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Abstract A simple, stochastic daily temperature and
precipitation generator (TEMPGEN) was developed to
generate inputs for the study of the effects of climate
change on models driven by daily weather information
when climate data are available as monthly summaries. The
model uses as input only 11 sets of monthly normal
statistics from individual weather stations. It needs no
calibration, and was parameterized and validated for use in
Canada and the continental United States. Monthly normals
needed are: mean and standard deviation of daily minimum
and maximum temperature, first and second order autore-
gressive terms for daily deviations of minimum and
maximum temperatures from their daily means, correlation
of deviations of daily minimum and maximum temper-
atures, total precipitation, and the interannual variance of
total precipitation. The statistical properties and distribu-
tions of daily temperature and precipitation data produced
by this generator compared quite favorably with observa-
tions from 708 stations throughout North America (north of
Mexico). The algorithm generates realistic seasonal pat-
terns, variability and extremes of temperature, precipitation,
frost-free periods and hot spells. However, it predicts less
accurately the daily probability of precipitation, extreme
precipitation events and the duration of extreme droughts.
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Introduction

Progress in forecasting the impacts of climate change on
forest ecosystems (stand growth, succession sequences) and
disturbance regimes (insect and disease outbreaks, fire
frequencies) involves the ability to simulate extreme
weather events. Extreme events are often sequences ranging
from a few to several successive days of unusually hot,
cold, dry or wet weather. Many researchers are developing
climate-sensitive models of ecological processes that
require as input daily or even hourly time series of
temperature and precipitation (Prentice et al. 1993; Kimball
et al. 1997; Friend 1998; Lasch et al. 2002; Régniére and
Nealis 2002; Logan et al. 2003; Gray 2004). Typically,
however, climate change scenarios are generated from
single runs of Global Circulation Models (CGMs) with
daily output at coarse spatial resolution. Because this output
represents a single realization from a large set of possible
outcomes, the possibility of statistical treatment (replica-
tion) is severely limited (Oelschldgel 1995). However, the
output of CGMs can be summarized as monthly statistics
(normals) or as “anomalies” (deviations from base-line
normals) and disaggregated through stochastic daily weath-
er generators (Biirger 1997; Hansen and Ines 2005). The
low spatial resolution of GCMs can be increased through
regional models or other down-scaling approaches, and
monthly statistics can be input into ecological models to
take into account climate change scenarios (Fowler et al.
2005; Qian et al. 2005).

The major issue in the development of stochastic daily
weather generators is to obtain a sequence of daily weather
that conforms not only to observed (or expected) mean
values, but also to natural variability, extremes, and time
series characteristics (Wallis and Griffiths 1995). Several
approaches to generation of daily weather information have
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been developed, and most are based on the simulation of
alternating dry- and wet-day series using Markov-chain
transition probabilities (Richardon 1981; Racsko et al.
1991; Hutchinson 1995a; Katz 1996; Wilks 1999). Many
of these models, however, require considerable amounts of
input information and often must be calibrated for applica-
tion in specific geographical areas (Richardson and Wright
1984; Racsko et al. 1991; Semenov and Barrow 1997;
Biirger 1997; Semenov et al. 1998). There has also been
considerable attention focused on adding interannual
variation in these generators for ecological applications
(Mearns et al. 1997, Hansen and Mavromatis 2001;
Mavromatis and Hansen 2001; Dubrovsky et al. 2004).

Régnicére and Bolstad (1994) developed an algorithm
(TEMPGEN) for simulation of daily minimum and maxi-
mum air temperature based on normals (30-year monthly
average and extreme minimum and maximum temper-
atures). This algorithm generates realistic distributions,
autocorrelation and cross-correlation patterns of daily
minimum, maximum temperatures and ranges. It has been
quite useful in studying the responses of models driven by
daily weather information under “normal” weather con-
ditions and has been used in many applications through the
BioSIM system (Régnicre 1996). However, this generator
has three weaknesses: (1) it does not take into account the
interannual variation of monthly average temperatures, and
therefore generates temperature traces that are not as
variable as they are in nature; (2) it does not generate daily
precipitation; and (3) it was parameterized from data from
the Atlantic coastal area of the United States, and as such is
not applicable in other areas.

The objective of the work reported here was to remedy
these three weaknesses by generalizing and validating the
Régnicre and Bolstad (1994) algorithm for the entire North
American continent (north of Mexico) and adding daily
precipitation to its output. We sought a model that would
require minimal input (in the form of local monthly normal
statistics) would need no for calibration, and would
generate realistic daily times series of minimum and
maximum air temperature and precipitation, exhibiting
levels of variability and statistical distributions close to
those of observed time series.

Methods

Algorithm structure

Throughout this document, temperatures are expressed in
°C and precipitation in millimeters of water. The symbol
~ above a term designates a 30-year normal while —

represents an average of some other type. Inputs of this
model are 11 sets of monthly statistics extracted over a
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standard normal period (SNP) of 30 years of daily
observations from a given location. The first two sets
of normals are mean daily minimum (z,) and maximum
(1) temperatures. From these, normal daily minimum
and maximum temperatures are obtained by linear inter-
polation between the means of successive months,
adjusted to correspond to the values occurring at mid-
month. Seven additional monthly normals are calculated
from the differences between observed daily minimum
and maximum temperatures and these daily normals: their
standard deviations (o5 for minimum and o. for maxi-
mum temperature); 2nd order autoregressive terms de-
scribing their time-series characteristics (25, E’g for
minimum and ZE, EE for maximum temperatures); and
their cross-correlation (75.). Two additional monthly statis-
tics describe the characteristics of precipitation: average
monthly total (1~3); and the standard deviation (cp) of the
ratio of observed monthly total to normal precipitation,
given by:

5p = Z(%—l)z/mw (1)

where P,, is a month’s total precipitation in year m and
n=30 years.

Daily minimum and maximum temperatures are
generated with the algorithm of Régniére and Bolstad
(1994):

(2)

where Tvn(t) and T;(t) are daily normal minimum and
maximum temperatures (obtained by linear interpolation
as described above), and 8(¢f) and €(¢) are auto-correlated
(2nd order) and cross-correlated random numbers with
means of 0 and variances o3 and 2. The autocorrelation
and cross-correlation are generated through general linear
stochastic processes expressed as:

50 =3 ailt—i)
& | 3)
1) == Lpy(t—i - t—i
e(1) = Zﬁ,[pr( i)+ (1= 1[p))¢(t— i)
where «; and (3; are infinite series of coefficients such that:

ar =1, :Z(g,andai :Z(gai,l —&—E(gai,z fori > 2

- - - (4)
By =1,0, =4, and §; = 4. ;| + B-f;_, fori > 2

and y € Nor 0,63, , ¢ € Nor 0,0'2 . The formulation of
Eq. 3 is a generalization of Régnic¢re and Bolstad’s (1994)
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model 2, where p can be in the range [~1,1] and € can have
any variance regardless of the values of 45, Bs, 4., B- and
p. The variances & and 7 are given by:

~2
2__9s
7= (5
and
~2 2
2 Os 1 p
o; = - (6)
-\ 28 X
and the value of p is:
Yo
P () 7

(see Régnieére and Bolstad 1994, Appendix 2, for the
derivation of Egs. 5-7). The sums >.¢2, S)f° and
>~ (eB) converge within the first 20 terms. In the original
model of Régniére and Bolstad (1994), 25, Bs, ZE, B. and
rse were calculated from station latitude and time of year.
Observed extreme minimum and maximum observations
were also needed to calculate o5 and o., based on the
analysis of data from the Atlantic area of the United States.
In the present model, they are input station normals.

Contrary to most daily weather generators where daily
precipitation is the basis for simulation of temperature
values (Katz 1996), in this model air temperature is
generated first, and precipitation is computed on the basis
of daily temperatures, with the underlying assumption that
precipitation is more likely on days with smaller tempera-
ture ranges. Total monthly precipitation (P) is generated by
drawing a multiplicative random deviation AP>0 from a
family of Weibull probability distribution functions entirely
parameterized from op:

P=AP-P (8)

The probability of daily precipitation p(f) is generated
from total monthly precipitation P, its variance o and the
daily temperature range R(¢) = Ty(t) — T,(¢). The value of
p() is then compared with a uniformly distributed random
number y € U(0, 1). Whenever p(¢) < y, p(¢) is reset to 0.
For days where p(f) > 0, the amount of daily precipitation
P(?) is calculated as follows. The proportion x(#) of total
monthly precipitation falling on day 7 is obtained from a
Beta distribution specified entirely from the month’s &p
and that day’s precipitation is given by:

P(t) = x()P )

where > x(¢) = 1 within a month.

Data sources

Monthly normals (i, fi,, 65, 6<, As, Bs, A., B., 7s., P and &p
for stations in North America were calculated over the
1961-1990 SNP from daily records contained in two data-
bases. For Canada, data from Atmospheric Environment
Service Daily Climate Data CD-ROMs http://www.msc-
smc.ec.gc.ca/) were used. For the United States (excluding
Alaska, Atlantic and Pacific Island states), the NCDC COOP
Summary of the Day TD3200 database http://www.ncdc.
noaa.gov/) was used. Only stations with at least 20 years of
data for each month during the SNP were retained. For these
stations, a month’s data were retained only if it contained at
least 20 days of non-missing temperature or precipitation
data. Total precipitation in months with missing data was
adjusted (P=P,aqgjusiea * days in month/non-missing days in
months).

Variation of monthly mean temperature and total
precipitation

Annual variation of monthly mean temperature and
precipitation was analyzed using data from four clusters
of weather stations representing a wide range of North
American climates: 156 in Quebec, 129 in British Colum-
bia, 118 in California and 108 in Tennessee and North
Carolina. Deviations of monthly mean temperature (u)
and total precipitation (P) from 30-year normals
(i = (7, + 7i,)/2] and P were calculated:

Ap=pu—n
Ap=p /P (10)

To detect month-to-month autocorrelation, values of Ap
and AP were averaged by year and month over all stations
in each cluster. This provided eight 360-month time series:
four of At and four of AP. Autocorrelation in each of these
time series was calculated for lags of 1-12 months. Cross-
correlations (without lag) between deviations in tempera-
ture and precipitation were also tested for significance.

The distribution of monthly precipitation deviations AP
changed consistently from month to month, and the
resulting patterns were different between station clusters.
The Weibull probability distribution function (see Hastings
and Peacock 1975) was chosen as a suitably flexible model
to describe these patterns:

p(AP SX) =1— e*[(Xw‘»0.0S)//l]” (11)

where X>0. The value 0.05 was added to X to ensure that
months with no precipitation could have a non-zero
probability of occurring (p>0 when X=0).

Equation 11 was fitted to the cumulative distribution of
AP for each month, pooled separately over stations from
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each cluster. Parameters n and A were estimated for the 48
distributions (12 months, for stations in Quebec, British
Columbia, California and Tennessee/North Carolina) by
non-linear least squares regression (SAS release 8.04,
PROC NLIN). Parameter 1 was highly correlated to the
monthly values of op = %Z op averaged over all stations
(by cluster and month). The relationship was expressed
as:

7= ay + by/Tp (12)

where 7 is an estimate of 1) given Gp. Parameters a,, and b,
were estimated by linear regression. There was also a strong
relationship between the values of n and A, which we
modeled with:

P=al —e—"”Af)Cx (13)

where 1 is an estimate of X ; ay, by and ¢, are parameters
that were estimated by non-linear least squares regression.
The probability distribution of total monthly precipitation
for a given station can be determined from P and &p with
Egs. 11, 12 and 13.

Generation of daily precipitation

For this analysis, daily air temperature and precipitation
records were compiled from the four clusters of weather
stations described above. Daily probabilities of precipita-
tion were related through a purely empirical model to three
variables: total monthly precipitation P, its interannual
variability op, and daily temperature range R(f). The
distinction between wet and dry days is made on the basis
of these probabilities. Total monthly precipitation is
partitioned among wet days through a family of Beta
distributions.

The probability of daily precipitation p(f) on day ¢ was
modeled with:

g(p) =ko+kilog,y (P+ 1)+ ky logyy W + ksop (14)

where

Fig. 1 Map of Canada and the
United States. ¢ Data sources for
detailed model output analysis,
« data sources for simulator
validation
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is the logistic transform of p, and W is a Weibull probability
density function of daily temperature range R(?):

-1 R(t)+l)wz
sz<R<t)+1) (= (16

(] 1

with four parameters:
(o) :k4+k55p and @, = k¢ + k7 op. (17)

Equations 14-17 were fitted to observations in the
following manner. Days with precipitation exceeding
0.1 mm were assigned a precipitation index of 1 (otherwise
0). Precipitation indices were averaged, providing values of
p(t) for classes of P, R(t) and cp. P values were grouped
into 5 mm/month classes from 0 to >250 mm/month. R(?)
values were grouped into 1°C classes from <3 to >25°C. 6p
values were grouped into 14 classes: 0-0.3, 0.3-0.4, ...,

0.9-1.0, 1.0-1.5, ..., 3.0-3.5, >3.5. Classes containing
fewer than 10 observations were dropped, leaving a total
4
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3
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Fig. 2a, b Variation of parameters 7 and A of Eq. 11 describing the
distribution of AP = P,/ P, relative monthly precipitation for
stations in (o) Quebec, (¢) British Columbia, (o) California and (=)
Tennessee/North Carolina. a Relationship between 7 and the standard
deviation of monthly precipitation p (line: Eq. 12). b Relationship
between A and 7 (line: Eq. 13)

of 9,821 distinct combinations of the independent variables.
Parameters ky—k,; were estimated simultaneously by non-
linear logistic regression analysis.

The distribution of the proportion of total monthly
precipitation falling on a given rainy day ¢, the ratio P(¢)/P
where P(£)>0.1 mm, was approximated by a family of
Beta distributions Beta(v,w) where shape parameters v and
w are estimated from the mean and uncorrected variance
of the P(¢)/P ratio (see Hastings and Peacock 1975). The
data set was subdivided into 14 groups according to the
values of 6p (classes listed above), v and w were calculated
by month within each class and estimates of w were related
to op (the average op within each group) with:

mi

G+ 1" 1

w=mgy +

Parameters my—m, were estimated by non-linear least-
squares regression. There was also a curvi-linear relation-
ship between v and w expressed with:

v =m3 + mgw + ms/w (19)

where ms;—m; are parameters estimated by linear regression.
From relationships in Egs. 18 and 19, a Beta distribution of
the P(f)/P ratio can be assigned for any value of &p.

Model validation
Data from one station in each of the four clusters used in

model parameterization were used for a detailed compari-
son of observed and simulated patterns of monthly variation

Table 1 List of parameter estimates for Eqs. 12—19 of the simulator

Equation Parameter Estimate+SE
Eq. 12 (R*=0.995) a, 0.075+0.009
b, 0.928+0.020
Eq. 13 (R?=0.985) a, 1.117+0.005
by 4.411+0.226
N 7.509+0.960
Egs. 14-17 (R*=0.937) ko 1.544+0.072
ky 1.023+0.013
ky 1.459+0.075
ks ~1.140+0.025
ky —0.925+0.221
ks 4.875+0.085
ke ~0.166+0.011
ks 1.617+0.019
Eq. 18 (R*=0.997) mo 0.2*
my 29.6+1.2
my 4.025+0.118
Eq. 19 (R?=0.904) ms 0.284+0.027
my 0.0390.004
ms 0.035+0.011

? Parameter value fixed
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and distributions. These stations were selected because
they had the least missing data: Summerland BC (49°34'N,
119°39'W), Quebec QC (45°48'N, 71°23'W), Button
Willow CA (35°24°N, 119°28W) and Knoxville TN (35°
49'N, 83°59'W) (Fig. 1). For each station, ten observed and
simulated monthly statistics were compared: extreme and
mean minimum and maximum temperature, the standard
deviations of mean temperature and total precipitation,
average daily precipitation and probability of precipitation,
and the duration of droughts and hot spells. Droughts
were defined as periods of successive days with pre-
cipitation < 0.1 mm. Hot spells were defined as periods of
successive days with maximum temperature >30°C. Seven
observed and simulated frequency distributions were
compared: daily minimum and maximum temperatures,
daily temperature range, frost-free period, duration of
droughts and hot spells, and amount of daily precipitation.

Normals and daily data over the entire 1961-1990 SNP
were obtained for a set of 708 North American weather
stations. This set was selected at random by a thinning
algorithm eliminating neighboring stations within 100 km
of each other, so that selected stations were distributed as
evenly as possible across Canada and the continental
United States, conditional on station density. Station
density was very low in northern Canada (Fig. 1). From
the monthly normals of each station (z,, i1, 05, 55,25,3’5,
25,735,755,13 and op), daily temperature and precipitation

data (300 years) were generated with the daily weather
generator and simulator-generated monthly normals for
each station were compiled. Six additional observed and
simulated monthly statistics were calculated by station:
mean extreme minimum and maximum temperatures,
average daily temperature range, average daily precipitation
and probability of precipitation, and the standard deviation
of mean temperature, designated o,,. Observed and simu-
lated annual frost-free periods were compiled. Five extreme
events were extracted from observed and simulated fre-
quency distributions compiled by station over the entire
observation (30 years) or simulation (300 years) period: the
coldest and hottest temperatures (Sth percentile lowest
minimum and 95th percentile highest maximum tem-
peratures), the heaviest daily precipitation events (95th
percentile), the longest droughts (95th percentile) and the
longest hot spells (95th percentile).

Results
Data analysis

Autocorrelation

There was a weak but significant 1-month lag autocor-
relation in the monthly mean deviations from normals

\

AR

AR

Fig. 3 Cumulative distribution a
of AP = P, / P, the ratio of January f«f"’{;s‘erved
monthly precipitation on normal — Weibul
precipitation, by month, for February
stations in a Quebec, b British
Columbia, ¢ California and
d Tennessee/North Carolina. March
o Observations, — Weibull
distribution function (Eq. 11) April
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temperature (Ap) among stations from British Columbia
(r=0.229, P<0.001), California (r=0.159, P=0.003), Ten-
nessee/North Carolina (r=0.131, P=0.014), but not from
Quebec (r=0.067, P=0.201). There was no significant
autocorrelation in deviations of total monthly precipitation
from normals (AP) among stations of any cluster normals
at any time lag. Thus, the simulator was designed without a
built-in autocorrelation structure in monthly deviations
from monthly mean temperature or total precipitation.
There was a weak correlation between deviations from
monthly mean temperatures and deviations from monthly
total precipitation among time series from British Columbia
(r=—0.149, P<0.001), Quebec (r=0.045, P<0.001) and
California (r=—0.130, P<0.001), but none from Tennessee/
North Carolina (r=—0.004, P=0.454). Because of the
weakness and ambiguity of this association, no attempt

was made to correlate average monthly temperature and
total precipitation in the simulator.

Precipitation

Equations 12 and 13 described precisely the relationships
between 1 and op (Fig. 2a), and . and 7 (Table 1; Fig. 2b).
The family of Weibull distribution functions (Eq. 11)
generated by these relationships approximated quite well
the patterns of monthly deviations of total precipitation
from normals, AP, among data from stations from the four
clusters: British Columbia (Fig. 3a), Quebec (Fig. 3b),
California (Fig. 3c) and Tennessee/North Carolina
(Fig. 3d).

There was a clear diminishing-return relationship be-
tween the daily probability of precipitation p(f) and total
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Fig. 5a—c Variation of the param- 1.0 e
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monthly precipitation P (Fig. 4a). There was also a strong
relationship between p(¢) and daily temperature range R(?)
(Fig. 4b), confirming the initial underlying assumption
that the likelihood of precipitation is inversely propor-
tional to R(?). These relationships were modulated strongly
by variability of monthly precipitation (6p). Equation 14

provided a good description of these relationships (Table 1).

The Beta distribution captured well the changes in
distribution of the ratio P(#)/P, the proportion of a month’s
total precipitation falling on a given day, with respect to
op. Equations 18 and 19 accurately described the relation-
ships between the v and w parameters of the Beta(v, w)
distribution and op (Table 1; Fig. 5).

Model validation

Simulated and observed monthly temperature fluctuations
(t,, 1, and mean extreme minimum and maximum) were
nearly identical at the four stations selected for detailed
examination (Summerland BC, Quebec QC, Knoxville TN
and Button Willow CA; Fig. 6a). Seasonal fluctuations of
the variance of mean monthly temperature and total pre-
cipitation (o, and op) were also well mimicked by the
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model (Fig. 6b). However, the simulated values of o,
tended to be lower than observed (closed circles, Fig. 6b).
Simulated and observed daily precipitation averages were
nearly identical (Fig. 6¢). Monthly variations of the prob-
ability of simulated daily precipitation varied in good
general agreement with observations (Fig. 6d). The simu-
lated seasonal patterns of drought and hot-spell duration
were very similar to observations, although simulated
droughts tended to be shorter than observed in Button
Willow CA (Fig. 6e,f).

The distributions of observed and simulated daily
minimum and maximum temperatures and of daily ranges
were nearly identical (Fig. 7a,b). The distribution of the
frost-free period was well simulated by the model in three
of the four stations (Fig. 7c). In Button Willow CA,
observed frost-free periods were about 10 days longer than
simulated. The distribution of hot spell duration was well
mimicked by the model in all four locations (Fig. 7d).
While the distributions of simulated and observed single-
day precipitation amounts (Fig. 7e) and droughts (Fig. 7f)
were quite similar in three of the four stations, both
simulated distributions tended toward higher values than
observed in Button Willow CA.
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Fig. 6a—f Comparison of simulated and observed monthly statistics
for four selected stations. Columns from left to right: / Summerland
BC, 2 Quebec QC, 3 Button Willow CA, 4 Knoxville TN. Symbols
observations, lines model. a Extreme and mean minimum and

Over the 708 stations in the validation data set, 9 of the
11 monthly normals calculated from model output were for
all practical purposes identical to observed normals in terms
both of means and variances (4, L,,0s, 057145,357/15,
Bf,r,;f, Table 2). Simulated total monthly precipitation P

YT Yy T I T T T TTT Ty ~Y91
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ASOND

T T

Month

maximum temperatures. b Standard deviation of mean temperature
(—+—) and precipitation (—o—). ¢ Average daily precipitation. d
Daily probability of precipitation. e Drought duration. f Hot-spell
duration

was slightly lower than observed, with a mean error (ME)
of 0.3+£2.7 mm/month and a mean absolute error (MAE)
of 1.7+1.9 mm/month. However, these differences were
very small (0.5% on average) in comparison to the
observed average monthly precipitation of 63.6+
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Fig. 7a—f Comparison of cumulative distributions of simulated and
observed statistics for four selected stations.
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Table 2 Comparison of observed and simulated statistics from 708 randomly-selected weather stations
Normal® Observed Simulated Error Absolute error r
Mean+SD Mean+SD Mean+SD Mean+SD
Input normals
1,(°C) 1.9+11.7 1.9+11.7 0.0+0.1 0.1+0.1 0.999
14,(°C) 14.5+13.1 14.5+13.1 0.0+0.1 0.1+0.1 0.999
75(°C) 4.7+1.8 47+1.8 0.0+0.1 0.1+0.1 0.999
6.(°C) 5.1+1.6 5.1+1.6 0.0+0.1 0.1+0.1 0.999
As 0.66+0.14 0.66+0.14 0.00+0.01 0.01+0.01 0.997
Bs —0.05+0.09 —0.05+0.09 0.00+0.01 0.01+0.01 0.993
A. 0.73+0.12 0.73+0.12 0.00+0.01 0.01+0.01 0.996
B. —0.09+0.08 —0.09+0.08 0.00+0.01 0.01+0.01 0.991
Tse 0.576+0.198 0.585+0.196 0.008+0.014 0.012+0.011 0.997
P(mm) 63.6+47.8 63.3+47.5 —0.3+2.7 1.7+£1.9 0.998
Gp 0.69+0.32 0.69+0.35 0.00+0.07 0.03+0.06 0.984
Non-input monthly statistics
Mean extreme min (°C) —6.9+14.0 -7.2+143 —0.3+0.9 0.7+0.7 0.998
Mean extreme max (°C) 23.1+11.3 24.1+£11.5 1.1+1.0 1.2+0.8 0.996
St. Dev. of mean (°C) 1.9+0.9 1.6+0.8 -0.3+0.3 0.3+0.3 0.966
Daily range (°C) 12.1+3.1 12.1+3.1 0.0+0.1 0.0+0.0 1.000
Daily pptn. (mm) 2.1+1.6 2.1+1.6 0.0+0.1 0.1+0.1 0.998
Daily pptn. prob. (mm) 0.287+0.133 0.267+0.152 —0.020+0.083 0.067+0.052 0.840
Annual or extreme events
5% lowest min (°C) -16.4+11.3 -16.2+11.0 0.1+0.7 0.5+0.5 0.998
95% highest max (°C) 29.8+5.3 29.8+46.1 0.0+0.5 0.2+0.4 0.997
Heaviest pptn. (mm) 25.0+12.0 27.7£11.6 2.7£9.5 6.9+7.0 0.677
Frost-free period (days) 150.7+67.6 151.2+68.0 0.5+6.6 4.9+4.5 0.995
Longest hot-spell (days) 15.0+£18.8 13.1£19.2 -1.9+3.9 2.6+3.5 0.979
Longest drought (days) 18.1£13.5 18.2+13.3 0.1+7.5 4.8+5.8 0.846

#First group: input normals. Second group: additional monthly statistics (7=8,496). Third group: mean annual value (frost-free period) or station

extreme values (n=708)

47.8 mm/month and the correlation between observed and
average total monthly precipitation was very high (r=
0.998). While the ME and MAE between observed and
simulated variation of monthly total precipitation op were
very small (Table 2), the correlation between them was not
as high as for other normal statistics (r=0.984). This
indicates that the model realistically mimics this variation,
but does not do this exactly, especially for higher values of
op (Fig. 8a).

The model generated accurate average monthly mean
extreme minimum temperatures (Table 2) that were nearly
unbiased (ME:—0.3+£0.9°C; MAE: 0.7+£0.7°C) and were
highly correlated with observations (r=0.998). Simulated
average monthly maximum temperature was clearly biased
(ME:1.1£1.0°C, MAE 1.2£1.2°C), despite a high correla-
tion between observed and simulated values (r=0.996;
Fig. 8b). To explain this bias, the distributions of observed
and simulated deviations of maximum temperature from
daily averages, €(¢) in equation [2], were compared for the
four stations selected for detailed analysis. While the
distributions of simulated deviations were nearly normal,
observed deviations had lower than expected frequencies at

the higher extremes (> 98th percentile), in all four stations
and throughout the year (Fig. 9). This difference in
distributions between simulated and observed €(¢) is the
cause of the bias in mean monthly extreme maximum
temperatures output by the model. Limiting the values of
€(?) to the range +1.96 o, in the calculation of 7(¢) (Eq. 2)
corrects this bias very efficiently without impacting other
output characteristics.

The standard deviations of mean monthly temperature
o, generated by the model were smaller than observed
(ME:=0.3+0.3; MAE:0.3£0.3; Table 2), although the
correlation between observed and simulated values was
high (r=0.966). This bias represents a 15% difference on
average (Fig. 8c) and was most pronounced at higher
values of o, (Fig. 8c). In the model, this variation
results entirely from the variances (6.,05), autocorrela-
tion (As, Bs, A., B. ) and cross-correlation (7s<) structure of
the stochastic processes & and € in Eq. 3. There was a
strong spatial pattern in observed values of o, over the
North American continent, with the higher values occurring
in the Prairie Provinces and around Hudson’s Bay in
Canada (Fig. 10a). The differences between model output
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Fig. 8a—h Comparison of se-

lected observed (ordinate) and

simulated (abscissa) statistics at

708 randomly selected weather -
stations, either a single annual

value (n=708) or 12 monthly

values per station (n=8496) (see

Fig. 1 for geographical distribu-
tion). Lines: equality. a Standard
deviation of monthly precipita-

tion (7=9,496 records). b Mean
extreme maximum (n=8,496).

¢ Standard deviation of monthly
mean (n=8,496). d Average
daily probability of precipitation
(n=8,496). e Frost-free period

°c

(n=708). f Extreme (95th per-
centile) hot spell duration
(n=708). g Extreme (95th per-

Simulated

centile) daily precipitation
(n=708). h Extreme (95th per-
centile) drought duration
(n=708)

days

mm/day
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40 -
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0 20
mm/day

and observations being proportional to o, they had a very
similar spatial pattern (Fig. 10b).

The average daily ranges and daily precipitation gener-
ated by the model were nearly identical to observations,
with no bias and very high correlation coefficients (Table 2).
However, average simulated daily probability of precipi-
tation was lower than observed (ME: 0.020+0.083; MAE:
0.067+0.052; Table 2). Because of the high variability of
daily precipitation probability averaged by month and
station, the correlation between simulated and observed
means was only 0.84 (Fig. 8d). The daily probability of
precipitation in North America is strongly patterned: it is
highest in the Pacific Northwest and the Northeast
(especially northern Ontario and Quebec), and lowest in
the Southwest (Fig. 10c). Differences between model out-
put and observations were also patterned spatially
(Fig. 10d). The largest negative differences (simulated <
observed) were located in the mountains of the West, the
Canadian Prairies and at the latitude of James Bay in
eastern Canada. Positive differences were concentrated in
the eastern half of the continent, south of the Great Lakes,
and along the Southern half of Canada’s Atlantic Coast.
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The model generated highly realistic distributions of
extreme temperatures (5th percentile lowest daily minimum
and 95th percentile highest daily maximum). The values of
these two statistics generated by the model were highly
correlated with observations, with low ME and MAE
(Table 2). Average frost-free periods were also quite well
predicted, with no bias and a small MAE of 4.9+4.5 days
(Fig. 8e). The model predicted reasonably well the duration
of extreme hot spells (95th percentile longest) with an
MAE of only 2.6+3.5 days, relative to the observed
average of 15.0+£18.8 days. The correlation between
simulated and observed extreme hot spells was high (r=
0.979; Fig. 8f). However, the model did not perform so well
in predicting extreme daily precipitation (95th percentile
highest values) or extreme drought durations (95th
percentile longest). The model generated extreme precip-
itation events that were only slightly larger than observed
on average (ME: 2.7+9.5 mm/day), but the the MAE was
quite high (6.9+7.0 mm/day) relative to the observed
average of 25.0+12.0 mm/day (Fig. 8g). Extreme precip-
itation events have a strong spatial pattern in North
America, and are largest in the Pacific Northwest and
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Fig. 9a—h Comparison of the 99.99
distribution of observed and

simulated daily deviations of 99
maximum temperature from

their means at four selected 50
weather stations. Rows: / Que-

bec QC, 2 Summerland BC, 3 1
Button Willow CA, 4 Knoxville

TN. a—d January. e-h July. 0.01
o Observed, simulated,

— normal distribution. Arrows 99.99
indicate the systematic shortage 99
of very high values among

observations 50

0.01
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around the Gulf of Mexico (Fig. 10e). The model tended to
predict heavier extreme precipitation than observed in the
western half of the United States, and lighter than observed
in the Southeast (Fig. 10f). Average predicted extreme
drought duration was unbiased (ME: 0.1+7.5 days) but
absolute differences between model output and observa-
tions were high (MAE: 4.8+5.8 days) compared to the
observed average (18.1+13.5 days; Fig. 8h). The model
underestimated the extreme summer droughts observed in
the southwestern corner of the continent, but overestimated
those over the high-elevation terrain of much of the western
United States (Fig. 10g,h).

Discussion

Two of the objectives of this modification of Régniere and
Bolstad’s (1994) TEMPGEN algorithm were to generalize
it to the entire North American continent, north of Mexico,
and to generate realistic interannual variability in monthly

means. These objectives were achieved in two ways: (1) by
replacing empirical relationships between station latitude
and the variance, autocorrelation and cross correlation of
daily minimum and maximum temperature time series by
input station-specific monthly statistics 55,55,25,§5,
25, g’g, 75:); and (2) by generalizing the stochastic processes
(Eq. 3) that generate the daily fluctuations around normal
monthly (mean) temperatures (f,,, 1z,). Comparison of the
characteristics of observed and simulated daily temperature
time series indicates that these objectives have been met
successfully in terms of both seasonality and accuracy. The
model also produces highly realistic frost-free periods and
extreme events such as very low or very high temperatures
and hot spells.

The model-generated interannual variation of monthly
mean temperatures, which results entirely from the stochas-
tic processes generating daily minimum and maximum
temperature time series, is 15% smaller than observed
variability. This suggests that other sources of variability
are at play in observed temperature fluctuations, such as

@ Springer



428 Int J Biometeorol (2007) 51:415-430

Fig. 10a-h Maps of selected Observed Simulated - Observed

statistics from 708 randomly
selected weather stations (see
Fig. 1 for geographical distribu-
tion). Columns: Left Observed
values, right simulated-observed
differences. a, b 0,,. ¢, d Daily
probability of precipitation. e, f
Extreme (95th percentile) daily
precipitation. g, h Extreme (95th
percentile) drought duration

mm33-36 . 104 - o
Standard deviation of monthly mean temperature O m (°C)

Extreme drought duration (days)
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low-frequency fluctuations including the El Nifio/Southern
Oscillation (Philander 1990), the North Atlantic Oscillation
(Watanabe and Nitta 1999) and the Pacific Decadal
Oscillation (Latif and Barnett 1994). No attempt has been
made at this point to include such synoptic low-frequency
sources of temperature variability in TEMPGEN. Yet low-
frequency interannual variability can have important con-
sequences in ecological systems and needs to be taken into
consideration in the generation of daily weather data
(Hansen and Mavromatis 2001; Mavromatis and Hansen
2001; Dubrovsky et al. 2004). One simple way to achieve
this without recourse to models of those complex climate
oscillation processes would be to apply a suitably small
amount of stochastic annual variation simultaneously to
monthly mean minimum and maximum temperatures
(Fi -

The third objective of this work was to add daily
precipitation to TEMPGEN’s output. Many of the daily
weather generators developed since the 1950s (Bruhn 1980;
Richardon 1981; Racsko et al. 1991; Johnson et al. 1996;
Kimball et al. 1997; Friend 1998; Skiles and Richardson
1998; Jones and Thornton 2000; Yu 2003; Hansen and Ines
2005) are based on the simulation of precipitation using
Markov-chain transitions between wet and dry states (Chin
1977), and Alpha distributions of the daily amount of
precipitation. The TEMPGEN generator here is not based
on a distinction between wet and dry days. It approaches
precipitation on the basis of an empirical relationship
between probability of precipitation and daily temperature
range. Rather than describing transitions between wet and
dry periods, TEMPGEN’s wet and dry spells are the result
of the autocorrelation and cross-correlation structure of
minimum and maximum daily temperatures. The distribu-
tion of dry spell durations is an emergent property,
conditioned by expected total monthly rainfall and its
interannual variability, both station-specific model inputs

f’, 61:). The variability op is used to generate stochastic
values of total monthly precipitation. From these and daily
temperature ranges, the daily probability of precipitation is
calculated. The proportion of total monthly precipitation
falling on any given day is a Beta-distributed random
variable with parameters entirely specified by the input
value of op. In very dry climates (high op), such as in the
southwestern United States in summer, most monthly
precipitation falls within a few days. In less variable
climates (low Gp), precipitation is more evenly distributed.
TEMPGEN generates realistic amounts and seasonal
patterns of monthly precipitation. The average daily amount
of precipitation is also accurately simulated. However, the
daily probability of precipitation generated by the model is
slightly lower than observed (by about 2%). The model
generates fairly accurate drought durations, except in the
driest climates where it underestimates extreme drought

durations. The extreme daily precipitation events generated
by the model are unbiased, but their correlation with
observations is low (r = 0.0677). It must be noted, however,
that these extreme precipitation events are rare and that
observations used for comparison with model output were
based on only 30 years of data per station.

Many authors have used daily weather generators as a
means of down-scaling the outputs of Global Circulation
Models (CGMs) for climate change impact studies
(Oelschliagel 1995; Biirger 1997; Dubrovsky 1997;
Semenov and Barrow 1997). This involves summarizing
CGM outputs and generating daily weather from the
resulting distributions (Qian et al. 2005), or altering
monthly statistics by fixed amounts (Mearns et al. 1997).
One of the problems with these approaches is that CGM
outputs often do not reflect many of the statistical
characteristics of actual daily weather fluctuations, espe-
cially precipitation patterns at regional scales. This is a
particularly problematic issue with respect to dry-wet day
models, as discussed by Katz (1996). Many daily weather
generators require calibration for use at specific locations
(Soltani and Hoogenboom 2003; Fowler et al. 2005). The
TEMPGEN algorithm has the main advantage of requiring
no input data other than the 11 sets of station-specific
monthly normals. It can be used to generate daily minimum
and maximum temperature and precipitation time series for
any location in Canada or the continental United States
when provided with local climate normals (whether actual
or as a synthesis of CGM output). To provide such normals
for locations not close to a weather station or at a finer
spatial scale than CGM output, several spatial disaggrega-
tion methods are available, such as application of regional
climate models or spatial interpolation on the basis of a
network of weather station records and topography
(Hutchinson 1991, 1995b; Gignac 2000; Price et al. 2000).
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