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Abstract Biological particles in the air such as pollen
grains can cause environmental problems in the allergic
population. Medical studies report that a prior knowledge
of pollen season severity can be useful in the management
of pollen-related diseases. The aim of this work was to
forecast the severity of the Poaceae pollen season by us-
ing weather parameters prior to the pollen season. To carry
out the study a historical database of 21 years of pollen
and meteorological data was used. First, the years were
grouped into classes by using cluster analysis. As a result
of the grouping, the 21 years were divided into 3 classes
according to their potential allergenic load. Pre-season me-
teorological variables were used, as well as a series of
characteristics related to the pollen season. When consid-
ering pre-season meteorological variables, winter variables
were separated from early spring variables due to the na-
ture of the Mediterranean climate. Second, a neural network
model as well as a discriminant linear analysis were built
to forecast Poaceae pollen season severity, according to
the three classes previously defined. The neural network
yielded better results than linear models. In conclusion,
neural network models could have a high applicability in
the area of prevention, as the allergenic potential of a year
can be determined with a high degree of reliability, based
on a series of meteorological values accumulated prior to
the pollen season.
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Edificio Celestino Mutis, Campus de Rabanales,
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Introduction

Biological particles originating from natural sources, par-
ticularly pollen grains, pose an environmental problem to-
day in that they are a major source of adverse reactions
among the population; for that reason, research into their
precise role in allergies takes on considerable importance.
Of all airborne pollen grains, those of the Poaceae family
are considered one of the main causes of pollen allergy
in Europe (Spiekma et al. 1989; Frenguelli et al. 1989;
D’Amato et al. 1998; Norris-Hill and Emberlin 1991). In
Córdoba, 73% of pollen-allergic patients are sensitive to
this pollen type (Sánchez-Mesa et al. 2005).

Following production in the anthers, pollen grains un-
dergo an aerobiological process involving their emission,
dispersion and deposition. All of these mechanisms are
greatly influenced by meteorological variables. The rela-
tionship between concentrations of grass pollen in the air
and environmental factors has been analyzed by several
authors [Galán et al. (1989), Emberlin (1994)]. A number
of studies carried out over the last 20 years have demon-
strated the relationship between weather parameters prior
to the pollen season and the characteristics defining the
main pollination period, such as the start of the pollen
season and the peak day (Frenguelli et al. 1989; Laaidi
2001).

The Mediterranean climate is characterized by great
variability. Normally, wet periods alternate with more
frequent dry spells. Significant differences can even exist
within a single year, giving rise, for example, to a very
rainy winter and a very dry spring, or vice versa. The
development of grasses and consequently the amount of
pollen emitted into the atmosphere depends directly on
rainfall levels. The second meteorological variable that
most influences herbaceous plants is temperature.

The primary aim of this study was to group years accord-
ing to the allergenic potential of airborne Poaceae pollen,
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using weather and pollen data. This preliminary research
makes it easier to forecast the severity of the Poaceae
pollen season before it starts, by using pre-seasonal me-
teorological parameters. This could be of particular value
for prevention purposes, since the allergenic potential of a
given year could be determined with a high degree of relia-
bility, based on a series of weather data accumulated prior
to the pollen season. Early awareness of the severity of the
pollen season could enable the use of a more appropriate
model for predicting daily airborne grass pollen concen-
trations (Sánchez-Mesa et al. 2002). Discriminant linear
analysis and neural network analysis were used to construct
models.

Discriminant analysis is a very useful tool for detecting
the variables that allow the researcher to discriminate be-
tween different (naturally occurring) groups, and for clas-
sifying cases into different groups with a better than chance
accuracy.

A neural network consists of a mathematical model that
performs a computational simulation of the behavior of
neurons in the human brain by replicating, on a small scale,
the brain’s patterns, in order to form results from the events
perceived, i.e. it is a model based on learning a set of train-
ing data. It is about being able to analyze and reproduce the
learning mechanisms and recognition of events possessed
by the more highly evolved animal species. In recent years,
neural network use has spread to practically all sciences,
particularly in pattern classification and non-linear models
of prediction.

Materials and methods

The study was carried out in the city of Cordoba (4◦ 45′ W,
37◦ 50′ N; height above sea level 123 m), in the south-west
of the Iberian Peninsula. The climate is influenced by the
Mediterranean Sea, the annual average temperature being
17.5◦C and total annual rainfall 536 mm (according to the
records of the National Institute of Meteorology for the last
30 years).

This study used a historical database of 21 years of
pollen counts and weather data, from 1982 to 2002.
Airborne pollen concentrations were measured using
a Hirst-type volumetric sampler, located at a height of
15 m above ground level. Daily data obtained from the
sampler were read following the method recommended
by the Spanish Aerobiology Network (Domı́nguez et al.
1992). The result obtained was a daily average, expressed
as pollen grains/m3. The beginning of the pollen season
was considered when a mean value of at least 1 pollen
grain/m3/day was detected, and at least 1 grain/m3 on the
following days, with no more than one consecutive day
of 0 grains/m3. This technique eliminates the long tails
at the beginning that lead to serious errors in statistical
analyses. Meteorological data (daily rainfall and daily
minimum temperature) were supplied by the National
Institute of Meteorology, located 4 km from the sampling
point.

Grouping years

The primary aim was to group the 21 study years into
classes according to their potential allergenic load, by an-
alyzing conglomerates of mean values. K-means cluster-
ing assumes n individuals or objects and p measurements.
We denote by X (I, j) the value of the Ith individual on
the jth variable; I=1,2, . . . ,n, j=1,2. . .p. We will assume
throughout the discussion that the measurements collected
have properties that allow a Euclidean distance between
individuals to be considered. Let P (n, K) be the partition
that results in each of the n individuals being allocated to
one of clusters 1, 2,. . . K. The mean of the jth variable in
the lth cluster will be denoted by X̄ (l, j) and the num-
ber of individuals belonging to the lth cluster by n (l). In
this notation we may express the distance between the Ith
individual and the lth cluster as

D (i, l) =



p∑
j=1

[X (i, j) − X̄ (l, j)]2




1/2

We can define the error component of the partition by:

E[P(n, K )] =
n∑

i=1

D[i, l(i)]2,

where l(i) is the cluster that contains the ith individual,
and D [i, l(i)] is the Euclidean distance between individual
i and the cluster mean of the cluster containing the indi-
vidual. The procedure for clustering is as follows: search
for a partition with a small error component E by moving
individuals from one cluster to another, until no transfer of
an individual results in a reduction in E.

Pre-season weather variables were used, together with
a series of seasonal characteristics, following the method-
ology proposed in previous studies (Sánchez-Mesa et al.
2002). When considering pre-season meteorological vari-
ables, winter variables were separated from early spring
variables, thus reflecting the nature of the Mediterranean
climate, as explained in the introduction section.

The following pre-season variables were used:

(1) RainDJ = 1 December to 31 January accumulated rain-
fall (mm).

(2) DaysrainDJ = number of rainy days from 1 December
to 31 January.

(3) MintDJF = December, January and February accumu-
lated minimum temperature (◦C).

(4) Winter = winter factor obtained from the following
equation:

Winter = (RainDJ × DaysrainDJ)/MintDJF

This factor was used to quantify the degree to which
winter conditions were favorable for grass development;
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a directly proportional relationship was considered be-
tween rainfall and grass development. Water, an integral
part of living systems, is ecologically important because
it is a major force in shaping climatic patterns and bio-
chemically important because it is a necessary component
in physiological processes (Brown 1995). Minimum tem-
perature was considered to be inversely proportional, as
grasses require cold during the winter in order to avoid
premature growth. Over-development of grasses in win-
ter could lead to plant death due to late frosts in win-
ter. Frosts in Cordoba city usually occurs from December
to February. For this reason, accumulated minimum tem-
perature in February has been included in the MintDJF
variable.

(5) RainFMA = 1 February to 15 April accumulated rain-
fall (mm).

(6) DaysrainFMA = number of rainy days from 1 February
to 15 April.

(7) MintMA = 1 March to 15 April accumulated minimum
temperature (◦C).

(8) Spring = spring factor obtained from the following
equation:

Spring = (RainFMA × DaysrainFMAMintMA)/100, 000

This factor was used to quantify the degree to which
early spring conditions were favorable for grass develop-
ment; a directly proportional relationship was considered
between rainfall and grass development. Grass develop-
ment in Cordoba usually starts in March, but accumulated
rainfall in February influences this phenomenon. For this
reason, precipitation in February has been included in the
RainFMA variable. Minimum temperature was considered
to be directly proportional, as grasses require heat during
this part of the year for normal vegetative development. The
total result was divided by 100,000 in order to correct the
scale.

The following seasonal variables were used:

(1) TotPollen = whole-season total pollen (grains/m3).
(2) Maximum = pollen concentration of the highest peak

day (grains/m3/day).
(3) Daysbefpeak = number of days from the start of the

season to the peak day.

Classification

The second aim was to classify years according to the
classes determined before, using only the pre-seasonal vari-
ables defined previously. By this means, it was possible to
categorize a year even before the start of the pollen season,
using only weather-related parameters. Both discriminant
linear analysis and neural network models were used for
this purpose. Analysis covered the first 15 years (from 1982
to 1996), while the last 6 years (from 1997 to 2002) were
used for validation.

Discriminant linear analysis

Discriminant analysis allows us to build a predictive model
of group membership based on observed characteristics of
each case. The variables tested in this study were those pre-
viously described in the “grouping years” section. The pro-
cedure generates a discriminant function (or, for more than
two groups, a set of discriminant functions) based on linear
combinations of the predictor variables that provide the best
discrimination between the groups. The functions are gen-
erated from a sample of cases for which group membership
is known; the functions can then be applied to new cases
with measurements for the predictor variables but unknown
group membership. Determining the number of statistically
significant discriminant functions is particularly important.
The number of discriminant functions that provide statisti-
cally significant among-groups variation essentially defines
the dimensionality of the discriminant space. In this study,
a Wilks’ Lambda test was used to determine the signifi-
cance of each discriminant function. The Wilks’ Lambda
test also measures the differences between groups. Thus,
multiple discriminant analysis can be viewed as a reduction
technique, since it can, by uncovering a small number of
discriminant functions, provide a condensed version of the
factors that contribute to the among-group differences.

Neural network models

The main characteristic of neural networks is their capacity
for learning by example. This means that by using a neural
network there is no need to program how the output is
obtained, given certain input; but rather examples are shown
of the relationship between input and output, and the neural
network will learn the existing relationship between the
two by means of a learning algorithm. This learning will
materialize in the network’s topology and in the value of its
connections. Once the neural network has “learnt” to carry
out the desired function, it can be used, i.e. input values for
which the output is unknown can be entered, and the neural
network will calculate the output.

The ANN model was inspired by what is known about
the physical structure and mechanism of the nervous sys-
tem and the biological cognition and learning process, on
an oversimplified scale. Although based on functionality of
the nervous system, the cornerstone of ANN is in fact its
structure. The basic structure of the nervous system is the
neuron. Basically, a neuron consists of three major func-
tional elements: dendrites, cell body, and axon (Fig. 1).

Dendrites receive signals from other neurons and send
them to the cell body. The axon receives signals from the
cell body and carries them away through the synapse to the
dendrites of neighboring neurons. The dendrites of the sec-
ond neuron generate a new electric signal depending upon
the intensity of the signal received, the synaptic strengths
and the threshold of the receiving neuron. Since a neuron
has a large number of dendrites it can receive many sig-
nals simultaneously, and all neurons thus form a network
(Fig. 2).
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Fig. 1 Analogy between artificial neuron and biological neuron

Fig. 2 Artificial Neural Network diagram showing the connections
between neurons

The analogy between the artificial neuron and the biolog-
ical neuron is that the connections between nodes represent
the axon and dendrites, the connection weights represent
the synapses, and the threshold approximates the activity
in the soma.

Classification often uses a major class of artificial neural
networks, mainly multilayer feedforward networks. Usu-
ally, the network consists of a set of sensory units (source
nodes), each node being associated with a variable or char-
acteristic of the problem (in our case RainDJ, DaysrainDJ,
MintDJF, etc.), that constitutes the input layer, one or more
hidden layers of computation nodes, and an output layer of
computation nodes, each of which is associated with a class
identification; in our case, class 1 (1, 0, 0), class2 (0, 1, 0)
or class 3 (0, 0, 1). The input signal propagates through
the network in a forward direction, on a layer-by-layer
basis.

The nomenclature of the network architecture is as
follows:

(no. input neurons):(no. hidden neurons) s:(no. output
neurons) s, (output)

in our case 8: 2s:3s, (output)

where:

– s, the transfer function for the neurons in the hidden and
the output layer is a sigmoid;

– “output” in the example is the class identification esti-
mated;

– for classification, the transfer function in the output layer
is a sigmoid, but for prediction the transfer function is
linear.

– The design of the layers includes an intercept term called
“bias”.

Among the different algorithms that have been used
to train the network is the traditional back propagation
algorithm (BP) first proposed by Werbos (1974) and later
used by Rumelhart and McLelland (1986). This algorithm
is a generalization of the Delta rule (Widrow et al. 1988)
and, like it, undergoes a slow but sure learning process.
Another algorithm employed is the Extended-Delta-Bar
Delta (EDBD) algorithm, later used by Williams and
Minai (1990), which is at the same time a modification of
the Delta-Bar-Delta algorithm proposed by Jacobs (1978)
to improve the learning speed.

One of the main problems involved in the application of
artificial neural networks is the selection of the most ap-
propriate net architecture to be used. That is, the correct
number of nodes in the hidden layers of the net must be
determined as well as the amount of connections between
the nodes in the different layers making up the net. Gener-
ally, the size of the net affects its complexity and the time
necessary for training but, even more importantly, it affects
its capacity to generalize (that is, its capacity to produce
reliable and satisfactory results for data different to those
used during training). In fact, the same learning error can be
obtained in nets with different structures, although the error
of generalization would probably be different. In practice,
it seems that a bigger net size contributes to a lower error
level in the training group, although at the same time it
could increase the error committed in the generalization
group. Because of this, there ought to be an analysis of the
degree of complexity that a neuronal net should have to
resolve each problem in order for the learning and general-
ization errors to be considered acceptable.

To find the number of nodes to be included in this layer, as
well as the number of connections between the nodes in the
different layers that make up the net, the evolutive algorithm
proposed by Bebis et al. (1997) was used, coupled with
Williams’ pruning algorithm (Williams 1994). Evolutive
algorithms in the field of neuronal networks have proved
in many studies to be useful in the optimization of the
architecture of the net and its weights (Whitley and Schaffer
1992).

Evolutive algorithms are stochastic search algorithms
that execute a global search in weight space, avoiding the
fall to local optimum often produced by overtraining of the
net (Angeline et al. 1994; Yao 1999; Garcı́a et al. 2003).
Here, we used evolutive algorithms coupled with pruning
algorithms (Hervás et al. 2000) to search for the neuronal
net architecture that will allow us to verify, with a minimum
of information, the classification of years.
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Table 1 Mean variable values for each class considered in this study

Variable Class 1 Class 2 Class 3

RainDJ(mm) 91.06 194.52 262.13
DaysrainDJ* 12 20 26
MintDJF(◦C)* 310.65 471.58 533.37
Winter 3.70 9.04 13.53
RainFMA(mm) 94.74 125.26 185.25
DaysrainFMA* 12 16 24
MintMA(◦C) 333.09 337.33 395.50
Spring 4.36 7.93 17.99
TotPollen (grains/m3)* 1871 4033 7681
Maximum (grains/m3/day)* 159 347 811
Daysbefpeak* 39 63 73

*Significance level of 0.05 according to ANOVA test

Results

Grouping years

As a result of the classification, the 21 study years were
divided into three classes. All the pre-season and sea-
son variables described above were introduced into the
K-means cluster analysis. The mean values of these vari-
ables for each class are shown in Table 1. The ANOVA test
revealed significant differences between mean values for
each class, with a significance level of 0.05, for the follow-
ing variables: DaysrainDJ, MintDJF, DaysrainFMA, Tot-
Pollen, Maximum and Daysbefpeak. Therefore, the value
of these variables was enough to match a year with a certain
class.

The main meteorological characteristics of the three
classes were as follows:

Class 1. Comprised 8 years: 1982, 1983, 1987, 1992,
1993, 1994, 1995 and 1999. Weather conditions prior to
the pollen season of these were highly unfavorable for the
development of annual grasses. Winter rainfall was low,
with a mean of 12 rainy days in December and January. The
winter was cold, with mean accumulated minimum temper-
ature for the months of December, January and February
of 310.65◦C. Early spring was also quite dry, with a mean
of 12 rainy days from 1 February to 15 April. Late frosts,
which irremediably damage the plant, often occur in spring.

Class 2. Comprised 9 years: 1984, 1985, 1988, 1989,
1990, 1991, 1997, 1998 and 2000. This class includes years
with typically Mediterranean weather, i.e. very rainy winter
and a dry early spring, or years with a dry winter and a
very rainy early spring. During the winter it rained a mean
number of 20 days during the months of December and
January. Mean accumulated minimum temperature for the
months of December, January and February was 471.58◦C.
From 1 February to 15 April, it rained a mean number of
16 days.

Class 3. Comprised 4 years: 1986, 1996, 2001 and 2002.
This class was characterized by frequent periods of rainfall
in both winter and early spring. In winter it rained a mean
number of 26 days during the months of December and
January. The mean accumulated minimum temperature in

December, January and February was 533.37◦C. This high
value is due to these being rainy years, making for a milder
winter. Early spring was also rainy, with a mean number of
24 rainy days from 1 February to 15 April.

In spite of considering the cold required by grasses in
winter, the results suggest the opposite. In fact, class 1,
which has the coldest temperatures, is the least favorable to
the development of grasses; class 3, which has the warmest
temperatures, is the most favorable. These results seem to
indicate that rainfall is far more important that temperature.
Furthermore, in the Mediterranean climate there is an asso-
ciation between rainfall and temperature. Rainy years are
usually characterized by being warm and by an absence of
frosts. In contrast, dry years tend to be cold. This apparent
contradiction between cold requirement and grass develop-
ment can also be explained by the plants themselves which
have very different pollination periods from one species to
another and so possibly different cold requirements.

Pollen-season severity for each class is shown in Fig. 3. In
class 1, years were characterized by very low airborne grass
pollen concentrations. People sensitive to grass pollen,
probably had very few problems in these years. For people
sensitive to this pollen type, class 2 years were moder-
ate with several days of high concentrations. During class
3 years, gramineous plants probably produced the greatest
number of allergy episodes among the population, related
to the large amount of pollen collected during these years.

Discriminant linear analysis

Discriminant formulas obtained were as follows:

D1 = −1.699 RainFMA + 2.045 DaysrainFMA

D2 = 1.151 RainFMA − 0.177 DaysrainFMA

The first function maximizes the differences between
the values of the dependent variable. The second function
is orthogonal to it (uncorrelated with it) and maximizes
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the differences between values of the dependent variable,
controlling for the first factor. Though mathematically
different, each discriminant function is a dimension which
differentiates a case into categories of the dependent (class
1, class 2 or class 3) based on its values on the independents.
The first function is the most powerful differentiating
dimension, but the second function may also represent
additional significant dimensions of differentiation.

Neural network analysis

Neural network models obtained are shown in Fig. 4. For
each year we obtained three values as a result of the replace-
ment of variables in the three formulas shown in Fig. 4
(class 1, class 2 and class 3). These three values are in-
cluded in an interval between 0 and 1. The value closer to
1 determined the expected class according to neural net-
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Fig. 4 Neural network model used to classify years

work models. From the formulas in Fig. 4, the following
important rules could be deduced:

Rule 1. Wet winter and wet early spring: a wet winter
determines an increase in temperature, so MintDJF rises. A
wet early spring determines an increase of DaysrainFMA.
These two variables are the most important in the h1
formula.

MintDJF and DaysrainFMA ↑→ h1 ↓→ C1 ↓
and C3 ↑→ class 3 year

Rule 2. Dry winter and dry early spring: a dry winter
determines a decrease in temperature, so MintDJF falls. A
dry early spring determines a decrease in DaysrainFMA.

MintDJF and DaysrainFMA ↓→ h1 ↑→ C1 ↑
and C3 ↓→ class 1 year

Class 2 could be considered as an intermediate class with
weather conditions different from those of class 3 and class
1, i.e. wet winter and dry early spring or vice versa. Years
classified by the neural network as class 2 are those which
the model could not place in class 1 or class 3.

Validation

Table 2 shows the accuracy of analysis each year in both
training and validation phases. Percentage accuracy is
shown in Table 3. Linear discriminant analysis and neural
network models obtained the same results in the training
phase. However, in the validation phase, neural network
models (50% accuracy) performed better than linear dis-
criminant analysis (16.70%).

Discussion

The meteorological variables used to group the 21 study
years were rainfall and minimum temperature. With regard
to rainfall, it was observed that the number of rainy days
was even more important than the amount collected. This
is due to the fact that in Mediterranean countries rain
tends to be torrential and almost all is lost as run-off. For
herbaceous plants, gradual rainfall is better assimilated.
As for temperature, studies have shown that minimum
temperature is the most influential factor in the city of
Córdoba, whereas in other cities with a different climate,
such as London, the most important factor is maximum
temperature (Galán et al. 1995).

Taking into account the classification models, dis-
criminant linear equations included only rainfall-related
variables from early spring (RainFMA and DaysrainFMA).
However, neural network models included two winter
variables (DaysrainDJ and MintDJF) as well as one vari-
able from early spring (DaysrainFMA). Previous studies
have attempted to predict pollen-season severity using
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Table 2 Observed class according to K-mean analysis and expected
class taking into account both linear and neural network models

Year Observed class
(K-mean
analysis)

Expected
class
according to
linear models

Expected class
according to
neural network
models

Training
years

1982 1 1 1
1983 1 1 1
1984 2 2 2
1985 2 2 2
1986 3 3 3
1987 1 1 1
1988 2 2 2
1989 2 2 2
1990 2 1 1
1991 2 2 2
1992 1 1 1
1993 1 1 1
1994 1 1 1
1995 1 1 1
1996 3 3 3

Validation
years

1997 2 1 1
1998 2 2 2
1999 1 2 1
2000 2 1 1
2001 3 2 3
2002 3 2 2

Table 3 Percentage of accuracy (%) in both linear and neural net-
work models taking into account training and validation phases

Linear discriminant
models

Neural network
models

Training phase 93.34 93.34
Validation phase 16.70 50.00

meteorological variables. In the case of Cupressaceae, cu-
mulative minimum temperature and rainfall in winter seem
to be the most influential factors in the southern Iberian
Peninsula (Galán et al. 1998). In other pollen types, such us
Olea, it has been demonstrated that rainfall can affect the in-
tensity of the pollen season (González-Minero and Candau
1996).

Neural network models are able to relate different kinds
of variables by following a non-linear path, yielding bet-
ter results. Previous studies have tackled this subject in
aerobiology, producing neural network models to predict
pollen data (Arizmendi et al. 1993; Ranzi et al. 2003).
In general, a neural network produces complicated equa-
tions that are difficult to understand. In this case, neural
network formulas are not particularly complex. In fact,
as the results show, neural network models can be read-
ily interpreted even when weather-related variables are
involved.

Discriminant linear analysis and neural networks showed
similar results in the training phase. However, taking
into account the validation phase, better results were

obtained with neural networks than with discriminant
linear analysis, though they are more complex. Neural
network models performed better than linear models when
predicting daily airborne grass-pollen concentrations in
some studies carried out previously (Sánchez-Mesa et al.
2002; Hidalgo et al. 2002).

To predict the class of a certain year, prior to the onset
of the pollen season with over 50% accuracy represents
a major challenge. Although conditions prior to the
pollen season could be typical of a certain class, weather
patterns during the pollen season itself could modify this
prediction. For example, in some years weather variables
favor grass development, leading to the inclusion of such
years in class 3. However, weather patterns during the
pollen season might be unfavorable for pollen release
and transport (i.e. a rainy pollen season). Thus, the
real category could change from class 3 to class 2 or
even 1.

As it has been reported in previous studies (Sánchez-
Mesa et al. 2002), the classification into three classes does
not improve the prediction of pollen concentrations much
but the process is considerably simplified. In fact, mod-
elling can be done without the need to train all the years
and finally the prediction of pollen concentrations can be
made with great accuracy (90% by using neural network
and 80% with linear regression).
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