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Abstract Understanding spatial and temporal dynamics of
land surface phenology (LSP) and its driving forces are critical
for providing information relevant to short- and long-term
decision making, particularly as it relates to climate response
planning. With the third generation Global Inventory Moni-
toring and Modeling System (GIMMS3g) Normalized Differ-
ence Vegetation Index (NDVI) data and environmental data
from multiple sources, we investigated the spatio-temporal
changes in the start of the growing season (SOS) in southern
African savannas from 1982 through 2010 and determined its
linkage to environmental factors using spatial panel data
models. Overall, the SOS occurs earlier in the north compared
to the south. This relates in part to the differences in ecosys-
tems, with northern areas representing high rainfall and dense
tree cover (mainly tree savannas), whereas the south has lower
rainfall and sparse tree cover (mainly bush and grass sa-
vannas). From 1982 to 2010, an advanced trend was observed
predominantly in the tree savanna areas of the north, whereas
a delayed trend was chiefly found in the floodplain of the
north and bush/grass savannas of the south. Different envi-
ronmental drivers were detected within tree- and grass-
dominated savannas, with a critical division being represented
by the 800 mm isohyet. Our results supported the importance
of water as a driver in this water-limited system, specifically
preseason soil moisture, in determining the SOS in these

water-limited, grass-dominated savannas. In addition, the re-
search pointed to other, often overlooked, effects of preseason
maximum and minimum temperatures on the SOS across the
entire region. Higher preseason maximum temperatures led to
an advance of the SOS, whereas the opposite effects of pre-
season minimum temperature were observed. With the rapid
increase in global change research, this work will prove help-
ful for managing savanna landscapes and key to predicting
how projected climate changes will affect regional vegetation
phenology and productivity.
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Introduction

Phenology is the study of the timing of recurring biological
cycles and their connection to climate (White and Thomton
1997; White et al. 2009). It can influence the exchange of
energy, water vapor, and momentum between the land surface
and the atmosphere and, therefore, is critical to understand the
global carbon and water cycles (Cong et al. 2013). Changes in
phenology also affect the abundance and distribution of spe-
cies (Enquist et al. 2014). In turn, changes in the timing of
vegetation phenology are widely considered to be one of the
most sensitive biological responses to climate change and an
excellent predictor of changes already underway (IPCC
2013). An earlier occurrence of spring phenology, which
closely correlates with rising temperatures, has been observed
in northern latitudes from both satellite measurements
(Myneni et al. 1997; White et al. 2009; Cong et al. 2013;
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Dai et al. 2013) and in situ observations (Menzel and Fabian
1999; Parmesan and Yohe 2003; Menzel et al. 2006). As such,
land surface phenology (LSP) research is of great importance
and an increase in phenology information is essential as this
facilitates the achievement of natural resource management
goals and supports informed decision making related to cli-
mate change (Enquist et al. 2014).

With the applications of remote sensing in monitoring and
characterizing vegetation phenology, the term LSP has been
used to refer to the seasonal patterns of variation in vegetated
land surfaces, particularly those observed using remote sens-
ing. LSP is distinguished from plant phenology which refers
to specific life cycle events such as budburst, flowering, or
leaf senescence using in situ observations of individual plants
and species (de Beurs and Henebry 2010). LSP is based upon
“wall-to-wall” observations of phenology at larger geographic
scales instead of plant-specific observations. The relationship
between satellite measures of LSP and specific plant
phenophases is still ambiguous (White et al. 2009; Beurs
and Henebry 2010), but landscape up-scaling approaches are
being developed to validate LSP from plot-level observations
(Liang et al. 2011). For this reason, the terms and definitions
about phenological metrics in LSP, as well as the methods to
derive these metrics, are diverse (White et al. 2009; Beurs and
Henebry 2010; Atkinson et al. 2012; Cong et al. 2013). For
example, the terms such as green-up onset, leaf-unfolding,
green wave, and start of the growing season (SOS) appear to
be interchangeable in the literature (White et al. 2009). Here,
we adopted the term SOS which most authors used to repre-
sent the spring phenophase.

Savannas are globally important ecosystems given they
support a large proportion of the world’s human population
and provide food and habitat for both livestock and wildlife.
While a characteristic feature of savanna systems is the coex-
istence of trees and grasses, tree cover is a chief determinant of
ecosystem properties. Studies have shown that the factors that
determine the structure and function of savanna systems vary
across physiographic gradients (Sankaran et al. 2005; Campo-
Bescós et al. 2013a, b; Zhu and Southworth 2013). Sankaran
et al. (2005) have reported that savannas receiving a mean
annual precipitation (MAP) of less than about 650 mmmay be
considered “stable systems” in which water constrains woody
cover and permits grasses to coexist. In contrast, savannas are
considered “unstable” above a MAP of about 650 mm and in
which disturbances are required for the coexistence of trees
and grasses. Campo-Bescós et al. (2013a, b) have found that
the environmental drivers of savanna vegetation growth ap-
pear to transition from being dominated by precipitation and
soil moisture in the grass-dominated regions with MAP
<750 mm, to being dominated by fire, potential evapotranspi-
ration (PET), and temperature in tree-dominated regions with
MAP >950 mm. Zhu and Southworth (2013) determined that
the relationship between mean annual net primary

productivity (NPP) and MAP varies with an increase in
MAP, characterized by a linear relationship that changes
abruptly whenMAP exceeds around 850–900mm in the same
southern Africa region. The potential distinction in environ-
mental factors that determine LSP among different savanna
types or across physiographic gradients is worth exploring.

Previous studies have identified the critical role of a single
factor (e.g., precipitation, soil moisture, or temperatures) in
affecting LSP of savannas. Chidumayo (2001) discovered that
the most important determinant of savanna phenology in
southern Africa was the interaction between minimum and
maximum temperatures. Zhang et al. (2005) found that well-
defined thresholds exist in cumulative rainfall that stimulates
vegetation green-up in arid and semi-arid African savannas.
However, few studies have been conducted to determine how
a suite of environmental covariates studied in concert control
the changes of phenology in savanna landscapes. In terms of
methodology, time-series or cross-sectional data analysis
methods are being adopted to explore the intra- and inter-
annual variations in vegetation growth and to examine their
driving forces, but no analysis has been made to incorporate
time-series and cross-sectional data simultaneously and to
consider both spatial and temporal heterogeneity. Our research
applied spatial panel data models to explore the spatial and
temporal dynamics of the SOS across key physiographic
gradients in southern Africa. Spatial panel data offers us
extended modeling possibilities as compared to a single
time-series or cross-sectional setting (Elhorst 2012).

The purpose of this study is to identify the dominant
environmental drivers of SOS in the Okavango–Kwando–
Zambezi (OKZ) catchments and how they vary across phys-
iographic gradients. Specifically, we addressed the following
research questions: (1) how does SOS change spatially and
temporally in the OKZ catchments from 1982 to 2010? and
(2) are there any differences in the driving factors of SOS
across different savanna landscapes?

Materials and methods

Study area

The OKZ catchment covers about 693,000 km2 in Zambia,
Angola, Namibia, and Botswana (Fig. 1a). The elevation
ranges from 800 to 1900 m. The combined basins have a
MAP range of 400–1400 mm. The high variability of intra-
and inter-annual rainfall within the OKZ catchment is due to
the movements of the Inter-Tropical Convergence Zone
(ITCZ), El Niño Southern Oscillation (ENSO) events, and
sea surface temperatures in the Indian and Atlantic Oceans
(Gaughan and Waylen 2012). The southern portion is charac-
terized by lower MAP and typically unpredictable patterns of
precipitation, while the northern portion has higher MAP and

1374 Int J Biometeorol (2015) 59:1373–1384



lower inter-annual variability (Fig. 1a). The intra-annual distri-
bution of precipitation is uneven although on average the rainy
season ranges from October to April and the dry season from
May to September. The majority of the Okavango and Kwando
catchments and the headwaters of all three basins are located in
Angola. Low topography in the south (especially in the Caprivi
region of Namibia and in northern Botswana) makes clear
hydrologic separation of the catchments difficult. Kalahari sand
characterizes a large portion of the region’s soil. Human settle-
ments are mainly distributed along the water courses, especially
along rivers in the Caprivi region of Namibia, which makes the
human–wildlife conflicts acute in the dry season (Chase and
Griffin 2009). Varied resource management approaches are
applied in response to significant climate variability, for exam-
ple, the establishment of protected areas.

Savanna is the dominant biome across the study area, in
spite of the climatic and edaphic gradients. Figure 1b illus-
trates the spatial pattern of savanna types as generated by the
Joint Research Center, European Commission. The detailed
land cover classes were aggregated into three categories: tree
savanna, bush savanna, and grass savanna. Tree savanna is
defined as a tree-dominated savanna with tree canopy cover
more than 15 % and canopy height more than 5 m; bush
savanna is defined as a shrub-dominated savanna type with
shrub canopy cover greater than 15 % and canopy height less
than 5 m with no or a sparse tree layer; and grassland savanna
is defined as a grass-dominated savanna type with herbaceous
cover greater than 15 % and tree and shrub canopy cover less
than 20 %. Tree savannas (tree-dominated) are largely distrib-
uted at higher elevations within the upper catchment, while a
composition of tree–shrub–grass (grass-dominated savannas)
is distributed in the lower catchment or at lower elevations
(Fig. 1). The dominant vegetation types are Drachystegia-
Julbernardia (miombo) woodland,Colophospermummopane
(mopane) woodland, and Acacia (munga or thorn) woodland.
The study area was divided into 56 zones by different precip-
itation intervals and boundaries of the three watersheds

(Fig. 1a). The gradients from north to south can be captured
by isohyets and potential variations in SOS and their drivers
from east to west (oceanic influence, topography, etc.), may be
considered by the three watersheds.

Data sets

Our study used the newly available Global Inventory Moni-
toring and Modeling System (GIMMS3g) Normalized Differ-
ence Vegetation Index (NDVI) data which were generated
from NOAA’s Advanced Very High Resolution Radiometer
(AVHRR) data in the framework of the GIMMS project at the
NASA Goddard Space Flight Center. The data set was proc-
essed in a way, consistent with, and quantitatively comparable
to, NDVI generated from improved sensors such as MODIS
and SPOT-4 Vegetation and was corrected for dropped scan
lines, navigation errors, data dropouts, edge-of-orbit compos-
ite discontinuities, and other artifacts (Tucker et al. 2005). The
empirical mode decomposition/reconstruction method was
applied to minimize the effects of orbital drift by removing
common trends between the time series of Solar Zenith Angle
and NDVI (Fensholt et al. 2013). Moreover, the data set used
the maximum NDVI value over a 15-day period to represent
each 15-day interval to minimize corruption of vegetation
signals from atmospheric effects, cloud contamination, and
scan angle effects at the time of measurement (Bi et al.
2013).The GIMMS3g NDVI data span from July 1981 to
December 2011 and have a spatial resolution of around
8 km and a temporal resolution of about 15 days. Despite
the corrections and temporal compositing, the GIMMS3g data
still contain residual invalid measurements, well indicated by
quality flags (de Jong et al. 2013). Any pixel, with a time
series having less than 80 % high-quality data points (flag=1
and flag=2) through the whole time span, was excluded from
our analysis. For the time points with “poor” quality (flag>2),
we used a gap-filling procedure to interpolate the NDVI
values of these time points (Jin et al. 2013).

Fig. 1 Geographic location of the
study area. a The study area is
divided into two regions: one with
mean annual precipitation (MAP)
more than 800 mm and another
with MAP less than 800 mm. The
spatial units within each region
are defined by MAP intervals and
boundaries of watersheds. b The
spatial pattern of savanna types
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We utilized theWillmott, Matsuura and Collaborators global
climatic data of monthly temperature, monthly precipitation,
and monthly PET from 1982 through 2010 (Table 1). They
have a spatial resolution of 0.5° by 0.5° with grid nodes
centered on 0.25°. These data sets improve on previous ones
due to the use of a refined Shepard interpolation algorithm and
an increased number of neighboring station points (Legates and
Willmott 1990). The grid nodes within and surrounding the
study area were interpolated into continuous surfaces at about
8×8 km resolution using the inverse distance weighted inter-
polation method. We also used the NCEP-DOE Reanalysis II
global maximum temperature, minimum temperature, and
downward solar radiation flux data with a format of the Global
T62 Gaussian grid. Such irregular Gaussian grids were con-
verted into continuous surfaces at 8×8 km resolution also by
the inverse distance weighted interpolation method. Downward
solar radiation refers to the shortwave radiation flux reaching
the Earth’s surface. It essentially depends on the solar zenith
angle, cloud coverage, and to a lesser extent on atmospheric
absorption and surface albedo. The Climate Prediction Center
(CPC) global monthly soil moisture data from 1982 to 2010
were used, which are at a spatial resolution of 0.5° with grid
nodes centered on 0.25°. The data are derived from a one-layer
“bucket” water balance model using CPC monthly precipita-
tion and temperatures as inputs (Fan and van den Dool 2004).

Methods

Determining the SOS

Two steps are usually applied to identify the SOS using
vegetation indices (VI) time-series (Zhang et al. 2005; White
et al. 2009; Cong et al. 2012, 2013). The first step is to depress
the noise and fit the shape of the VI curve using methods such

as harmonic analysis and piecewise functions (Jönsson and
Eklundh 2002; Jönsson and Eklundh 2004; Beurs and
Henebry 2010; Atkinson et al. 2012; Cong et al. 2012). The
second step is to calculate the SOSwhich can be considered as
the day of the year (DOY) that the VI crosses a specific
threshold of VI or VI ratio in an upward direction (White
et al. 2009), the DOY that the positive derivative of the VI
curve reaches the highest point (Cong et al. 2012, 2013), or the
DOY that the first local maxima of the curvature of the VI
curve appears (Zhang et al. 2005). Here, we used piecewise
functions to depress noise of the NDVI time series and defined
the DOYwhen the NDVI ratio crossed a threshold of 50%, as
the SOS. The asymmetric Gaussian (AG) function and the
double logistic (DL) function within the TIMESAT software
was used to smooth the NDVI time series of each pixel within
the study area from 1982 to 2010 (Eklundh and Jönsson
2012). A detailed description of the algorithm was given in
Eklundh and Jönsson (2012).

The Bayesian information criterion (BIC) was used to
measure the model performance by penalizing the number of
parameters, whose formula can be written as follows:

BIC ¼ T ln bσ2
� �� ��

þ k⋅ln Tð Þ ð1Þ

where T is the number of input data points, bσ2 is the error
variance, and k is the number of parameters. For the AG
function, k is equal to 7, and for the DL function, k is equal
to 6 (Atkinson et al. 2012).The lower the BIC value is, the
higher preference the model has. For a specific pixel, if the
BIC value for the AG function was smaller than that for the
DL function, the NDVI time series smoothed by the AG
function is selected to determine the SOS, and vice versa.
Here, the SOS was defined as the DOY that the NDVI ratio

Table 1 Variables used in the spatial panel data models and their respective data sources

Variable Symbol Data set Source

The start of the growing season SOS GIMMS3g 15-day NDVI http://ecocast.arc.nasa.gov/data/pub/gimms/3g

Preseason mean temperature meanT Matsuura and Willmott’s monthly
temperature

http://climate.geog.udel.edu/~climate/html_pages/
download.html#P2011

Preseason mean maximum
temperature

maxT NCEP-DOE Reanalysis II monthly
maximum temperature

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.
reanalysis2.gaussian.html

Preseason mean minimum
temperature

minT NCEP-DOE Reanalysis II monthly
manimum temperature

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.
reanalysis2.gaussian.html

Preseason total downward
solar radiation

Rad NCEP-DOE Reanalysis II monthly
downward solar radiation

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.
reanalysis2.gaussian.html

Preseason total precipitation P Matsuura and Willmott’s monthly
precipitation

http://climate.geog.udel.edu/~climate/html_pages/
download.html#P2011

Preseason mean potential
evapotranspiration

PET Matsuura and Willmott’s monthly PET http://climate.geog.udel.edu/~climate/html_pages/
download.html#P2011

Preseason mean soil moisture SoilW CPC monthly soil moisture http://www.esrl.noaa.gov/psd/data/gridded/tables/
monthly.html
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reaches 50 % of the highest NDVI ratio. The NDVI ratio
(NDVIratio(t)), which represents the state of the ecosystem, is
transformed from the NDVI by

NDVIratio tð Þ ¼ NDVIt−NDVImin

NDVImax−NDVImin
ð2Þ

where NDVIt is the NDVI value at time t, and NDVImax and
NDVImin are the maximum andminimum values of the annual
NDVI curve. A 50 % point suggests that a certain pixel has
attained 50 % of its maximum greenness. The justification for
the choice of the 50 % threshold is that the increase in
greenness is believed to be most rapid at this threshold.
Furthermore, the vegetation signals below this level tend to
be confounded with soil reflectance (White et al. 1997, 2009;
Beurs and Henebry 2010; Cong et al. 2013). Based on the
above method, we derived the SOS for each vegetated pixel
within our study area from 1982 to 2010.

Spatial panel data models

Spatial panel data models were used to quantify the empirical
relationships between environmental covariates and the SOS,
which can allow for both cross-sectional and time-period
dependence, and also enables researchers to consider hetero-
geneity (Lee and Yu 2010). Compared to more traditional
methods using cross-sectional or time-series data alone, spa-
tial panel data models can take into consideration inter-
individual and time-period differences and thus are widely
used in agricultural economics, transportation research, eco-
nomics, and land change science (Lee and Yu 2010; Wang
et al. 2013; Li et al. 2013).

A simple linear model between a dependent variable Yand
a set of K independent variables X is given as follows:

yit ¼ xitβ þ εit ð3Þ

where i (=1, …, N) represents a spatial unit, t (=1,…,T)
denotes a time period, and xit is an array of observations for
m independent variables ([N×T]×m). β is am×1 vector which
indicates fixed but unknown parameters, and εit is an inde-
pendently and identically distributed error term for all i and t
values, with zero mean and variance σ2. The main drawback
of this model is the failure to account for spatial and temporal
heterogeneity, because spatial units and time periods tend to
have spatial or temporal heterogeneity, and space- and time-
specific variables do influence the dependent variable.

One remedy is to incorporate a variable intercept μi and/or
γt representing the effect of the omitted variables that are
peculiar to each spatial unit and/or time period. A simple panel
data model with spatial specific effects is

yit ¼ μi þ xitβ þ εit ð4Þ

where μi denotes spatial specific effects. Likewise, a model
with time-period specific effects can be expressed as follows:

yit ¼ γt þ xitβ þ εit ð5Þ

where γt represents time-period specific effects. The spatial
and time-period specific model can be formulated as

yit ¼ μi þ γt þ xitβ þ εit ð6Þ

The spatial specific effects might be treated as fixed effects
or random effects. In the models with fixed effects, μi acts as a
dummy variable for each spatial unit, while in the models with
random effects, μi is treated as a random variable that is
independently and identically distributed with zero mean and
variance σμ

2. A similar differentiation is applicable to time-
period-specific effects. A likelihood ratio test is a statistical test
used to compare the fit of two models, one of which (the null
model) is a special case of the other (the alternative model).
Such tests are based on the likelihood ratio, which indicates
how many times more likely that the data are under one model
than the other (Vuong 1989; Elhorst 2009). A p value or a
comparison to a critical value can be computed to decide
whether to reject the null model in favor of the alternative
model. We ran likelihood ratio (LR) tests to justify the exten-
sion of the model with spatial and/or time-period fixed effects.

The specific effects models can be extended to include
spatial error autocorrelation and/or spatially lagged dependent
variables. For example, the spatial specific model including
spatial error autocorrelation can be specified as follows:

yit ¼ μi þ xitβ þ ϕit ð7Þ

ϕit ¼ λ
XN
j¼1

wi jϕ jt þ εit ð8Þ

where wij is an element of the spatial weights matrix, indicating
the proximity of two observational units. λ is usually called the
spatial autocorrelation coefficient. The spatial specific model
including a spatially lagged dependent variable can be written as

yit ¼ μi þ ρ
XN
j¼1

wi jy jt þ xitβ þ εit ð9Þ

where ρ refers to the spatial autoregressive coefficient.Wheth-
er the spatial lag model and/or the spatial error model are more
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appropriate to describe the data than a model without any
spatial interaction effects can be tested using the robust La-
grange multiplier (LM) test. The LM test is a statistical test of
a simple null hypothesis that a parameter of interest θ is equal
to some particular value θ0 (Buse 1982). The main advantage
of the LM test is that it does not require an estimate of the
information under the alternative hypothesis or unconstrained
maximum likelihood. The LR and LM test are asymptotically
equivalent tests of hypotheses. When testing nested models,
the statistics for each test converge to a chi-squared distribu-
tion with degrees of freedom equal to the difference in degrees
of freedom in the two models. The robust LM test can test for
a spatially lagged dependent variable in the presence of spatial
error autocorrelation, and for spatial error correlation in the
presence of a spatially lagged dependent variable (Elhorst
2012).

The SOS (response variable) and a suite of environmental
covariates (explanatory variables) from 1982 through 2010
were incorporated into spatial panel data models (Table 1).
The environmental variables include preseason mean temper-
ature (meanT), preseason mean maximum temperature
(maxT), preseason mean minimum temperature (minT), pre-
season total downward solar radiation (Rad), preseason total
precipitation (P), preseason mean potential evapotranspiration
(PET), and preseason mean soil moisture (soilW). For each
spatial unit and each year, we estimated the month in a given

year based on the SOS (the day of the year). If the SOS falls
into the first half of the month, the “preseason” is defined as
the 2 months before the month which the SOS falls. For
example, if the SOS is October 8, the combined August and
September are considered as the preseason period. If the SOS
falls into the second half of themonth, the preseason is defined
as the current and last month. For example, if the SOS is
October 30, the combined months, September and October,
are considered as the preseason period. The 2-month mean or
sum values were calculated for each spatial unit and each year.
The spatial patterns of the average of these environmental
covariates (1982–2010) are illustrated in Fig. 2. The time
series of response and explanatory variables were derived
from the average values of the 56 zones from 1982 to 2010
(Fig. 1a).

We calculated Pearson’s correlation coefficient between the
SOS and each environmental driver using pooled spatial panel
data (Table 2). The candidate environmental drivers have
significant correlation with the SOS in the region with MAP
less than 800 mm or in the region with MAP more than
800 mm. As for the region (MAP <800 mm), the variables,
meanT, minT, and PET have a positive correlation with the
SOS, indicating that their higher values tend to delay the
occurrence of the SOS. In contrast, the variables, maxT, P,
and SoilW have a negative relationship with the SOS, sug-
gesting that their higher values tend to advance the SOS. In

Fig. 2 Spatial patterns of the
mean environmental variables
(1982–2010): a preseason
temperature, b preseason
maximum temperature, c
preseason minimum temperature,
d preseason downward solar
radiation, e preseason
precipitation, f preseason
potential evapotranspiration, and
g preseason soil moisture
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regard to the region (MAP >800 mm), the driver, PET, has a
positive correlation with the SOS, whereas temperature-
related variables, Rad and P, have a negative correlation with
the SOS.

The spatial panel data of variables should be stationary so
that they can be included in the models (Li et al. 2013). Here,
we applied the test proposed byMoon and Perron (2004). The
null hypothesis is that each individual time series contains a
unit root, whereas the alternative hypothesis is that the spatial
panel data are stationary. Given space limitations, the detailed
description of the test can be found in Moon and Perron
(2004). The spatial panel data models, LR, and LM tests used
in this study were coded by the authors in MATLAB
(Mathworks Inc., Natick, MA, USA), based on the sample
MATLAB codes provided in Elhorst (2012).

Results

Spatial and temporal dynamics of the SOS

Figure 3 shows the spatial pattern of the difference between
the BIC of the AG function and the BIC of the DL function.
The area where the BIC for the AG function is higher than that
for the DL function accounts for 69.2 % of the study area,
whereas the area where the BIC for the AG function is lower
than that for the DL function accounts for 30.8 %. Overall, the
DL function is better in reducing noise and fitting the complex
shape of the NDVI curve than the AG function in our study
area. The selection of the function to smooth the NDVI time
series of a specific pixel depends on the performance to
remove noise. Figure 4a demonstrates the spatial pattern of
the mean SOS for the period 1982–2010. Generally, the SOS
in the north occurs earlier than the SOS in the south, suggest-
ing that the SOS is closely linked to the spatial pattern of
MAP. The average SOS was calculated for all MAP intervals,
and the segmented regression method was applied to fit these
data (Fig. 5). A turning point was detected at a MAP of about
805 mm, and the 800-mm isohyet can be considered as an
approximate division of grass-dominated and tree-dominated
savannas (Campo-Bescós et al. 2013a, b). Below this

threshold (mainly grass-dominated savannas), there is a sig-
nificant decreasing trend with a relatively large slope of
−0.08 day/mm, while above this threshold (mainly tree-
dominated savannas), there is a significant decreasing trend
with a relatively shallower slope of −0.02 day/mm. Figure 4b
shows the spatial pattern of changing trends in the SOS from
1982 to 2010. The trends were estimated using non-
parametric Mann-Kendall trend tests (Yu et al. 1993; Yue
et al. 2002). About 35.5 % of the study area shows a signif-
icant change in the SOS. A significantly advanced trend was
observed over about 18.6 % of the study area which is chiefly
distributed in the tree savanna areas of the north (Figs. 1b and
4b). A significantly delayed trend was observed over about
16.9 % of the study area which is mainly distributed in the
floodplain in the north and bush/grass savannas of the south.
Figure 6a shows the annual variations in the SOS of the study
area as a whole from 1982 to 2010. Trends differ among the
three time periods. From 1982 to 1990, there is a significant
delay in the SOS with a rate of 2.6 days per year; from 1991 to
1995, there is no significant trend; and from 1996 to 2010, the
SOS advances significantly at a rate of −1.2 days per year.

Table 2 Pearson’s correlation coefficients between the SOS and environmental drivers using pooled spatial panel data

meanT maxT minT Rad P PET SoilW

Region (MAP<800 mm) 0.68* −0.36* 0.22* 0.02 −0.18* 0.75* −0.24*
Region (MAP>800 mm) −0.59* −0.54* −0.20* −0.24* −0.32* 0.63* 0.04

The positive value suggests that a higher value of the specific driver causes a delay of the SOS, as the SOS is indicated by the day of the year. The
negative value implies that a higher value of the specific driver leads to an advance of the SOS

*p<0.05

Fig. 3 Spatial pattern of the difference between the Bayesian information
criterion (BIC) for the asymmetric Gaussian (AG) and the double logistic
(DL) functions
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Temporal changes of environmental drivers

Figure 6 shows the annual variations in the potential pre-
season environmental drivers of the SOS from 1982 to
2010. There is a significant increasing trend in meanT at
a rate of 0.05 °C per year (Fig. 6b). Figure 6c shows that a
turning point in 1997 is identified underlying the annual
variations of maxT. The factor, maxT, decreases at a rate of
−0.26 °C per year from 1982 to 1997, and an increase at a
rate of +0.30 °C per year from 1997 to 2010 is observed.
There is a significant increasing trend in minT from 1982
to 2010 at a rate of 0.05 °C per year (Fig. 6d). Figure 6e
illustrates the annual variations in radiation from 1982 to
2010. A turning point is detected in 1997, before which a
significant decreasing trend is observed and after which
there is a significant increasing trend. No significant trend
has been witnessed underlying the time series of preseason
precipitation (Fig. 6f). Figure 6g indicates that preseason
PET increases significantly at a rate 0.45 mm per year from
1982 to 2010. No significant trend is observed for presea-
son soil moisture (Fig. 6h). Spatial panel data for all the
above driving variables were included in the models.

Model selection

Spatial panel data models were run in the region with MAP
above 800 mm (defined as tree-dominated savanna region)
and the region with MAP below 800 mm (defined as grass-
dominated savanna region), respectively based on the
breakpoint identified in Fig. 5. There were 22 spatial units
for the grass-dominated savanna regions and 34 spatial units
for the tree-dominated savanna regions. The Global Moran’s I
for each year of both regions was calculated based on both
spatial units and their SOS values. The Global Moran’s I can
measure spatial autocorrelation to show whether the spatial
pattern is clustered, dispersed, or random. Except for the years
1993, 1995, and 2001, the spatial patterns of the SOS for all
years show clustered patterns in grass-dominated savannas.
Except for the years 2001, 2002, and 2008, the spatial patterns
of the SOS for all years also demonstrate clustered patterns.
Therefore, it is necessary to include spatial autocorrelation
into the regression models, and the spatial panel data models
are good options. Table 3 shows the results of the stationarity
test for the spatial panel data of response and explanatory
variables. The results suggest that all the tests reject the null
hypothesis, which implies the spatial panel data for all the
variables are stationary.

The variance inflation factor (VIF) quantifies the severity
of multicollinearity in a multiple linear regression analysis
(Gujarati 2004). It is an index that measures how much the
variance of an estimated regression coefficient is increased
due to collinearity. A common rule of thumb is that if VIF is
more than 10, then multicollinearity is high. To avoid
multicollinearity, we ran multiple linear regression models
using the pooled spatial panel data of both regions, respec-
tively, and removed the variables with VIF values more than
10. This led to the exclusion of the meanT and PET from
models due to their multicollinearity. Table 4 demonstrates the
robust LM test results which determine whether the spatial lag
model and/or the spatial error model are more appropriate. For

Fig. 4 Spatial and temporal
patterns the start of the growing
season (SOS): a the mean SOS
and b changing trends in the SOS
from 1982 to 2010. The positive τ
indicates a delayed trend of the
SOS, whereas the negative τ
suggests an advanced trend of the
SOS

Fig. 5 The linear relationship between the start of the growing season
(SOS) and mean annual precipitation (MAP). Piecewise linear regression
was applied to fit the data
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the grass-dominated savanna region, the hypothesis of no
spatially lagged dependent variable or no spatially
autocorrelated error term must be rejected on the presence of
one of the above variables, irrespective of the inclusion of
spatial and/or time-period fixed effects. Similar results were
observed for the tree-dominated savanna region. For both
regions, the LR tests justify the extension of the model with

both spatial and time-period fixed effects. Overall, the test
results imply that the spatial and time-period fixed models,
including spatial error autocorrelation and spatially lagged
dependent variables, are more appropriate to describe the data.

Fig. 6 Annual variations in a the
start of the growing season and
potential environmental driving
factors of the SOS: b preseason
temperature, c preseason
maximum temperature, d
preseason minimum temperature,
e preseason downward solar
radiation, f preseason
precipitation, g preseason
potential evapotranspiration, and
h preseason soil moisture

Table 3 Stationarity tests for the spatial panel data of response and
explanatory variables

Region (MAP <800 mm) Region (MAP >800 mm)

SOS −23.6* −32.3*
meanT −25.8* −42.6*
maxT −23.4* −26.0*
minT −22.5* −43.2*
Rad −25.9* −24.7*
P −29.1* −42.9*
PET −23.0* −39.0*
soilW −28.1* −35.1*

*p<0.05

Table 4 The robust Lagrange multiplier (LM) test results which are to
determine whether the spatially lagged dependent variable (lagged vari-
able) and/or spatially autocorrelated error term should be included in the
model

Region (MAP <800 mm) Region (MAP >800 mm)

Robust LM
(lagged
variable)

Robust LM
(error term)

Robust LM
(lagged
variable)

Robust LM
(error term)

Pooled 30.9** 29.9 ** 15.8** 33.6**

Spatial fixed 58.0** 13.6** 17.4** 28.7**

Time-period
fixed

27.0** 6.0* 12.9** 4.4*

Spatial and
time-period
fixed

15.1** 4.0* 12.3** 5.4*

*p<0.05; **p<0.01

Int J Biometeorol (2015) 59:1373–1384 1381



Relationships between environmental factors and the SOS

The environmental factors that significantly drive the SOS are
different between the two regions (Table 5). In the grass-
dominated region (MAP <800 mm), minT has a significant
and positive correlation with the DOYof the SOS, suggesting
that lower minT results in an advance of the SOS. The factor,
maxT, has a significant and negative correlation with the DOY
of the SOS, implying that higher maxT tends to advance the
SOS. Higher soilW relates to an earlier occurrence of the SOS
in such water-limited regions as indicated by the negative
correlation between soilW and DOY of the SOS. The spatial
autoregressive coefficient indicates that the SOS of a spatial
unit correlates positively with the SOS of surrounding spatial
units. For the region of tree-dominated savannas, both minT
and maxTcorrelate negatively with the DOYof the SOS, such
that a decrease in maxT and minT results in an advance in the
SOS. It should be noted that the variable, radiation, is also
detected as a significant driving factor of the SOS. The spatial
autoregressive coefficient implies that the SOS of a spatial
unit correlates positively with that of surrounding spatial units.

Discussion

The accuracy and reliability of techniques to estimate
phenophases from remotely sensed time series, whose appli-
cations are usually hindered by noise chiefly due to atmo-
spheric conditions and sun-sensor-surface viewing geomet-
rics, is critically important to the global change research
community (Atkinson et al. 2012). We evaluated the perfor-
mance of two different techniques to remove noise from the
NDVI time series and then used the technique that better
modeled the complex shape of the NDVI curve for each pixel.

Our research used the NDVI ratio, which can better represent
the state of an ecosystem, to detect the phenophase of spring
phenology. Moreover, the increase in greenness is believed to
be most rapid at a 50 % threshold (White et al. 1997, 2009;
Beurs and Henebry 2010).While numerous methods exist to
extract phenological metrics from the time-series satellite data,
it is critical to choose the “right”model for the “right” place, as
has been determined from multiple method comparisons or
evaluations based on plot-level data (White et al. 2009; Liang
et al. 2011; Cong et al. 2012). The findings of this study are
useful for understanding the complexity of savanna systems.
Savanna ecosystems are characterized by the co-dominance of
two contrasting plant life forms—trees and grasses. Vegeta-
tion phenology of savannas influences both plant production
and has profound impacts on several aspects of ecosystem
function. Studies have proved that the factors that determine
woody cover or NDVI of savanna systems were distinct with
different tree cover, and a breakpoint related to MAP was
usually detected (Sankaran et al. 2005; Campo-Bescós et al.
2013a, b; Zhu and Southworth 2013). The most conspicuous
characteristic of the results is that the linear relationship be-
tween the SOS and MAP changes abruptly when MAP ex-
ceeds about 805mm in our study area, as grass-dominated and
tree-dominated savannas are largely distributed below and
above such a threshold, respectively. Whether this range is
applicable to other savanna ecosystems still needs further
research. The spatial pattern of the SOS provides information
on key aspects of vegetation seasonality. The SOS of tree-
dominated savannas, found here at higher elevations, occurs
earlier than that of grass-dominated savannas, which supports
previous studies (De Bie et al. 1998; Chidumayo 2001).
Therefore, there is a tremendous potential for characterizing,
classifying, and mapping vegetation based on such phenolog-
ical information (Wessels et al. 2011).

Our research determined the spatial and temporal var-
iations of the SOS for the entire study area using a robust
Mann–Kendall trend test. A significant advance of the
SOS was mainly found in tree-dominated savannas of
the north from 1982 to 2010, and a delay of the SOS
was observed in the grass-dominated savannas in the
south. The change in the SOS over time may affect
vegetation primary production, but this is worth much
more research as other phenophases and environmental
factors are also subject to change (Richardson et al.
2010). The implications of these results are important
not only for the vegetation but the ecosystem as a whole.
The new leaves are the major source of food for many
browsers at the end of dry season, a time when all herbi-
vores are struggling to fulfill their metabolic require-
ments. Therefore, a delay or advance of the SOS can
influence the spatio-temporal variability of forage avail-
ability, and the survival and reproductive success of many
herbivores (Archibald and Scholes 2007).

Table 5 The results of the spatial panel data models for the two regions

Region (MAP <800 mm) Region (MAP >800 mm)

Coefficient t value Coefficient t value

minT 0.14* 5.7 −0.38* 13.8

maxT −0.35* −12.3 −0.30* −14.2
Rad −0.01 −0.4 −0.09* −0.4
P 0.02 0.6 0.01 0.4

soilW −0.11* −3.5 −0.04 −1.2
ρ 0.35* 3.3 0.17* 3.2

λ 0.05 0.4 0.23* 3.8

The positive value indicates an increase in the value of environmental
variables leading to a delay of the SOS; the negative value indicates an
increase in the value of environmental variables leading to an advance of
the SOS

*p<0.05
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Understanding the driving forces of land surface phenology
is critical to assess the impact of future climate change on
vegetation growth. Two regions divided by this threshold ap-
proximately correspond to tree- and grass-dominated savannas
in our study area. Our study highlights the use of the spatial
panel data models to figure out the differences in driving factors
of the SOS between tree-dominated savannas (MAP >800mm)
and grass-dominated savannas (MAP <800 mm). The variables
maxT and minT are identified as significant influencing factors
of the SOS. HighermaxT tends to result in an earlier occurrence
of the SOS in both regions, suggesting that higher daytime
maximum temperatures can prompt more rapid vegetation
green-up in spring. The opposite impacts of minT are observed
in tree- and grass-dominated savannas. The reason might be
that the higher temperatures indicated by minT are more likely
to enhance water evaporation, causing a decrease in plant water
availability in these already water-limited, grass-dominated
savannas. Increased water demands resulting from higher tem-
peratures can be met in tree-dominated savannas where water
supplies are relatively more abundant. Our research identified
preseason soil moisture as a significant influencing factor in
grass-dominated savannas. The importance of water has also
been proven by previous studies (Zhang et al. 2005; Jolly et al.
2005), and soil water exerts a more direct influence on plant
water availability. In tree-dominated savannas, spring radiation
makes a partial contribution to the change in the SOS, as
radiation can affect vegetation photosynthetic activity and fur-
ther vegetation primary production (Nemani et al. 2003). Be-
yond the dynamic environmental factors included in the
models, Brown et al. (2010) found that the SOS correlates
significantly with the large-scale oscillations indicated by dif-
ferent measures such as the Multivariate ENSO Index (MEI)
and the Indian Ocean Dipole (IOD). However, we did not
consider these potential factors, as they are closely correlated
to precipitation fluctuations which we have included in our
models (Gaughan and Waylen 2012). The model tests justify
the inclusion of the spatial and temporal fixed effects, which
indicates that spatial and temporal heterogeneity does affect the
robustness of statistical models. The models in our study
accounted for spatial autocorrelation terms, but did not consider
serial autocorrelation of the dependent variables as no signifi-
cant serial autocorrelation was detected underlying the SOS
time series (Lee and Yu 2010).

In conclusion, based on remotely sensed data and environ-
mental data from multiple sources, we derived the spatial and
temporal dynamics of the SOS and then disentangled its
relationship with environmental factors across the physio-
graphic gradients in southern African savanna systems from
1982 to 2010. The research identified the spatial panel data
model with spatial and temporal fixed effects and including
spatial error autocorrelation and spatially lagged dependent
variables to be more appropriate to describe the data. The SOS
occurs earlier in the north in areas of higher MAP and dense

tree cover (mainly tree savannas), and later in the south, in
areas of lower MAP and sparse tree cover (mainly grass or
bush savannas). From 1982 to 2010, an advancing trend was
observed in the tree savanna areas of the north, whereas a
delayed trend was found in the floodplain of the north and
bush/grass savannas of the south. The study permitted analysis
of shared effects of potentially important environmental var-
iables on the SOS within tree-dominated and grass-dominated
savannas, which were divided by the isohyet of 800 mm. In
contrast, most previous studies of phenology in southern
Africa have focused on individual relationships between phe-
nology and one or two variables, highlighting some of the
trends relating to individual factors. Different environmental
drivers were detected within two different savanna types. Our
results supported the importance of the water-related factor,
preseason soil moisture, in affecting the SOS significantly
only in water-limited and grass-dominated savannas. Also,
our research pointed to more often overlooked environmental
drivers, specifically preseason maximum temperature and
minimum temperature, which were identified as significant,
influencing factors in both regions. Further research is needed
to understand underlying mechanisms and to validate the
results in savanna landscapes. In terms of climate variability
and future climate change across this region, both vegetation
type and environmental factors are essential to understand
different savanna landscapes and the impacts of likely future
climate change. This study can better evaluate and understand
landscape level changes in land surface phenology. Further-
more, the examinations of changing mechanisms of spring
phenology are useful to managers and researchers and key to
predicting how projected climate changes will affect regional
vegetation phenology and productivity.

Acknowledgments The authors wish to thank Range Myneni, Jorge
Pinzón, and Zaicun Zhu for the provision of the GIMMS3g NDVI data.
This work was supported by the NASA Land Cover/Land Use Change
Program under Grant No. NNX09AI25G, titled “Understanding and
predicting the impact of climate variability and climate change on land
use/land cover change via socioeconomic institutions in Southern Africa”
(PI: Jane Southworth, University of Florida).

References

Archibald S, Scholes RJ (2007) Leaf green-up in a semi-arid African
savanna: separating tree and grass responses to environmental cues.
18:583–594

Atkinson PM, Jeganathan C, Dash J, Atzberger C (2012) Inter-comparison
of four models for smoothing satellite sensor time-series data to
estimate vegetation phenology. Remote Sens Environ 123:400–417

Bi J, Xu L, Samanta A et al (2013) Divergent Arctic-boreal vegetation
changes between North America and Eurasia over the Past 30 Years.
Remote Sens 5:2093–2112

Brown ME, de Beurs K, Vrieling A (2010) The response of African land
surface phenology to large scale climate oscillations. Remote Sens
Environ 114:2286–2296

Int J Biometeorol (2015) 59:1373–1384 1383



Buse A (1982) The likelihood ratio, Wald, and Lagrange multiplier tests:
an expository note. Am Stat 36:153–157

Campo-Bescós MA, Muñoz-Carpena R, Kaplan DA et al (2013a)
Beyond precipitation: physiographic gradients dictate the relative
importance of environmental drivers on Savanna vegetation. PLoS
One 8:e72348

Campo-Bescós MA, Muñoz-Carpena R, Southworth J et al (2013b)
Combined spatial and temporal effects of environmental Controls
on long-term monthly NDVI in the Southern Africa Savanna.
Remote Sens 5:6513–6538

Chase MJ, Griffin CR (2009) Elephants caught in the middle: impacts of
war, fences and people on elephant distribution and abundance in
the Caprivi Strip, Namibia. Afr J Ecol 47:223–233

Chidumayo EN (2001) Climate and phenology of savanna vegetation in
southern Africa. J Veg Sci 12:347–354

Cong N, Piao S, Chen A et al (2012) Spring vegetation green-up date in
China inferred from SPOT NDVI data: a multiple model analysis.
Agric For Meteorol 165:104–113

Cong N, Wang T, Nan H et al (2013) Changes in satellite-derived spring
vegetation green-up date and its linkage to climate in China from 1982
to 2010: a multimethod analysis. Glob Chang Biol 19:881–891

Dai J, Wang H, Ge Q (2013) The spatial pattern of leaf phenology and its
response to climate change in China. Int J Biometeorol. doi:10.1007/
s00484-013-0679-2

De Beurs KM, Henebry GM (2010) Spatio-temporal statistical methods
for modelling land surface phenology. In: Hudson IL, Keatley MR
(eds) Phenol. Res. Springer, Netherlands, pp 177–208

De Bie S, Ketner P, PaasseM, Geerling C (1998)Woody plant phenology
in the West Africa savanna. 25:883–900

De Jong R, Verbesselt J, Zeileis A, Schaepman M (2013) Shifts in global
vegetation activity trends. Remote Sens 5:1117–1133

Eklundh L, Jönsson P (2012) TIMESAT 3.1 Software Manual 1–82
Elhorst JP (2009) Spatial panel data models. In Fischer MM, Getis A

(Eds.) Handbook of applied spatial analysis, 377–407
Elhorst JP (2012)Matlab Software for spatial panels. Int Reg Sci Rev 1–22
Enquist CAF, Kellermann JL, Gerst KL, Miller-Rushing AJ (2014)

Phenology research for natural resource management in the United
States. Int J Biometeorol. doi:10.1007/s00484-013-0772-6

Fan Y, van den Dool H (2004) Climate Prediction Center global monthly
soil moisture data set at 0.5° resolution for 1948 to present. J
Geophys Res 109:D10102

Fensholt R, Rasmussen K, Kaspersen P et al (2013) Assessing land
degradation/recovery in the African Sahel from long-term earth
observation based primary productivity and precipitation relation-
ships. Remote Sens 5:664–686

Gaughan AE, Waylen PR (2012) Spatial and temporal precipitation
variability in the Okavango–Kwando–Zambezi catchment, southern
Africa. J Arid Environ 82:19–30

Gujarati DN (2004) Basic econometrics (4th eds). McGraw-Hill
Education, New York

IPCC (2013) In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK,
Boschung J, Nauel A, Xia Y, Bex V, Midgley PM (eds) Climate
change 2013: The physical science basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change. Cambridge University Press, Cambridge

Jin C, Xiao X, Merbold L et al (2013) Phenology and gross primary
production of two dominant savanna woodland ecosystems in
Southern Africa. Remote Sens Environ 135:189–201

Jolly WM, Nemani R, Running SW (2005) A generalized, bioclimatic
index to predict foliar phenology in response to climate. Glob Chang
Biol 11:619–632

Jönsson P, Eklundh L (2002) Seasonality extraction by function fitting to
time-series of satellite sensor data. IEEE Trans Geosci Remote Sens
40:1824–1832

Jönsson P, Eklundh L (2004) TIMESAT—a program for analyzing time-
series of satellite sensor data. Comput Geosci 30:833–845

Lee L, Yu J (2010) Some recent developments in spatial panel data
models. Reg Sci Urban Econ 40:255–271

Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in
gauge-corrected, global precipitation. Int J Climatol 10:111–127

Li S, Xie Y, Brown DG et al (2013) Spatial variability of the adaptation of
grassland vegetation to climatic change in Inner Mongolia of China.
Appl Geogr 43:1–12

Liang L, Schwartz MD, Fei S (2011) Validating satellite phenology
through intensive ground observation and landscape scaling in a
mixed seasonal forest. Remote Sens Environ 115:143–157

Menzel A, Fabian P (1999) Growing season extended in Europe. Nature
397:659

Menzel A, Sparks TH, Estrella N et al (2006) European phenological
response to climate change matches the warming pattern. Glob
Chang Biol 12:1969–1976

Moon HR, Perron B (2004) Testing for a unit root in panels with dynamic
factors. J Econom 122:81–126

Myneni RB, Keeling CD, Tucker CJ et al (1997) Increasing plant growth in
the northern high latitude from 1981 to 1991. Nature 386:698–702

Nemani RR, Keeling CD, Hashimoto H et al (2003) Climate-driven
increases in global terrestrial net primary production from 1982 to
1999. Science 300:1560–1563

Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate
change impacts across natural systems. Nature 421:37–42

Richardson AD, Black TA, Ciais P et al (2010) Influence of spring and
autumn phenological transitions on forest ecosystem productivity.
Philos Trans R Soc Lond B Biol Sci 365:3227–3246

Sankaran M, Hanan NP, Scholes RJ et al (2005) Determinants of woody
cover in African savannas. Nature 438:846–849

Tucker C, Pinzon J, Brown M et al (2005) An extended AVHRR 8-km
NDVI dataset compatible with MODIS and SPOT vegetation NDVI
data. Int J Remote Sens 26:4485–4498

Vuong QH (1989) Likelihood ratio tests for model selection and non-
nested hypothesis. Econometrica 57:307–333

Wang J, Brown DG, Chen J (2013) Drivers of the dynamics in net
primary productivity across ecological zones on the Mongolian
Plateau. Landsc Ecol 28:725–739

Wessels K, Steenkamp K, von Maltitz G, Archibald S (2011) Remotely
sensed vegetation phenology for describing and predicting the bi-
omes of South Africa. Appl Veg Sci 14:49–66

White A, Thomton PE (1997) A continental responses phenology model
climatic for monitoring variability vegetation to interannual. 11:
217–234

White M, Thomton P, Running S (1997) A continental phenology model
for monitoring vegetation responses to interannual climatic variabil-
ity. Glob Bogeochem Cycle 11:217–234

White MA, de BEURS KM, Didan K et al (2009) Intercomparison,
interpretation, and assessment of spring phenology in North
America estimated from remote sensing for 1982-2006. Glob
Chang Biol 15:2335–2359

Yu YS, Zou SM, Whittemore D (1993) Nonparametric trend analysis of
water-quality data of rivers in Kansas. J Hydrol 150:61–80

Yue S, Pilon P, Cavadias G (2002) Power of the Mann–Kendall and
Spearman’s rho tests for detecting monotonic trends in hydrological
series. J Hydrol 259:254–271

Zhang X, Friedl MA, Schaaf CB, Strahler AH (2005) Monitoring the
response of vegetation phenology to precipitation in Africa by
coupling MODIS and TRMM instruments. J Geophys Res 110:
D12103. doi:10.1029/2004JD005263

Zhu L, Southworth J (2013) Disentangling the relationships between net
primary production and precipitation in Southern Africa savannas
using satellite observations from 1982 to 2010. Remote Sens 5:
3803–3825

1384 Int J Biometeorol (2015) 59:1373–1384

http://dx.doi.org/10.1007/s00484-013-0679-2
http://dx.doi.org/10.1007/s00484-013-0679-2
http://dx.doi.org/10.1007/s00484-013-0772-6
http://dx.doi.org/10.1029/2004JD005263

	Comparison...
	Abstract
	Introduction
	Materials and methods
	Study area
	Data sets
	Methods
	Determining the SOS
	Spatial panel data models


	Results
	Spatial and temporal dynamics of the SOS
	Temporal changes of environmental drivers
	Model selection
	Relationships between environmental factors and the SOS

	Discussion
	References


