
ORIGINAL PAPER

Climate change and heat-related mortality in six
cities Part 2: climate model evaluation and projected
impacts from changes in the mean and variability
of temperature with climate change

Simon N. Gosling & Glenn R. McGregor & Jason A. Lowe

Received: 20 February 2008 /Revised: 4 October 2008 /Accepted: 4 October 2008 / Published online: 4 December 2008
# ISB 2008

Abstract Previous assessments of the impacts of climate
change on heat-related mortality use the “delta method” to
create temperature projection time series that are applied to
temperature–mortality models to estimate future mortality
impacts. The delta method means that climate model bias in
the modelled present does not influence the temperature
projection time series and impacts. However, the delta
method assumes that climate change will result only in a
change in the mean temperature but there is evidence that
there will also be changes in the variability of temperature
with climate change. The aim of this paper is to demon-
strate the importance of considering changes in temperature
variability with climate change in impacts assessments of
future heat-related mortality. We investigate future heat-
related mortality impacts in six cities (Boston, Budapest,
Dallas, Lisbon, London and Sydney) by applying tempera-
ture projections from the UK Meteorological Office

HadCM3 climate model to the temperature–mortality mod-
els constructed and validated in Part 1. We investigate the
impacts for four cases based on various combinations of
mean and variability changes in temperature with climate
change. The results demonstrate that higher mortality is
attributed to increases in the mean and variability of tem-
perature with climate change rather than with the change in
mean temperature alone. This has implications for inter-
preting existing impacts estimates that have used the delta
method. We present a novel method for the creation of
temperature projection time series that includes changes in
the mean and variability of temperature with climate change
and is not influenced by climate model bias in the modelled
present. The method should be useful for future impacts
assessments. Few studies consider the implications that the
limitations of the climate model may have on the heat-
related mortality impacts. Here, we demonstrate the
importance of considering this by conducting an evaluation
of the daily and extreme temperatures from HadCM3,
which demonstrates that the estimates of future heat-related
mortality for Dallas and Lisbon may be overestimated due
to positive climate model bias. Likewise, estimates for
Boston and London may be underestimated due to negative
climate model bias. Finally, we briefly consider uncertain-
ties in the impacts associated with greenhouse gas
emissions and acclimatisation. The uncertainties in the
mortality impacts due to different emissions scenarios of
greenhouse gases in the future varied considerably by
location. Allowing for acclimatisation to an extra 2°C in
mean temperatures reduced future heat-related mortality by
approximately half that of no acclimatisation in each city.
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Introduction

One of the most serious threats to both human life and
current lifestyles is climate change (IPCC 2007). Even if
the atmospheric concentrations of greenhouse gases in the
atmosphere were stabilised today, mean global temperature
would continue to rise due to the unrealised effect of past
climate forcing increases (Meehl et al. 2005). Future
increases in greenhouse gas concentrations, from future
emissions, will add to the committed warming thus leading
to even higher mean global temperatures. Extremes of
climate are also likely to change in the future. An increased
risk of more intense, more frequent and longer-lasting heat
waves in a warmer future climate are likely, and extreme
events such as the European heat wave in 2003 would
become more common (Meehl et al. 2007; Stott et al. 2004;
Beniston and Diaz 2004).

Several studies have attempted to estimate the impacts of
future climate change on heat-related mortality, and a
detailed and critical review of these is provided by Gosling
et al. (2008). The methods employed in these studies
usually involve applying a mean climate warming to the
observed present-day climate to create a temperature
projection time series that can be applied to the observed
present temperature–mortality relationship. The degree of
climate warming is calculated as the difference between the
future period and present period mean temperatures, as
estimated by climate models, to give a temperature
anomaly. This is commonly known as the “delta method”
(Déqué 2007).

To apply the delta method, some studies use a climate
model that has been run for present carbon dioxide
concentrations (1 × CO2) to represent present temperatures
and a model run for 2 × CO2 concentrations to represent
future temperatures. For example, Dessai (2003) calculated
mean monthly temperature anomalies from climate simu-
lations for the years 2040–2049 (2 × CO2) and 1981–1990
(1 × CO2) and added these to 30 years of observed climate
data (1969–1998) for Lisbon, Portugal. Similarly, Guest et
al. (1999) applied monthly mean changes in climate for the
year 2030 relative to present (2 × CO2 – 1 × CO2) to
temperature observations for the period 1979–1990 so that
the resultant 12-year temperature projection time series was
centred on 2030 (i.e. 2024–2035) for Australia’s 5 largest
cities. Other climate change–health studies use the SRES
(Special Report on Emissions Scenarios) greenhouse gas
emission scenarios (Nakićenović and Swart 2000) to model
present and future temperatures for the purpose of calcu-
lating temperature anomalies (McMichael et al. 2003;
Hayhoe et al. 2004).

The delta method is considered a robust means of
creating a temperature projection time series because
climate model bias in the modelled present does not have

an influence on its creation. The main limitation of the
method is that the temperature projection time series
inherits the observed present variability. Therefore, the
impacts presented in the studies above all assume that
climate change is associated with only a change in the mean
of the temperature distribution. Considering a theoretical
temperature probability density function (PDF) defined in
terms of location, shape and scale parameters, there could
indeed only be a shift in the location (mean) towards
warmer temperatures in future climate. However, there
might also be a change in the scale (variability) of the
distribution towards more variable temperatures, and also
possible is a combined change in the mean and variability
(Folland et al. 2001). For example, climate model simu-
lations for the second half of the twenty-first century
presented by Meehl and Tebaldi (2004) demonstrate
projected increases in the mean and variability of summer-
time maximum temperature associated with more intense,
frequent and longer lasting heat waves.

Two arguments can be provided for excluding the
impacts of climate variability on heat-related mortality.
Firstly, that the changes in future temperature variability are
negligible relative to the changes in the mean (Guest et al.
1999), and secondly that there are limitations on the ability
of global climate models (GCMs) to represent the full
complexity of observed climate variability (McMichael et
al. 2003). These arguments may be justified for some
regions or cities (Guest et al. 1999), but they may not hold
for others (Beniston and Diaz 2004). The delta method
tends to underestimate the number of extreme temperature
events projected by a climate model because the expected
climate change is not just a shift of the PDF (Déqué 2007;
Meehl and Tebaldi 2004). Therefore. it is important to
consider what the impacts associated with changing climate
variability will be.

The aim of this paper is to demonstrate the importance of
changing temperature variability with climate change in
assessments of future heat-related mortality. Here. we
present estimates of heat-related mortality resulting from
climate change for six cities: Boston, Budapest, Dallas,
Lisbon, London and Sydney. They are based on climate
change scenarios for the 2080s (2070–2099) and the
temperature–mortality (t-m) models constructed and validat-
ed in Gosling et al. (2007; hereafter referred to as Part 1).
We present an analysis that quantifies the impacts for the
2080s associated with a change in the mean of the
temperature distribution with climate change separately
from the impacts associated with a change in the temper-
ature variability. This is something previous studies have
not attempted because they only consider changes in the
mean temperature. To understand the outcomes of the analy-
sis. an understanding of climate model biases and the
representation of extremes is necessary, so we first include
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a comprehensive and detailed evaluation of the climate
model (HadCM3) from which the temperature projections
are obtained. Finally. we propose a novel methodology for
assessing the impacts of climate change on heat-related
mortality that considers both changes in the mean and
variability of the temperature distribution. Crude analyses of
the uncertainties in future greenhouse gas emissions and the
possibility that populations may acclimatise to warmer
temperatures are briefly considered to give a preliminary
indication of what the possible range of impacts could be. A
more comprehensive analysis that considers the full range of
uncertainty will be included in later work.

Materials and methods

This section firstly describes, briefly, the data and methods
used to construct the t-m models in Part 1 (Gosling et al.
2007) that are used with climate change scenarios to
estimate future heat-related mortality. Then, we describe
the climate data used for the HadCM3 evaluation and the
assessment of future impacts. This is followed by the
methods used to conduct the HadCM3 climate model
evaluation, which is important for understanding the
projected impacts that follow. Then, to address the aim of
this study, we describe how changes in the mean and
variability of temperature with climate change are
accounted for to assess future impacts on heat-related
mortality in each of the six cities. This is addressed by
considering four specific cases. Finally, we describe a novel
method for considering changes in the mean and variability
of temperature. The analyses conducted in this study are
summarised in Fig. 1.

Construction of t-m models

Daily total deaths from all causes were obtained for each
city and then excess mortality was calculated using a 31-day
moving average. Excess mortality was used to approximate
heat-related deaths. Daily maximum temperature was
obtained from city-centre or airport weather stations for
each city. Absolute threshold temperatures above which
heat-related deaths began to occur were identified as 26°C
(Boston), 28°C (Budapest), 34°C (Dallas), 28°C (Lisbon),
24°C (London) and 26°C (Sydney). The aggregate dose-
response relationship between temperature and mortality
was examined by grouping excess mortality into 2°C
maximum temperature class intervals and calculating the
number of excess deaths per day for each interval. Non-
linear regression analyses were performed on the data above
the city-specific thresholds to produce the t-m models.
Validation techniques demonstrated that the t-m models
could be used reliably to examine the potential effects of
climate change on summertime heat-related mortality in the
six cities.

Climate data

HadCM3 is a dynamical coupled atmosphere–ocean general
circulation model (AOGCM) developed at the UK Meteo-
rological Office Hadley Centre. Detailed descriptions are
provided by Gordon et al. (2000) and Pope et al. (1999).
The atmospheric component has a horizontal resolution of
2.5° latitude by 3.75° longitude, which produces a global
grid of 96×72 grid boxes. This is equivalent to a surface
resolution of about 417×278 km at the Equator, reducing to
295×278 km at latitude 45° (comparable to a spectral

Fig. 1 Summary of analyses conducted in this study
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resolution of T42). For each city, the grid box that included
the location of the weather station used to calibrate the t-m
models in Part 1 was identified, along with the eight
surrounding grid boxes. This meant that nine grid boxes
were identified and labelled A–I (see Fig. 2). Grid box ‘E’
includes the location of the weather station used to calibrate
the t-m models in Part 1.

For the evaluation of HadCM3, modelled surface air
temperature from the first member of an ensemble of
climate simulations using HadCM3 was used for compar-
ison with observational data. An ensemble mean can reduce
noise in the simulations, but the individual GCM response
was used for the evaluation. This was to maintain
consistency with the HadCM3 projections later applied to
the t-m models, which are individual responses not
ensemble means. A simulation was undertaken with
twentieth century forcings, including natural (solar and
volcanic) and anthropogenic (greenhouse gases, sulphate
aerosols and ozone). It is hereafter referred to as ABW (the
“all bells and whistles” simulation). The model was run for
nearly 140 years but only 30 years (1961–1990) are
presented here. ABW has previously been used for
detection and attribution analysis (Stott et al. 2004; Tett et
al. 2002) and the evaluation of HadCM3 global mean
surface air temperature (Stott et al. 2000), arctic sea-ice
changes (Gregory et al. 2002) and arctic river discharges
(Wu et al. 2005).

Two observational data sets were obtained for the
evaluation of HadCM3: (1) daily Tmax for the weather
stations described in Part 1 for the period 1961–1990,
hereafter referred to as point observations; and (2) global
daily gridded land-only surface Tmax observations for the
period 1961–1990 (Caesar et al. 2006), hereafter referred to
as gridded observations. The gridded observations were
compiled from 2,936 point observations and share the same
horizontal resolution as HadCM3. To be consistent with
the HadCM3 output, all data for 29 February and the 31st
day of each month were omitted from the observational
records.

To assess the impacts on heat-related mortality of
changes in the mean and variability of temperature with
climate change, modelled daily temperatures for the periods
1961–1990 and 2070–2099 were obtained from HadCM3
for the SRES A2 and B2 scenarios (Nakićenović and Swart
2000).

HadCM3 model evaluation

To evaluate the modelling capabilities of HadCM3, mod-
elled maximum temperatures (Tmax) from HadCM3 were
compared to observational data for the 30-year period
1961–1990. We focus on summer (June–August, but
December–February for Sydney) temperature because the
application is towards summer mortality.

Fig. 2 Maps showing the HadCM3 grid boxes identified for each city (labelled E). The surrounding 8 grid boxes were also identified and labelled
A−D and F–I. Green grid boxes indicate HadCM3 considers the grid box to be over land and blue over the ocean
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HadCM3 model evaluation: comparison of daily observed
and modelled temperatures

Three commonly computed statistics to compare observed
to modelled values are the correlation coefficient (r), the
root mean square error (RMSE) and the index of agreement
(d) (Willmott 1981; Brazell et al. 1993; Salzmann et al.
2007). r is a measure of the covariability between observed
and modelled values and the RMSE is a measure of the
mean difference between observed and modelled values. r
and RMSE indicate different components of model error
indicated by d, which is sensitive to differences between
observed and modelled means, as well as to changes in
proportionality. d is dimensionless and has the range 0.0–
1.0; 0.0 indicates complete disagreement between observed
and modelled values and 1.0 indicates the observed and
modelled values are identical. RMSE and d are calculated
by Eq. (1) and Eq. (2), respectively:

RMSE ¼ n�1
Xn

i¼1

Pi � Oið Þ2
" #0:5

ð1Þ

d ¼ 1:0�
Pn

i¼1
Pi � Oið Þ2

Pn

i¼1
Pi � O

��þ Oi � O
������� �2

2
664

3
775 ð2Þ

Where

n total observations
Pi model value
Oi observed value
Ō mean of observed values

For each city grid box (E), the three statistics were
computed for the daily summertime (n=90) 30-year means
(1961–1990) of daily Tmax. This was also performed for
up to eight surrounding grid boxes (A, B, C, D, F, G, H, I)
that were not located over the ocean, to examine spatial
variation in the statistics. Further comparisons were made
between the point observations (grid box E) and the mean
of all nine grid boxes (or less than nineif some grid boxes
were considered ocean) from ABW. Similarly, the mean of
all nine grid boxes from gridded observations were
compared to the mean of all nine grid boxes from ABW.

HadCM3 model evaluation — comparison of extreme
observed and modelled temperatures

We compared the occurrence of modelled extreme temper-
atures with observed extreme temperatures in two ways.

Firstly, we examined the average numbers of days per
year that maximum daily temperatures were exceeded in the

daily time series (1961–1990, summer, n=2,700) of ABW,
gridded observations, and point observations, respectively.
The average number of days was limited to 14 because this
should include the extreme temperatures associated with
heat wave events as well as moderately warm temperatures
that might still be associated with increases in mortality.
The purpose of this is to demonstrate whether there are
differences between the observed and modelled representa-
tion of extreme temperatures, regardless of whether they
occur on consecutive days.

Secondly, we performed an extreme value analysis. The
Gumbel distribution (Gumbel 1958) has reliably been used
in meteorology, climatology and hydrology to predict rare
extremes of temperature, precipitation, wind speed and
streamflow (Meehl et al. 2000; Wilks 1995). The Gumbel
cumulative distribution function (CDF) is given by Eq. (3).

F xð Þ ¼ exp � exp � x� x
a

� �� �
ð3Þ

where ξ is a location parameter that represents the overall
position of the distribution and α is a scale parameter that
characterises the spread of the distribution. Gumbel
distributions were fitted to the annual maxima of summer
Tmax (1961–1990) for ABW, gridded observations and
point observations for each city grid box (E). The
parameters were estimated by maximum likelihood. The
return levels associated with the return periods (T) up to
30 years, were then calculated by inverting the fitted
Gumbel distribution. This gives a temperature (X) that is
expected to be exceeded once every T years; see Eq. (4).
The delta method (Coles 2001; not the same as the delta
method used for producing temperature projections dis-
cussed in the Introduction) was applied to estimate the 95%
confidence intervals for the return levels. This method
constructs a symmetric interval based on the covariance
matrix of the estimated parameters.

XT ¼ x� a
^
ln � ln 1� 1

T

� �� 	
ð4Þ

Considering the impacts of changes in the mean
and variability of temperature with climate change
on heat-related mortality

Using a scenario-based approach the burden of heat-related
mortality attributable to climate change can be calculated
by Eq. (5) (adapted from Kovats et al. 2003):

AD ¼ D CLIMATE CHANGE SCENARIO½ �
� D BASELINE CLIMATE e:g: 1961� 1990½ �

ð5Þ
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Where

AD burden of heat-related mortality attributable to climate
change

D heat-related mortality calculated by the t-m model for
the daily temperature time series in the square brackets

This assumes that nothing changes in the future world
except the climate. We used this approach to estimate the
future burden of heat-related mortality attributable to
climate change for each of the six cities. This meant that
the impacts of factors such as population growth, ageing
and socioeconomic development on the mortality estimates
were excluded. Therefore, we assumed that the demograph-
ic structure of the population remained unchanged in the
future. All impacts are presented as death rates (per
100,000) rather than absolute number of heat-related deaths
because of this. It also assumes stationarity of the
temperature–mortality relationship in the future. Although
this approach is simplistic, it is useful because it separates
out the contribution of climate from these other factors that
determine the burden (Hayhoe et al. 2004; Kovats et al.
2003). This is particularly useful for demonstrating the
impacts associated with changes in the mean and variability
of temperature with climate change.

The baseline climate period that heat-related mortality
was calculated for is hereafter referred to as ‘present’ and
was taken as 1961–1990. Heat-related mortality burdens
were also calculated under climate change scenarios,
hereafter referred to as ‘future’: 2070–2099. We selected
two climate change scenarios driven by HadCM3: the A2
and B2 SRES (Nakićenović and Swart 2000) emission
scenarios, for the city grid boxes (E).

To consider the impacts of changes in the mean and
variability of temperature with climate change on heat-
related mortality we investigated the impacts in four cases.
The cases were based on various combinations of location
(mean) and scale (variability) changes in temperature with
climate change and are summarised in Table 1.

A novel method for considering changes in the mean
and variability of temperature with climate change
in assessments of future heat-related mortality

Finally, we assessed the impacts associated with an artificial
future temperature time series that included changes in the
mean and variability of temperature with climate change. The
time series was created as follows. Firstly, we fitted logistic
distributions to the modelled (SRES A2) present temperature
distribution, the present point observations distribution and
the future SRES A2 distribution, respectively. We fitted a
logistic distribution to all distributions for consistency and
because it has larger tails than a normal distribution, which
made it more appropriate to the temperature data (Mudholkar

and George 1978). Although the logistic distribution does not
allow asymmetric distributions, it generally provided a better
fit to the actual distributions than asymmetrical distributions
such as the Gumbel distribution. The changes in the location
(ξ) and scale (α) parameters between the logistic distribu-
tions for the modelled (SRES A2) present and future SRES
A2 were calculated. The changes in each parameter were
then added to the respective location and scale parameters
estimated from the present point observations distribution.
The new parameters allowed for the creation of a new
artificial temperature distribution. A 30-year daily time series
was sampled from the artificial distribution and represents
the artificial future time series. This technique is novel
because it accounts for changes in the mean and variability
of temperature and removes the influence of climate model
bias on the time series created. It is made simpler by the fact
that the t-m models do not include lag or persistence
parameters. Heat-related mortality attributable to climate
change was then calculated by Eq. (10).

AD ¼ D ArtificialFuture½ � � D Opresent


 � ð10Þ
We also used the artificial time series to explore the impact

that the uncertainty of physiological acclimatisation to warmer
temperatures might have on future heat-related mortality. We
considered three possible degrees of future acclimatisation: (1)
no acclimatisation, (2) acclimatisation to an increase of 2°C
relative to present, and (3) acclimatisation to an increase of
4°C relative to present. For no acclimatisation, it was assumed
that the t-mmodel relationships were valid from their absolute
threshold temperatures identified in Part 1. For 2°C and 4°C
acclimatisation, it was assumed the threshold temperatures
increased by 2°C and 4°C, respectively, for each city.
However, the gradient of the relationships remained un-
changed. Effectively, this was the same as ‘shifting’ the dose-
response relationships by 2°C and 4°C, respectively.

Results

HadCM3 model evaluation — comparison of daily
observed and modelled temperatures

Frequency distributions of daily Tmax for 1961–1990
(summer) for ABW, gridded observations and point
observations, respectively, are presented in Fig. 3. Table 2
shows the descriptive statistics for these distributions.
HadCM3 models more variable temperatures for Budapest,
Dallas, Lisbon and Sydney than is observed. Less variable
climates than observed are modelled for Boston and
London. ABW for Dallas and Lisbon also present higher
means than the observations. This indicates that the
modelled Tmax climate for Dallas and Lisbon is more
variable and warmer on average than observed. Boston and

36 Int J Biometeorol (2009) 53:31–51



T
ab

le
1

T
he

fo
ur

ca
se
s
ba
se
d
on

va
ri
ou

s
co
m
bi
na
tio

ns
of

lo
ca
tio

n
(m

ea
n)

an
d
sc
al
e
(v
ar
ia
bi
lit
y)

ch
an
ge
s
in

te
m
pe
ra
tu
re

w
ith

cl
im

at
e
ch
an
ge

us
ed

to
in
ve
st
ig
at
e
th
e
im

pa
ct
s
of

ch
an
ge
s
in

th
e
m
ea
n

an
d
va
ri
ab
ili
ty

of
te
m
pe
ra
tu
re

w
ith

cl
im

at
e
ch
an
ge

on
he
at
-r
el
at
ed

m
or
ta
lit
y

C
as
e

R
at
io
na
le

fo
r
an
al
ys
is

E
q

E
qu

at
io
n
fo
rm

C
om

m
en
ts

C
as
e
1:

C
ha
ng

e
in

te
m
pe
ra
tu
re

m
ea
n

an
d
va
ri
ab
ili
ty

T
o
in
ve
st
ig
at
e
ho

w
a
ch
an
ge

in
th
e
m
ea
n

an
d
va
ri
ab
ili
ty

of
th
e
te
m
pe
ra
tu
re

di
st
ri
bu

tio
n
w
ith

cl
im

at
e
ch
an
ge

im
pa
ct
s

fu
tu
re

he
at
-r
el
at
ed

m
or
ta
lit
y.

Il
lu
st
ra
te

th
e
ro
le

of
un

ce
rt
ai
nt
y
in

fu
tu
re

gr
ee
nh

ou
se

ga
s
em

is
si
on

s.

(6
)

A
D
¼

D
M

fu
tu
re



� �

D
M

pr
es
en
t



�

A
ttr
ib
ut
ab
le

m
or
ta
lit
y
is
es
tim

at
ed

se
pa
ra
te
ly

fo
r

m
od

el
le
d
te
m
pe
ra
tu
re
s
fr
om

th
e
S
R
E
S
A
2
an
d

B
2
em

is
si
on

s
sc
en
ar
io
s
re
sp
ec
tiv

el
y.

T
he

pr
es
en
t

te
m
pe
ra
tu
re

tim
e
se
ri
es
’
w
er
e
m
od

el
le
d
by

H
ad
C
M
3
fo
r
A
2
an
d
B
2.

C
lim

at
e
m
od

el
bi
as

ha
s
an

in
fl
ue
nc
e
on

th
e
im

pa
ct
s.

C
as
e
2:

C
ha
ng

e
in

te
m
pe
ra
tu
re

m
ea
n
on

ly

T
o
in
ve
st
ig
at
e
ho

w
a
ch
an
ge

in
th
e

m
ea
n
te
m
pe
ra
tu
re

on
ly
,
fo
r
S
R
E
S
A
2,

im
pa
ct
s
fu
tu
re

he
at
-r
el
at
ed

m
or
ta
lit
y.

(7
a)

A
D
¼

D
M

fu
tu
re
�
M

pr
es
en
t

�
� þ

M
pr
es
en
t



� �

D
M

pr
es
en
t



�

T
o
co
ns
id
er

th
e
ef
fe
ct

of
cl
im

at
e
m
od

el
bi
as

in
th
e
m
od

el
le
d
pr
es
en
t,
he
at
-r
el
at
ed

m
or
ta
lit
y

w
as

ca
lc
ul
at
ed

by
E
q.

(7
a)

an
d
E
q.

(7
b)

re
sp
ec
tiv

el
y.

(7
b)

A
D
¼

D
M

fu
tu
re
�
M

pr
es
en
t

�
� þ

O
pr
es
en
t



� �

D
O

pr
es
en
t



�

E
qu

at
io
n
(7
a)

m
ea
ns

th
at

m
od

el
le
d
pr
es
en
t

H
ad
C
M
3
bi
as

in
fl
ue
nc
es

th
e
te
m
pe
ra
tu
re

pr
oj
ec
tio

n
tim

e
se
ri
es
,
an
d
co
ns
eq
ue
nt
ly

th
e
he
at
-r
el
at
ed

m
or
ta
lit
y
im

pa
ct
s.

E
qu

at
io
n
(7
b)

re
m
ov

es
th
e
in
fl
ue
nc
e
of

cl
im

at
e
m
od

el
bi
as

by
us
in
g
ob

se
rv
ed

pr
es
en
t
te
m
pe
ra
tu
re
s.

C
as
e
3:

C
ha
ng

e
in

te
m
pe
ra
tu
re

va
ri
ab
ili
ty

on
ly

T
o
in
ve
st
ig
at
e
ho

w
a
ch
an
ge

in
th
e

va
ri
ab
ili
ty

of
te
m
pe
ra
tu
re

on
ly
,
fo
r

S
R
E
S
A
2,

im
pa
ct
s
fu
tu
re

he
at
-r
el
at
ed

m
or
ta
lit
y.

(8
)

A
D
¼

D
M

fu
tu
re
�

M
fu
tu
re
�
M

pr
es
en
t

�
�



� �

D
M

pr
es
en
t



�

A
ss
um

es
th
at

an
y
ch
an
ge

in
th
e
te
m
pe
ra
tu
re

di
st
ri
bu

tio
n
th
at

w
as

no
t
re
pr
es
en
te
d
by

a
ch
an
ge

in
th
e
m
ea
n
as
so
ci
at
ed

w
ith

cl
im

at
e

ch
an
ge
,
w
as

du
e
to

a
ch
an
ge

in
va
ri
ab
ili
ty
.

C
lim

at
e
m
od

el
bi
as

im
pa
ct
s
on

fu
tu
re

he
at
-r
el
at
ed

m
or
ta
lit
y.

C
as
e
4:

D
o
m
ea
n

an
d
va
ri
ab
ili
ty

im
pa
ct
s
co
m
bi
ne

lin
ea
rl
y?

T
o
in
ve
st
ig
at
e
ho

w
th
e
im

pa
ct
s
fr
om

th
e
ch
an
ge

in
m
ea
n
an

d
va
ri
ab
ili
ty

of
th
e
te
m
pe
ra
tu
re

di
st
ri
bu

tio
n
w
ith

cl
im

at
e
ch
an
ge

(C
as
e
1)

co
m
pa
re

w
ith

th
e
su
m
m
ed

in
di
vi
du

al
re
sp
on

se
s

to
a
ch
an
ge

in
th
e
m
ea
n
(C
as
e
2)

an
d

va
ri
ab
ili
ty

(C
as
e
3)
.

(9
)

D
M

fu
tu
re

½
��D

M
pr
es
en
t

½
�

f
g

D
M

fu
tu
re
�M

pr
es
en
t

ð
Þþ

M
pr
es
en
t

½
��D

M
pr
es
en
t

½
�

f
gþ

D
M

fu
tu
re
�

M
fu
tu
re
�M

pr
es
en
t

ð
Þ

½
��D

M
pr
es
en
t

½
�

f
g

E
qu

at
io
n
(9
)
is
si
m
pl
y
E
q.

(6
)
di
vi
de
d

by
th
e
su
m

of
E
q.

(7
a)

an
d
E
q.

(8
).

A
D
B
ur
de
n
of

he
at
-r
el
at
ed

m
or
ta
lit
y
at
tr
ib
ut
ab
le

to
cl
im

at
e
ch
an
ge
,
D

he
at
-r
el
at
ed

m
or
ta
lit
y
ca
lc
ul
at
ed

by
th
e
t-
m

m
od

el
fo
r
th
e
da
ily

te
m
pe
ra
tu
re

tim
e
se
ri
es

in
th
e
sq
ua
re

br
ac
ke
ts
,
pr
es
en
t

te
m
pe
ra
tu
re

tim
e
se
ri
es

is
fo
r
th
e
pe
ri
od

19
61
–1

99
0,

fu
tu
re

te
m
pe
ra
tu
re

tim
e
se
ri
es

is
fo
r
th
e
pe
ri
od

20
70

–2
09

9,
O

ob
se
rv
ed

da
ily

te
m
pe
ra
tu
re

fr
om

po
in
t
ob

se
rv
at
io
ns
,
M

m
od

el
le
d
da
ily

te
m
pe
ra
tu
re

fr
om

H
ad
C
M
3

Int J Biometeorol (2009) 53:31–51 37



Fig. 3 Frequency distributions of daily Tmax (1961–1990; summer)
for ABW, gridded observations and point observations for each city.
Normal curves have been fitted to each distribution for illustrative
purposes, to allow a comparison of the shapes of the distributions.

Solid continuous vertical lines (green) through all panels denote
threshold temperatures. Solid vertical lines (red) on each panel denote
the 95th and 99th percentiles

Table 2 Descriptive statistics of daily Tmax (°C) for ABW, gridded observations and point observations, 1961–1990 (summer) for each city grid
box (E)

Source City Minimum Maximum Mean Standard deviation 95th percentile 99th percentile

ABW Boston 8.6 39.5 24.50 3.70 30.3 34.1
Budapest 9.7 45.5 24.84 5.16 35.0 41.6
Dallas 20.7 53.3 37.17 5.97 45.8 48.6
Lisbon 13.5 48.0 34.68 5.57 42.4 44.9
London 8.8 29.8 18.68 2.80 23.8 27.1
Sydney 14.6 49.0 26.66 4.89 36.1 40.3

Gridded observations Boston 12.2 37.1 26.70 3.61 32.2 34.1
Budapest 8.5 28.9 19.97 3.52 25.6 27.4
Dallas 18.0 42.3 34.17 3.04 38.6 40.2
Lisbon 16.7 38.7 29.21 3.33 34.2 35.8
London 12.1 33.2 20.08 3.14 25.9 28.8
Sydney 17.1 38.6 26.38 3.14 31.8 34.1

Point observations Boston 11.1 38.9 26.34 4.73 33.9 36.1
Budapest 12.7 37.4 26.27 4.14 32.8 34.5
Dallas 17.8 45.0 34.52 3.26 38.9 41.1
Lisbon 16.7 41.5 26.73 3.88 33.6 36.3
London 10.6 36.5 21.67 3.69 28.1 31.7
Sydney 17.6 41.6 25.88 3.47 32.7 37.8
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London are modelled as less variable with cooler mean
Tmax. The large differences between modelled and ob-
served Tmax for the Dallas and Lisbon city grid boxes are
further highlighted in plots of the 30-year means (1961–
1990) of daily Tmax (Fig. 4).

The correlation coefficients (r), root mean square errors
(RMSE) and indices of agreement (d) for the modelled and
observed Tmax illustrated in Fig. 4 are presented in Table 3.
Table 3 demonstrates that, for each city, the highest index
of agreement between ABW and point observations occurs
when ABW temperatures not located in the city grid box
(E) are compared with the point observations. It is
interesting that, based on this statistic, GCM grid boxes
that might not be considered representative of the city due

to their distance from it, are more similar to the temper-
atures observed in the city than those from the grid boxes
actually situated over the city. The version of the Hadley
Centre model used in this study does not include an explicit
representation of urban effects. The coarse model resolution
of HadCM3 and exclusion of resolved urban processes
mean that only orography and/or land-sea distributions are
portrayed at the grid box level in the region of an actual
city. This contributes to general regional features of
simulated climate in the vicinity of actual cities. The
observation that simulated temperatures for some grid
boxes near actual cities have some correspondence to the
temperatures observed at the city weather station highlights
that the weather is largely a product of dynamical scale

Fig. 4 The 30-year means (1961–1990) of daily Tmax (°C), for grid
box E, for ABW, gridded observations, and point observations. The
mean Tmax for grid boxes A–I (if not over ocean) from ABW is also
shown (denoted Grid Boxes Mean). Vertical lines divide year (1

December to 30 November) into four seasons. For illustrative
purposes only, bold lines denote filtered (20-day running mean)
Tmax, so that the annual Tmax cycle can be separated from the inter-
annual variability
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interactions in the real climate system that are captured to
some extent in the HadCM3 model simulation. Actual local
urban effects are likely secondary for such regional climate
features, but could make a bigger difference to local
climate. This finding could be used to justify selecting a
grid box other than E to represent future city temperatures.
However, for consistency within this study and with
previous studies we selected grid box E for each city.

HadCM3 model evaluation — comparison of extreme
observed and modelled temperatures

Figure 5 illustrates the average numbers of days per year
that maximum daily temperatures were exceeded in ABW,

gridded observations and point observations, respectively,
for each city. The temperatures occurring up to 14 days per
year are over 6°C higher for ABW than observations for
Dallas and Lisbon. The cooler than observed modelled
climates of Boston and London can also be seen. The return
levels estimated from the extreme values analysis are
presented in Fig. 6. With the exception of London, it can
be inferred from Fig. 6 that, beyond the 10-year return
period, return levels of annual Tmax maxima are higher
for ABW than the observations. This is most prominent
for Dallas and Lisbon. The result is unsurprising given
that we previously demonstrated increased Tmax vari-
ability for ABW relative to the observations for these
two cities.

Table 3 Correlation coefficients (r), RMSE (°C), and indices of agreement (d) for the 30-year means (1961–1990; summer) of daily Tmax (°C)
between ABW and gridded observations, and ABW and point observations

Boston Budapest Dallas Lisbon London Sydney

ABW &
Obs
(Grid)

ABW &
Obs
(Point)

ABW &
Obs
(Grid)

ABW &
Obs
(Point)

ABW &
Obs
(Grid)

ABW &
Obs
(Point)

ABW &
Obs
(Grid)

ABW &
Obs
(Point)

ABW &
Obs
(Grid)

ABW &
Obs
(Point)

ABW &
Obs
(Grid)

ABW &
Obs
(Point)

A r 0.73 0.71 0.55 0.59 0.81 0.83 – – 0.17b 0.26a 0.40 0.12b

RMSE 3.48 4.71 2.68 6.51 2.14 1.53 – – 1.30 4.97 2.32 6.79
d 0.51 0.43 0.50 0.30 0.75 0.85 – – 0.45 0.27 0.42 0.12

B r 0.72 0.66 0.54 0.56 0.93 0.91 0.83 0.84 – – 0.24a 0.01b

RMSE 2.41 6.09 3.01 6.63 3.80 3.39 2.37 2.42 – – 1.63 1.97
d 0.61 0.36 0.45 0.30 0.63 0.63 0.81 0.77 – – 0.42 0.28

C r 0.73 0.68 0.65 0.68 0.88 0.90 0.94 0.88 – – - -
RMSE 1.66 3.98 1.66 5.02 5.38 3.65 2.59 2.68 – – – –
d 0.75 0.48 0.65 0.38 0.41 0.59 0.83 0.76 – – – –

D r 0.72 0.70 0.72 0.73 0.74 0.75 – – 0.34 0.39 0.49 0.21a

RMSE 3.42 4.07 1.05 7.08 2.60 1.99 – – 1.16 3.58 3.10 5.18
d 0.48 0.47 0.84 0.29 0.49 0.68 – – 0.54 0.34 0.39 0.15

E r 0.71 0.68 0.84 0.84 0.92 0.91 0.93 0.87 0.48 0.50 0.23a −0.04b

RMSE 2.45 2.21 4.97 1.74 3.46 3.20 5.59 8.09 1.67 3.15 1.11 1.33
d 0.60 0.64 0.35 0.76 0.61 0.63 0.43 0.28 0.54 0.39 0.53 0.31

F r – – 0.81 0.82 0.90 0.92 0.67 0.51 – – – –
RMSE – – 1.91 3.36 4.72 3.42 2.29 4.19 – – – –
d – – 0.65 0.52 0.37 0.58 0.77 0.43 – – – –

G r 0.76 0.74 0.92 0.85 0.58 0.57 – – – – 0.50 0.19b

RMSE 1.98 1.38 3.77 2.42 2.32 2.52 – – – – 1.62 1.23
d 0.67 0.82 0.51 0.66 0.38 0.52 – – – – 0.61 0.45

H r – – 0.91 0.82 0.86 0.87 – – 0.61 0.60 – –
RMSE – – 4.43 1.75 2.56 2.32 – – 1.45 1.45 – –
d – – 0.46 0.80 0.61 0.69 – – 0.64 0.62 – –

I r – – 0.86 0.78 0.87 0.90 0.94 0.84 0.45 0.44 – –
RMSE – – 3.65 1.83 3.54 1.98 8.42 10.75 2.04 1.71 – –
d – – 0.48 0.77 0.32 0.74 0.32 0.22 0.52 0.54 – –

Mean r 0.80 0.75 0.87 0.84 0.90 0.90 0.96 0.87 0.47 0.47 0.44 0.13b

RMSE 2.46 3.40 1.47 3.82 3.29 2.43 2.68 4.68 1.48 2.92 1.39 3.04
d 0.61 0.53 0.77 0.48 0.51 0.69 0.76 0.46 0.55 0.40 0.55 0.23

Values were calculated for each grid box (A–I). Note the point observations are only located in grid box E. “-” denotes the grid box is located over
ocean. All correlations are significant at the 99% confidence level unless otherwise stated (a correlation is significant at the 95% confidence level;
b correlation is not significant at the 95% confidence level)
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Considering the impacts of changes in the mean
and variability of temperature with climate change
on heat-related mortality

Four cases based on various combinations of mean and
variability changes in temperature with climate change
were defined to examine the potential impacts of climate
change on heat related mortality. Regarding Case 1, Table 4
presents estimates of heat-related mortality arising from a
change in the mean and variability of temperature.
Estimates are greater under the SRES A2 scenario than
SRES B2, but the magnitudes of the difference vary across
cities because of differences in warming projected between
the SRES A2 and B2 scenarios for each city (Fig. 7). Note
that the climate model bias influences the temperature
projection time series and consequently the impacts.

Also displayed in Table 4 are the results for Case 2,
when mortality was estimated due to a change in mean

temperature only. The change in mean temperature from
HadCM3 present A2 to HadCM3 future A2 was calculated
and applied to the modelled present (Eq. (7a)) and observed
present (Eq. (7b)) respectively. The influence of present
HadCM3 model bias on the temperature projection time
series, and so consequently on the mortality impacts, is
removed in the latter. The result is that for some cities (e.g.
Lisbon) the mortality estimates are very different between
the two. Similarly for London and Boston, when the
influence of a cooler than observed modelled present was
removed, the estimated mortality was greater.

Mortality attributable to climate change was lower for
Case 2 (when the A2 temperature anomaly was applied to
the HadCM3 present) than Case 1, for all the cities except
Dallas. Hence, more deaths were attributed to changes in
the mean and variability of temperature with climate
change than with the change in mean alone (except for
Dallas).

Fig. 5 The average numbers of days per year (summer only) maximum daily temperatures (°C) were exceeded
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In Case 3, mortality was estimated due to a change in
temperature variability only. Results are presented in Table 4.
With the exception of London, the change in temperature
variability for A2 was associated with lower mortality
burdens than those associated with the change in mean
temperature (Case 2). Interestingly, the change in variability
reduced the number of future annual heat-related deaths
relative to present for Dallas.

Case 4 compared the mortality for SRES A2 from Case 1
to the sum of the estimates from Case 2 and Case 3. Table 4
displays these estimates and the ratios calculated from Eq.
(9). A ratio around 1.0 suggests the impacts of separate
changes in the mean and variability of temperature combine
linearly to impact on heat-related mortality. This appeared to
be true for Budapest, Dallas, Lisbon and Sydney. However,
the ratios were 3.0 and 1.9 for Boston and London,
respectively. This implies that, for these cities, changes in
the mean and variability of temperature with climate change
have a combined impact on heat-related mortality that is
greater than the sum of the individual changes in temperature
mean and variability alone.

A novel method for considering changes in the mean
and variability of temperature with climate change
in assessments of future heat-related mortality

Figure 8 presents the PDFs of the logistic distributions
and their parameters that were fitted to the HadCM3
present and future A2 temperature distributions, and to the
point observations. Also shown are the PDFs of the
artificial distributions and the distributions of the time
series that were sampled from them. The logistic fits
generally fit the data well, although they were unable to
represent the skewness in some of the Lisbon and
London distributions. Unlike in Case 1, the resultant
temperature projection time series is not influenced by
climate model bias in the modelled present.

The estimates of future heat-related mortality, allow-
ing different degrees of acclimatisation under the artifi-
cial time series are presented in Table 5. Allowing for
acclimatisation of 2°C reduced future heat-related mor-
tality by approximately half that of no acclimatisation in
each city.

Fig. 6 The return levels (y-axis) of Tmax (°C) for ABW, gridded observations and point observations. The return period (x-axis) up to 50 years is
shown on a log-scale
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Discussion

HadCM3 model evaluation

An important inclusion in this study has been a climate
model evaluation which highlights several important issues
concerned with using global climate models (GCMs) such
as HadCM3 to assess the impacts of climate change on
heat-related mortality. These issues are discussed and are
generally applicable to other climate change impacts
assessments that incorporate data from GCMs.

Figure 2 illustrates that there are differences in the spatial
scale at which temperatures are represented between the
point observations and HadCM3 modelled temperatures.
The temperatures from the GCM are representative of the
entire grid box, but the point observations are only
representative of the location surrounding the weather
station from which the observations were made. Therefore,
the grid box temperatures are not exactly representative of
the conditions experienced by the populations in each city.
However, strictly, neither are the point observations. For
example, the point observations for Boston, Dallas and
London are from airport weather stations, which may be
some distance from where the majority of deaths occur.

Some studies address the issue of spatial representative-
ness by applying downscaled data from climate models.
Statistical downscaling uses statistical relationships to
convert the large-scale projections from a GCM grid box
to fine scales. Statistical downscaling has been applied in
assessments of heat-related mortality by Hayhoe et al.
(2004) and McMichael et al. (2003). Dynamical downscal-
ing uses a dynamic model similar in formulation to a global
GCM but with greater resolution and covering only a
limited region. The dynamic model is then forced at its
lateral boundaries using results from the coarse scale GCM.
Dynamical downscaling does not rely on the central
assumption of most statistical downscaling, that the
downscaling relationship derived for the present day will
also hold in the future. However, it is computationally
demanding. Dynamically downscaled data has been used
by Dessai (2003) to assess the impacts of climate change on
heat-related mortality. Studies by Donaldson et al. (2001)
and Guest et al. (1999) chose not to apply any downscaling
to the GCM temperatures, as we have done. It is important
to understand that the choice of whether to apply
downscaling and/or which method of downscaling is
selected will have an influence on the final impacts. No
studies have examined this for heat-related mortality,

Fig. 7 Frequency distributions of daily Tmax (summer) for present
point observations, HadCM3 present A2, HadCM3 present B2,
HadCM3 future A2, and HadCM3 future B2. The standard deviation
(SD) is labelled for each distribution. Green vertical lines denote the

mean, red the value of the 95th percentile. Normal curves have been
fitted to each distribution for illustrative purposes, to allow a
comparison of the shapes of the distributions
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although crop yield and tree range studies demonstrate
significant differences in impacts dependent upon whether
GCM or dynamically downscaled data is used (Kueppers et
al. 2005; Tsvetsinkskaya et al. 2003; Mearns et al. 2001).

It should be understood that GCMs have not been
designed for simulating local climates when validating
GCM output on a local scale such as here (Huth et al.
2000). Nevertheless, several studies have compared GCM

Fig. 8 Distributions of HadCM3 future A2 (top panels), HadCM3
present A2 (2nd panels), and point observations (3rd panels), for each
city. Logistic PDFs that were fitted to these distributions are overlaid

and the parameters of the PDFs are presented in each panel. Bottom
panels display the artificial PDF and its parameters, underlain with the
distribution sampled from the PDF
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output with observations at individual stations (Palutikof
et al. 1997; Schubert 1998) as we did with the point obser-
vations, or with area averaged observations as we did with
the gridded observations, but there remains debate as to
which approach should be given preference (Huth et al.
2000; Skelly and Henderson-Sellers 1996).

For grid box E, the indices of agreement for Lisbon,
London and Sydney were higher for the ABW-gridded
observation pairs than the ABW-point observation pairs. An
advantage of the gridded observations is that they represent
surface temperatures at the same spatial resolution as the
GCM. This might explain the differences in d for these
three cities. This result means that it could have been
beneficial to calibrate the t-m models from gridded
observations or ABW temperatures rather than point
observations for these cities. However, this would raise
the question of whether the gridded observations and/or
ABW temperatures are more representative of the con-
ditions experienced by the populations living in the cities
than the point observations.

Figures 5 and 6 demonstrated that extreme temperatures
were generally more common in the simulated present
climate than in the observed climate. Such discrepancies
between observed and modelled extremes are common.
Kjellström et al. (2007) found that ten RCMs generally
underestimated (overestimated) maximum daily temper-
atures in northern (southern) Europe during summer for
the period 1961–1990. Huth et al. (2000) presented similar
findings to ours for eight stations in south Moravia (Czech
Republic). Heat waves simulated by the ECHAM3 GCM
were too long, appeared later in the year and peaked at
higher temperatures than observed. In light of the results,
the study concluded that climate model evaluations should
be conducted prior to estimating future impacts due to
climate change. Here, we have demonstrated the impor-
tance of this for heat-related mortality.

The role of climate model bias

We did not specifically calculate an estimate for the climate
model bias in the modelled present for each city. Instead, we
used the results from the frequency distribution plots and
extreme values analysis to demonstrate that the modelled
present was warmer and more extreme for Dallas and
Lisbon. Climate model bias in the modelled present needs
to be considered when assessing the impacts of climate
change. It is perhaps for this reason that previous assess-
ments use the delta method to create temperature projection
time series that can be used to estimate future health impacts.
The influence of climate model bias in the modelled
present is removed because the modelled temperature
anomaly (mean future–mean present) is added to the
present observations rather than the modelled present. T
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Case 2 demonstrated that the mortality burdens due to
climate change for Dallas and Lisbon were far greater when
the temperature projection time series were created by
adding the anomalies to the modelled present, i.e. present
model bias was not removed [Eq. (7a)]. Similarly, for
Boston and London, which exhibited negative present
model biases, the burdens were far less when present
model bias was not accounted for. If the burdens are
expressed as percentage changes from the present estimates,
then the differences in the impacts between accounting for
bias and not accounting for bias can be up to 1,600%
(Dallas).

Although the delta method is useful because the climate
model bias in the modelled present is unable to influence
the magnitude of the impacts, it is not without its
limitations. Biases in model simulations of the present
may be present in the simulations of future conditions, for
example due to differences caused by not fully representing
mountain heights (Doherty and Mearns 1999). Biases may
also be present in future projections if local feedbacks (e.g.
cloud feedbacks) are strongly dependent on the mean
climate state of the model (Williams et al. 2001). The delta
method does not account for this and justifies the need for
climate model evaluation in impact studies, so that the
results can be interpreted accordingly. For example,
considering the results of the climate model evaluation it
should be noted that all estimates of future heat-related
mortality for Dallas and Lisbon may be overestimated due
to positive model bias. Likewise, estimates for Boston and
London may be underestimated due to negative model bias.
This is likely to be compounded by the use of mortality
absolute threshold temperatures because, in a simulated
climate with a positive bias, there will be more days when
temperatures exceed the threshold temperature than for a
simulation with negative or no bias. This could be an issue
with other climate models. For example, Kjellström et al.
(2007) validated ten RCMs and found that biases were
larger in the 95th/5th percentiles of daily temperature than
the corresponding biases in the median, meaning that the
biases generally increased towards the tails of the proba-
bility distributions. A possible solution to this would be to
define relative thresholds that are based on the 95th
percentile of summer maximum temperature, for example.
In such a case, the threshold temperature would be
relatively higher in a climate simulated with positive model
bias than in a climate with no model bias.

Another limitation of the delta method is that the
temperature projection time series inherently has the same
variability as the observed climate. Hence it assumes that
climate variability does not change in the future. Relatively
speaking, a 1°C change in the standard deviation of the
temperature distribution under climate change will have a
greater impact on the frequency of an extreme temperature

than a 1°C change in the mean of the distribution (Meehl et
al. 2000). Therefore, it is important to consider the impacts
associated with changes in the mean and variability of
temperature with climate change.

Considering the impacts of changes in the mean
and variability of temperature with climate change
on heat-related mortality

Unlike previous climate change-heat-related mortality
assessments, we considered the role of changing tempera-
ture variability. The importance of temperature variability
can be highlighted by comparing the impacts estimated in
Case 2 (change in temperature mean applied to modelled
present) to Case 1. More deaths were attributed to changes
in the mean and variability of temperature with climate
change (Case 1), than due to the change in mean alone
(Case 2) except for Dallas, i.e., with the exception of
Dallas, the other cites presented increases in future
temperature variability that were associated with increases
in future mortality. The results from Case 3 support this by
showing that increases in variability were associated with
increases in mortality. Interestingly, the change in variabil-
ity reduced the number of future annual heat-related deaths
relative to present for Dallas. This is likely due to Dallas
being the only city where the future HadCM3 A2 vari-
ability was lower than the present HadCM3 A2 variability
(note standard deviations in Fig. 7).

With the exception of London, the changes in temper-
ature variability only (Case 3) were associated with lower
mortality burdens than those associated with changes in
mean temperature only (Case 2). The results demonstrate
that, if changes in temperature variability are ignored, it is
likely that the full impacts of changing temperatures with
climate change on heat-related mortality are not repre-
sented. However, the impacts associated with changes in
variability are generally lower than those associated with
changes in the mean climate. Nevertheless, this does not
justify the exclusion of temperature variability in future
impact studies.

A novel method for considering changes in the mean
and variability of temperature with climate change
in assessments of future heat-related mortality

Although the methodology for estimating impacts in Case 1
considers changes in both the mean and variability of
temperature, climate model bias in the modelled present has
an influence on the impact estimates. A solution to this
could be to sum the separate impacts associated with
changes in the mean and variability of temperature,
respectively (when climate model bias in the modelled
present is removed, as in Case 2). However, Case 4
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demonstrated that this may not replicate the impacts
estimated in Case 1 because the separate impacts do not
necessarily combine linearly. These limitations provided the
rational for describing a novel method for considering
changes in the mean and variability of temperature with
climate change in assessments of future heat-related
mortality.

The method we applied to create a temperature projec-
tion time series removed the influence of climate model
bias in the modelled present on the mortality estimates,
whilst at the same time allowing for projected changes in
mean and variability of temperature. However, it should be
understood that had different distributions been fitted to the
temperature distributions, the sampled artificial temperature
projection time series would have been slightly different.
This would mean the mortality estimates would also be
slightly different to those presented here. Furthermore,
random samples were taken from the artificial distributions
to produce the artificial time series. Again, the final impacts
would be slightly different if a new random sample was taken.

By comparing the mortality estimates from this method
with those of Case 1, the influence of climate model bias in
the modelled present when considering changes in the mean
and variability of temperature on the impacts is clear. For
example, Dallas and Lisbon were the two cities with the
greatest positive bias. Future mortality estimates in Case 1
were 125.8 and 7,309.5 (per 100,000), respectively, but
when the influence of model present bias was removed by
using the novel methodology we present, the estimates
reduced to 32.3 and 556.6, respectively. Likewise, Boston
and London exhibited negative model biases. Case 1
mortality estimates were 140.4 and 6.7, respectively, and
estimates using the novel methodology were around two
times greater at 350.8 and 10.7, respectively.

Consideration of emissions and acclimatisation
uncertainties

The differences in warming projected between the SRES
A2 and B2 scenarios (Fig. 7) meant that the magnitude of
the impacts between each scenario differed for each city.
For example, for Boston the impacts under the A2 scenario
were around 78% greater than the impacts under the B2
scenario. For Sydney, the impacts were only around 8%
greater for A2 than B2. This demonstrates the importance
of examining the impacts for temperatures at high resolu-
tion spatial scales rather than, for example, using mean
global temperatures. Guest et al. (1999) observed large
differences between the impacts for a low and high climate
change scenario across five Australian cities. Mortality was
around 69% greater for the high scenario for the total of all
five cities, but at the individual city level the difference
could be as little as 10%.

By applying the novel methodology we presented, we
considered the possibility that populations may acclimatise
to warmer temperatures in the future. There is much debate
as to how acclimatisation should be modelled (Gosling et
al. 2008). An approximation of the inherent acclimatisation
trend can be removed from historical time series data by
regression techniques prior to modelling the temperature-
mortality relationships (Davis et al. 2004). A limitation of
removing the trend is that it does not attempt to model
future acclimatisation per se, rather it provides an objective
projection that has controlled for historical acclimatisation.
Another method involves the use of ‘surrogate’ cities
(Knowlton et al. 2007; National Assessment Synthesis
Team 2000; Kalkstein and Greene 1997) whose present
climate best approximates the estimated climate of a target
city as expressed by climate model projections; for
example, assuming in the future that New York’s popula-
tion will have the same dose-response relationship as
Atlanta’s. This method receives the most criticism because
it inherently assumes stationarity of temperature–mortality
relationships by using past ones to represent future ones.
Furthermore, it does not account for unique place-based
characteristics of cities that are related to mortality (Smoyer
1993). We adopted a method that involved increasing the
threshold temperature with time (Dessai 2003; Honda et al.
1998). The gradient of the temperature–mortality relation-
ship remains unchanged, so the dose-response curve is
simply ‘shifted’. It is possible that the gradient of the
relationship might change in the future, but this was not
considered. Honda et al. (1998) presented empirical evi-
dence that the threshold temperature could be up to 5°C
higher in regions in Japan where the mean climate was 2°C
warmer. However, this was based on observations between
cities with different climates over the period 1972–1990.
Unfortunately, there is no long-term evidence for a single
location to indicate how much dose-response relationships
may be ‘shifted’. We decided upon shifting the curves by 2°C
and 4°C, respectively, because these bounded the acclimatisa-
tion assumptions of a previous study (Dessai 2003), namely
that a population may acclimatise to an extra 1°C relative to
present every three decades. Also, we considered the shifts
as realistic because they are within the range of the
geographical variation of observed threshold temperatures
identified in Part 1.

The potential health benefits of acclimatisation vary.
Dessai (2003) estimated that acclimatisation to an extra 3°C
reduced summer heat-related mortality by about 70% by the
2080s for Lisbon, relative to no acclimatisation. We
estimated a similar reduction for Lisbon, 80% relative to
no acclimatisation assuming that the population acclima-
tised to an extra 4°C. The other cities in our assessment also
presented reductions around 80% assuming acclimatisation
to 4°C, although the reductions were smaller in Budapest at
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about 55%. Knowlton et al. (2007) present reductions of
25% by the 2050s relative to no acclimatisation for the New
York City region. The study used the ‘surrogate’ city method
to model acclimatisation. The different methods available for
modelling acclimatisation mean that it is difficult to
objectively compare results across studies. To some extent,
the results are dependent upon the method chosen.

Comparisons with previous assessments

It is simpler to compare the results from this study with
other studies by assuming no acclimatisation. We use the
estimates from Case 2 (Eq. (7b)) for comparison because
previous assessments only consider changes in mean
temperature with climate change. McMichael et al. (2003)
estimated that heat-related mortality amongst people aged
over 65 years would increase by 149% by the 2050s rela-
tive to 1997–1999 for Sydney. The estimates were based on
a high climate change scenario from the ECHAM4 model
and assumed no demographic changes. Our estimate for
Sydney was greater at 344%, but this was for the 2080s
when the climate was more extreme than during the 2050s.
Dessai (2003) estimated that heat-related mortality would
increase by 3,816% (PROMES climate model) and 1,106%
(HadRM2 climate model) in Lisbon by the 2080s relative to
1969–1998 for a scenario that involved the doubling of
carbon dioxide concentrations from present levels. Demo-
graphic changes were included. The increase estimated in
our study was around 2,070%. Large increases have also
been estimated by Hayhoe et al. (2004) for Los Angeles.
Heat-related mortality increased by about 1,616% relative
to 1961–1990 based on temperatures from HadCM3 driven
by the SRES A1Fi scenario, and assuming acclimatisation
and no demographic changes. Donaldson et al. (2001)
estimated that UK total heat-related mortality would
increase by 350% by the 2080s relative to 1961–1990
under the HadCM2 climate model driven by a medium-
high climate change scenario and assuming no demograph-
ic changes. This compares to our estimate of 394%. It is
likely that the results are similar because the medium-high
scenario applied by Donaldson et al. (2001) corresponds to
the SRES A2 scenario we applied. Also, although we use a
newer version, both the GCMs were developed at the same
modelling centre (Meteorological Office Hadley Centre)
and have broadly similar climate sensitivities and patterns
of temperature response. Furthermore, neither study
assumes demographic changes. The differences between
our estimates and those from the other assessments cited
above may be explained by a number of factors. For
example, the selections of climate change scenarios, the
climate model used, whether demographic changes were
considered and whether downscaling was applied to the
temperature data.

Although our city-specific results are in general agree-
ment with the other studies cited above, it is important to
acknowledge that there are considerable differences in the
impacts projected between the six cities. Some of these
differences are due to climate model biases (e.g. Lisbon,
discussed previously) but some are also due to the
sensitivity of the temperature-mortality relationships de-
rived in Part 1. For example, Dallas presents a strong
climate model bias comparable to that of Lisbon, but the
sensitivity of the temperature–mortality relationship is
weaker for Dallas. Therefore, the impacts are less severe
in Dallas than in Lisbon. Furthermore, a certain amount of
the differences will be due to variations in the relative
extents of warming projected for each city.

Conclusions

We have illustrated the importance of considering changing
temperature variability with climate change in assessments
of the impacts of climate change on heat-related mortality.
Our results demonstrate that higher mortality is attributed to
increases in the mean and variability of temperature with
climate change than with the change in mean temperature
alone. This has implications for interpreting existing
impacts estimates that have used the delta method to create
temperature projection time series. The impacts may be
underestimated because they do not consider the role of
changing temperature variability with climate change.
Therefore, we recommend that future assessments consider
changes in the mean and variability of temperature. The
novel method we have presented allows temperature
projection time series that include changes in the mean
and variability of temperature to be created. The method is
robust because it avoids climate model bias in the modelled
present influencing the final temperature projection time
series.

A key consideration has been that of climate model bias,
i.e. whether the model systematically projects warmer or
cooler temperatures than observed. We demonstrated that
the differences in the mortality impacts between accounting
for bias and not accounting for bias can be up to 1,600%. A
recommendation for future health impacts assessments is to
conduct climate model evaluations so that the impacts can
be placed within the context of the climate model’s abilities
to represent the present and future climate. However, it
must be acknowledged that future estimates of mortality are
not solely GCM-dependent, but also dependent upon the
observed data and methods used to calibrate the climate–
health relationships (Gosling et al. 2007).

The uncertainty in the mortality impacts due to different
emissions scenarios of greenhouse gases in the future
varied considerably by location. Whether future populations
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will acclimatise to warmer temperatures in the future is
another important uncertainty that needs to be considered.
Allowing for acclimatisation of 2°C reduced future heat-
related mortality by approximately half compared to that of
no acclimatisation in each city. However, a key question is
by how much will populations acclimatise in the future?
Questions such as this, uncertainty associated with
emissions scenarios, the roles of the mean and variability
of temperature with climate change and climate model
evaluation, are factors that should be considered in future
climate change heat-related mortality impacts assessments.
This will facilitate a better understanding of the potential
impacts, which can be used to assist policy-making
decisions.
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