otherwise, u−=u if u<0 and 0 oth-
erwise; xi

cj represented the threshold value for temperature
index j and city c. If the index j was the mean, minimum, or
maximum apparent temperature, the term ∑

i
RHc j

it was set to
zero. The summation index i depended on the lag structure,
which was the same for temperature and relative humidity.

For illustration, Fig. 1 presents the results fromDLNMs for
the selected models by city and period. The temporal distribu-
tion of the effect of temperature onmortality is shown during a
period of 15 days. The effect is expressed as the relative risk of
death for a unit change in the temperature variable, i.e., a 1 οC
decrease for cold period and a 1 οC increase above the thresh-
old value for the warm months. Effects of temperature

exposure became evident 1 or 2 days later during the cold
period, while they remained high for the next 5 to 10 days
generally decreasing in magnitude, while in Athens and
Rome, a secondary peak can be seen around day 12. The
alternative lag structure using lags 1–13 and lag 0 as separate
variable indicate the same temporal pattern, with lag 0 being
not statistically significant in Rome and Athens. For the warm
period, the ambient or apparent temperature effect was acute
and lasted for fewer days. Specifically, the most severe effects
occurred on the day of exposure in all cities regardless of the
model specification used, while they were constantly decreas-
ing for the next 3 to 6 days. There was no evidence for signif-
icant or consistent mortality displacement in the data of the
cities under study.

Comparison of different model specifications for temperature
and humidity

Table 3 presents the statistical criteria values per model specifi-
cation for the selected lag structure for each period and city. In
most cases, within each city, there was a good agreement be-
tween the model fit criteria (AIC and GCV) as it was expected,
but differences were observed when using PACF. Cases where a
Bbest^ model could be selected (i.e, agreement of all three
criteria) are indicated in bold letters. It can be seen that a Bbest^
model could only be defined in London in the cold period and
Rome in the warm period. Therefore, the best model in terms of
goodness of fit and reduction of autocorrelation included mini-
mum daily temperature with delayed effects up to 13 days (av-
erage of lags 0–13) for London in the cold period andmean daily
temperature with delayed effects up to 3 days (average of lags 0–
3) for Rome in the warm period.

For all other cases, no choice could be made. Specifically,
although AIC and GCV indicated maximum daily temperature
lagged up to 13 days (average of lags 0–13) as the best choice for
Athens in cold period, the PACF criterion indicated minimum
daily temperature lagged up to 13 days (average of lags 0–13). In
the same city for warm period, the goodness of fit criteria showed
that the best choice was mean daily temperature with delayed
effects up to 3 days (average of lags 0-3), while PACF indicated
the same lag structure but maximum daily temperature as the
metric that best described daily number of deaths.

For London in the warm period, the goodness of fit
criteria indicated maximum daily apparent temperature
lagged up to 3 days (average of lags 0–3) as the best
choice, while PACF criterion indicated mean daily temper-
ature with delayed effects up to 3 days (average of lags 0–
3). For the case of Rome in cold period, there was no clear
distinction among the three criteria. AIC indicated mean
daily temperature lagged up to 13 days (average of lags
0–13), GCV indicated minimum daily temperature with de-
layed effects of 3 to 6 days (average of lags 3–6), while
PACF indicated maximum daily apparent temperature with
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the same lag structure as GCV. In summary, even though
there is inconsistency in the models chosen, in the majority
of cases, a model incorporating a separate variable for tem-
perature and humidity performed best.

Finally, inclusion of NO2, PM10, and O3, introduced alter-
natively in the models, did not affect the results as to city-
specific model fit and choice.

Discussion

We reported results from the first multi-city study in Europe
comparing the performance of models using different
Bexposure^ variables for the investigation of temperature
and humidity health effects. We used data from three cities
with different climatic conditions and focus on the use of

Fig. 1 Temperature effect on
mortality following 15 days
exposure by city and period.
Results of distributed lag non
linear models for (a) Athens,
using mean temperature for both
periods (threshold value 26 °C),
(b) London, using minimum
temperature for cold and
maximum apparent temperature
for warm period (threshold value
20 °C), and (c) Rome, using
minimum temperature for cold
period and mean temperature for
the warm one (threshold value
23 °C)
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separate temperature (minimum, maximum, and mean 24 h)
and relative humidity variables and on the use of Bapparent
temperature^, the composite index incorporating ambient and
dew point temperature which, despite some limitations, has
been used most extensively in health studies to date
(Anderson et al. 2013). Our results indicated that the choice

of the best variable(s) for modeling the effects under investi-
gation is not uniform in the different seasons and in different
cities. Thus, the best model specification may depend upon
the characteristics of each geographic location.

Although our findings illustrated the inadequacy of a uni-
form selection for a commonmodel across cities characterized

Table 3 Model fit statistical criteria per index and lag structure for each city and period analyzed

Temperature index and lag structure Prediction criteria

AIC GCV PACF

Athens

Cold period Mean temperature, lags 0–13 1431.82 1.323 0.093

Minimum temperature, lags 0–13 1433.35 1.325 0.059

Maximum temperature, lags 0–13 1428.27 1.320 0.092

Mean apparent temperature, lags 0–13 1434.09 1.325 0.117

Minimum apparent temperature, lags 0–13 1434.53 1.326 0.085

Maximum apparent temperature, lags 0–13 1430.78 1.322 0.119

Warm period Mean temperature, lags 0–3 1396.44 1.274 0.177

Minimum temperature, lags 0–3 1419.79 1.295 0.206

Maximum temperature, lags 0–3 1472.54 1.344 0.104

Mean apparent temperature, lag 0 1482.42 1.350 0.283

Minimum apparent temperature, lag 0 1490.17 1.357 0.308

Maximum apparent temperature, lags 0–3 1495.11 1.364 0.246

London

Cold period Mean temperature, lags 0–13 1301.04 1.202 0.066

Minimum temperature, lags 0–13 1296.88 1.198 0.040

Maximum temperature, lags 0–13 1310.79 1.211 0.115

Mean apparent temperature, lags 0–13 1303.89 1.205 0.073

Minimum apparent temperature, lags 0–13 1298.12 1.199 0.048

Maximum apparent temperature, lags 0–13 1311.52 1.212 0.112

Warm period Mean temperature, lags 0–3 1248.15 1.138 0.210

Minimum temperature, lags 0–3 1259.44 1.149 0.276

Maximum temperature, lags 0–3 1223.22 1.116 0.264

Mean apparent temperature, lag 1 1250.12 1.138 0.213

Minimum apparent temperature, lags 0–3 1271.44 1.160 0.285

Maximum apparent temperature, lags 0–3 1218.44 1.111 0.297

Rome

Cold period Mean temperature, lags 0–13 1290.24 1.265 0.101

Minimum temperature, lags 3–6 1325.30 1.237 0.020

Maximum temperature, lags 0–13 1330.39 1.286 0.053

Mean apparent temperature, lags 0–13 1299.57 1.274 0.061

Minimum apparent temperature, lags 3–6 1352.27 1.244 0.029

Maximum apparent temperature, lags 3–6 1342.81 1.253 0.007

Warm period Mean temperature, lags 0–3 1259.55 1.163 0.023

Minimum temperature, lags 0–3 1320.32 1.210 0.054

Maximum temperature, lags 0–3 1305.73 1.197 0.120

Mean apparent temperature, lags 0–3 1300.91 1.201 0.064

Minimum apparent temperature, lags 0–3 1386.73 1.271 0.064

Maximum apparent temperature, lags 0–3 1321.96 1.211 0.157

The final selection of indices and lag structure, whenever possible, is indicated in italic
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by different meteorological conditions, there was a good
agreement between cities on the lag structure of effect per
period, i.e., the cold effects are more prolonged compared
with the effects of heat, consistent with previous results
(Analitis et al. 2008; Baccini et al. 2008). Therefore, although
the most appropriate index describing the association between
mortality and temperature across cities is not unique and is
determined by the meteorological and, possibly, other
environmental or lifestyle characteristics of each city, within
a city, the indices may actually be similar and have a good
performance with no clear distinction. The same conclusion
was reached by Barnett et al. (2010) who compared mean,
minimum, and maximum temperature with or without adjust-
ment for humidity, apparent temperature, and humidex (dif-
ferent index also combining temperature and humidity) using
data from 107 U.S. cities during 1987–2000. Kim et al. (2011)
considered ambient, perceived, and apparent temperature as
heat stress indices, estimated the change of death risk for a 1
οC increase in each index for Seoul and Daegu in South Korea
and concluded that all temperature indices examined for the
warm period gave comparable results. Vaneckova et al. (2011)
compared different models assessing heat-related mortality in
Australia and concluded that heat indices could be used inter-
changeably with average temperature. A study conducted in
Taiwan (Lin et al. 2013) comparing eight different low tem-
perature indices on their ability to predict all causes mortality
and cardiopulmonary mortality and morbidity during the cold
season (November to April) concluded that mean air temper-
ature was the best index to evaluate mortality from all causes
and from circulatory diseases, while low temperature indices
were found inconsistent in assessing the risk of outpatient
visits. In the same setting, Lin et al. (2012) suggested that
apparent temperature was the best index for all cause mortality
effects evaluation, while maximum temperature was associat-
ed more adequately with outpatient visits in the warm period,
during the same years. An analysis conducted in New York
(Metzger et al. 2010) compared a maximum heat index with
alternative temperature metrics in models for the prediction of
daily all cause mortality fluctuations during the warm period
from 1997 to 2006. The comparison concluded that a model
including cubic functions of the heat index on the same and of
the previous three days gave a better fit than models using
maximum, minimum, or average (average value of minimum
and maximum) temperature, or than those using spatial syn-
optic classification (SSC) of weather type. Hajat et al. (2010)
compared the performance of criteria used by various Heat-
Health Warning Systems, which are often based on models
like the ones assessed in this study, in predicting the danger-
ously hot days and found little agreement between methods in
identifying the days with most excess mortality.

Most of the studies have used at least one criterion for
model fit to evaluate the performance of the various modeling
specifications. Thus, Kim et al. (2011), Lin et al. (2012) and

Lin et al. (2013) have used the AIC, while Barnett et al. (2010)
used ten-fold cross validation technique. Vaneckova et al.
(2011) compared their models using jackknife resampling
method, while Metzger et al. (2010) evaluated model fit using
percent deviance explained, first-order residual autocorrela-
tion and correlation of raw and predicted values on days with
heat index greater than 90o Fahrenheit. In our analysis, we
assessed the remaining autocorrelation in the residuals with
the use of the minimization of the PACF criterion. The latter is
specific to time series analysis in contrast to the AIC and GCV
which are criteria widely applicable for all types of models.
Inspection of the partial autocorrelation plot in time series is a
tool for the identification of the autoregressive order, while the
presence of statistically significant partial serial correlation in
model residuals in environmental epidemiology indicates that
effects of an omitted time-dependent covariate are still pres-
ent. Hence, minimizing this correlation seems a natural goal as
it also avoids the need to fit autoregressive terms in such
models. The fact that the model fit criteria did not agree with
the PACF in the best model choice may be expected as they
evaluate different aspects of model fitting, as the former are
prediction based criteria. We would like to suggest that the
PACF criterion may be more appropriate for time series de-
signs, as prediction criteria may result in inducing negative
autocorrelation in the model (Perrakis et al. 2014). The inspec-
tion of the selected models revealed that an index of daily
temperature as a separate variable (minimum, maximum, or
mean) introduced together with relative humidity is more of-
ten chosen compared to apparent temperature. The introduc-
tion of separate variables in the models allows for consider-
ation of any interrelation between temperature and humidity
whichmay characterize a specific location, while the introduc-
tion of a formula with a pre-defined association may in fact
restrict the adaptability of a health effects model. However, it
should be noted that although in some cases, the criteria used
for best model within each city and for a specific season did
not entirely agree, indicating that more than one model should
be applied as sensitivity analysis, in London, for the cold
season and Rome for the warm season, a more definitive se-
lection can be made. Thus, the model with minimum temper-
ature for lags 1–13 was uniformly chosen for London (cold
period) and the model including mean temperature for lags 0–
3 uniformly chosen for Rome (warm period).

Since the potential confounding effects of air pollution in
the association between temperature and health is well
established (Cheng and Kan 2011; Mackenbach et al. 1993;
O’Neill et al. 2005; Ren et al. 2008; Stafoggia et al. 2008;
Thurston and Ito 2001), we initially included NO2, O3 and
PM10 alternatively in all models. In the DLNMs and GAMs,
both the temporal distribution of the temperature effect and the
shape of temperature-mortality association remained sta-
ble (results not shown) independently of the inclusion of
all pollutants assessed. Hence, we included air pollution
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adjustment only in our final models used for the evalu-
ation of the best meteorological index.

A possible source of bias in our methodology is the use of
Muggeo’s algorithm (2003, 2008) to estimate the threshold
values for the mortality temperature association in the warm
period. This algorithm can be unstable for small samples and
may converge to local and not to global maxima (Armstrong
2006; Baccini et al. 2008), while the threshold estimation
depends fully on the algorithm’s initial values (Baccini et al.
2008). In order to account for these drawbacks, we used 6-
year data and three different starting points for each tempera-
ture index and each lag structure for each city. The initial
choice of values was based on graphs representing the shape
of association between each index and number of deaths and
could vary by city. The algorithm estimated three potential
threshold values (one for every initial value) from which we
chose the minimum one per index and lag structure.

In summary, our findings suggest that the optimal model is
modified by the city-specific characteristics. Within a city,
more than one combination of temperature-humidity index
and lag structure may perform in a similar way with no clear
distinction. However, ambient temperature included in the
model as a separate variable adjusting for relative humidity
performed slightly better than apparent temperature in most
cases for both the warm and cold period of the year. We con-
firm the prolonged effects of temperature in the cold period
regardless of the index used and suggest investigating the
autocorrelation structure in addition to model fit in time series
models. These results add information for future epidemiolog-
ical model building investigating the health effects of meteo-
rological variables and may inform policy makers as to the
optimal choice of index when considering health impact pre-
dictions and prevention measures.
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