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Abstract An increasing percentage of the European
population suffers from allergies to pollen. The study of
the evolution of air pollen concentration supplies prior
knowledge of the levels of pollen in the air, which can be
useful for the prevention and treatment of allergic
symptoms, and the management of medical resources.
The symptoms of Betula pollinosis can be associated with
certain levels of pollen in the air. The aim of this study
was to predict the risk of the concentration of pollen
exceeding a given level, using previous pollen and me-
teorological information, by applying neural network
techniques. Neural networks are a widespread statistical
tool useful for the study of problems associated with
complex or poorly understood phenomena. The binary
response variable associated with each level requires a
careful selection of the neural network and the error
function associated with the learning algorithm used
during the training phase. The performance of the neural
network with the validation set showed that the risk of the
pollen level exceeding a certain threshold can be suc-
cessfully forecasted using artificial neural networks. This
prediction tool may be implemented to create an auto-
matic system that forecasts the risk of suffering allergic
symptoms.

Keywords Aerobiology · Allergenic risk · Binary data ·
Betula pollen · Error function · Neural networks · Pollen
level · Probability function

Introduction

Birch is an anemophilous tree with high pollen production
(Moore and Webb 1978; Lewis et al. 1983), whose al-
lergenic capacity has been cited by numerous authors
(Spieksma 1990; Norris-Hill and Emberlin 1991; D’Am-
ato and Spieksma 1992). Its pollen is considered to be the
main cause of pollinosis in North and Central Europe
(Wihl et al. 1998; Spieksma et al. 1995), not only during
its pollen season but also during previous and subsequent
periods, since birch pollen can easily be transported over
long distances (Wallin et al. 1991; Hjelmroos 1991). In
such cases, the antigenic activity seems to be linked to
allergens, characteristic of birch pollen grains, deposited
on dust particles inside houses which can trigger the onset
of allergic processes, even up to 2 months after maximum
pollen concentrations in the air were recorded (Ekebom et
al. 1996; Rantio-Lehtim�ki et al. 1996). The prevalence of
birch pollen allergy reaches 13 to 60% in populations
affected by pollinosis in some localities in Galicia, Spain
(Arenas et al. 1996; Aira et al. 2001), and 19% in San-
tiago de Compostela (Dopazo 2001).

Several researchers have carried out aeropalynological
studies on this taxon, in order to construct a model of the
seasonal and daily behaviour of birch pollen and to as-
certain the influence of different meteorological parame-
ters on pollen concentration (Spieksma et al. 1989;
Atkinson and Larsson 1990; Norris-Hill and Emberlin
1991; Spieksma et al. 1995; Aira et al. 1998; Jato et al.
2000; Latalowa et al. 2002). In this way, models can be
established in order to predict both the beginning and the
severity of the pollen season. Different factors were used
as predictors of the start of pollen season in these different
models. The sum of the temperatures from a given date
was utilized by Clot (2001), Caramiello et al. (1994),
Ruffaldi and Greffier (1991). In other works phenological
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factors as chilling units and growing degree days have
been used as predictors (Andersen 1991). Larsson (1993)
used the method of accumulative activity and Laaidi
(2001) both the sum of temperatures and a multiple re-
gression model. Different works have been conducted
with the aim of producing models to predict the mean
pollen concentration 1 day in advance by using linear
regression (Rodr�guez-Rajo 2000; M�ndez 2000) or time
series (Moseholm et al. 1987). However, there are no
studies which aim to establish the risk of allergy being
caused by a given quantity of pollen grains in the air.

The symptoms of Betula pollinosis can be provoked by
different levels of Betula pollen in the air, depending on
individual behaviour differences. Nevertheless, several
threshold values have been mentioned as limiting for the
provocation of symptoms. Ninety percent of clinically
sensitive subjects showed symptoms when 80 pollen
grains/m3 was reached and the onset of severe symptoms
was recorded with concentrations higher than 30 pollen
grains/m3 (Negrini et al. 1992). Corsico (1993) consid-
ered the same level as the threshold for the onset of al-
lergic symptoms. Birch pollen is very abundant in the air
of Santiago de Compostela during March and April and
concentrations higher than 100 pollen grains/m3 are fre-
quent. The daily maximum levels are registered in the
afternoon—between 12 h and 18 h—and they are coin-
cident with the highest frequency of allergy symptoms
(Dopazo 2001)

Birch is represented in Galicia by one species, Betula
alba L. (Moreno 1990). The former is widely distributed
in this area and as the dominant tree it forms altimontane
oro-Cantabrian acidophilic forests, with a clearly Euro-
Siberian distribution. They are found above an altitude of
1,150 m, being the last tree formations of the altitudinal
sequence, with montane thermo-climates and hyper-hu-
mid ombro-climates (Izco 1994). Their limit, although
fairly controversial, is situated in the Galician mountain
ranges of Ancares and Caurel (Costa et al. 1990). In this
same area, but on siliceous soils and with a greater
Mediterranean influence, there are birch forests in the
Galician-Portuguese altimontane layer and in the Our-
ense-Sanabrian supra-Mediterranean layer. In Galicia’s
mountains and foothills non-climatic birches may be
found, in substitution for montane oak groves, which are
located on acidic soils and with altitudinal limits between
600 and 1,100 m. In the Euro-Siberian region, birch may
form part of riparian forests, along with Alnus glutinosa,
Salix atrocinera and Frangula alnus. There are Betula as
ornamental trees near the spore-trap, and this is one of the
reasons why the concentrations of Betula pollen in San-
tiago are among the highest in Galicia.

The aim of this research is to predict the days of high
allergenic risk during Betula pollination, using artificial
neural networks, in order to alert allergists and the pop-
ulation with allergy problems to a potential risk situation.
Artificial neural networks (ANNs) are a complete statis-
tical tool for data analysis (Bishop 1995). The ANN’s
origin dates back to the middle of the last century when an
interdisciplinary group of biologists, psychologists and

engineers interested in understanding the functioning of
the human brain was created (Rosenblatt 1958). ANNs try
to artificially reproduce the human ability to take deci-
sions by simulating the human brain’s basic unit, the
neuron, and the interconnections between neurons that
allow them to work together and save information.

Recently, ANNs have been extended successfully to
very different fields, from hydrology to finances. Neural
networks was been also used in aerobiological studies, to
achieve predictive models for the improvement of daily
pollen concentration forecasts (Ranzi 2000; Hidalgo et al.
2002; S�nchez-Mesa et al. 2002)

Materials and methods

The study was conducted in the city of Santiago de Compostela,
located in northwest Spain (Fig. 1). Pollen monitoring was carried
out from 1993 to 2001 by means of a 7-day volumetric air sampler
(Lanzoni VPPS 2000) situated approximately 25 m above the
ground level. The methodology recommended by the Spanish
Aerobiological Network (REA) was used to process and interpret
the samples (Dom�nguez 1995).

Three data series were considered (Chakraborty 1992). The
daily pollen, pollent, expressed as grains/m3, and two exogenous
meteorological series, the daily rainfall, DRt, expressed as l/m2, and
daily mean temperature, DMTt, expressed as �C.

The aim of this work was not forecast the pollen concentration
but the level of allergenic risk. Given a level of pollen, lev, a new
binary variable Yt can be defined. This variable takes the value 1 if
pollent is over the quantity lev and 0 otherwise. The selected levels
were 20, 30, 70 and 80 grains/m3. For levels 20 and 30 the variable
Yt measures the risk of the onset of allergic symptoms, and for
levels 70 and 80 Yt measures the risk of severe symptoms for 90%
of the most allergic population. The dependent or target variables
are the Yt values associated with each level.

The selected independent variables were the previous day’s
rainfall, DRt�1, the previous day’s mean temperature, DMTt�1, and
the previous day’s pollen concentration, pollen t�1.

Artificial neural networks

The statistical method used for this study and to forecast of the risk
level associated with Betula pollen is the artificial neural network
technique (Ripley 1996). ANNs are “spoken data” methods, i.e., the

Fig. 1 Location of Santiago de Compostela in Europe
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structure of an ANN, and thus the relationship between the input
and the output, depends on a historical observations set, named the
training set, used for network ‘learning’. The training set is a data
collection related to past situations and associated with them, the
neural network correct answer or a variable closely related to the
unknown correct answer.

During the training phase the ANN will ‘learn’ the underlying
relationship between the inputs and outputs by means of a learning
algorithm that compares the networks outputs with the real outputs.
The learning algorithm used was thebackpropagation algorithm.
(Rumelhart et al. 1986; Chauvin et al. 1995). After the training
phase, when the ANN works with a new situation, it will behave in
line with the learning set. So ANNs become interesting in unknown
or complex structure data source phenomenon forecasting. Pollen
dispersion is a very complex problem that involves a large amount
of meteorological (wind direction, wind velocity, rainfall...), eco-
logical (forest situation and selected species concentration in the
vicinity of the prediction location...), and topographic (hills, val-
leys, rivers, towns, exact location) information, which is not always
available. ANNs became a useful tool because it is not necessary to
determine all of these characteristics. Instead, a general structure
ANN and a diverse and extensive data set for training can be used.
The performance of ANN general models are based on their uni-
versal approximation proprieties (Cybenko 1989; Hornik et al.
1989; Park and Sandberg 1991)

As the relationship between input variables and output or target
variables, in this case meteorological or ecological features of the
area, may change over time, it is useful to re-train the ANN peri-
odically, increasing the training set with new data that reflect the
changes in the variables with time.

One of the most popular ANN architectures is the multilayer
perceptron (MLP) (Rosenblatt 1958). In an MLP, the nodes or
basic unit of information processors, are distributed in layers. Only
the nodes of consecutive layers can be connected. The first layer is
named the input layer; the last is named the output layer, while the
layers between them are known as hidden layers. An MLP with one
hidden layer, represented in Fig. 2, has been considered.

ANN for binary response data

The target variable Yt is a binary variable, i.e., it takes only two
values, 1 or 0. We have focused on a special family of ANNs, with
sigmoidal output nodes, appropriate for binary target variable data
processing.

For prediction problems, the aim is to approximate the expected
value of the target variable, conditioned by the independent vari-
ables. For binary target variables this expectation is the probability of
Yt taking the value 1, conditioned by the input variable values
(Goldberger 1973; Agresti 1990). This conditional probability can be
considered as a unknown function of the independent variables that
takes values from 0 to 1 (McCullagh and Nelder 1989). Estimating
this function is the aim of the ANN. Given a probability predictor a
family of classifiers F ¼ fCp=p 2 ½0; 1�gcan be constructed. Each
one of these classifiers, determined by a given p, allows the building
of a binary variable from the probability predictor by means of the
following procedure. If the predicted probability is less than p the
predicted value for Yt will be 0, and otherwise will be 1. In order to
obtain a Yt estimation, Ŷt, we must select a classifier from this
family, choosing a threshold p. The selected p was 0.5.

Using the ANN probability prediction, the forecast of Yt may be
obtained as follows: if the predicted probability is less than 0.5, the
predicted value for Yt will be 0, and otherwise will be 1.

Error function for the binary target variable

The density function estimation, as well as the probability esti-
mation, are unsupervised learning problems. The real probabilities,
as well as the real density, are not available; instead there is a
binary variable, Y, with some kind of information about the prob-
ability value.

In the introduction it was explained that network learning is
based on a training algorithm. This kind of algorithm compares the
model output with the real target variable values and modifies the
network parameters in order to minimize the differences between
them. These differences are measured using an error function. Se-
lecting the appropriate error function for the data is essential for
training the network successfully. In binary dependent variable
problems, during the training phase, the training algorithm will
compare the binary target variable with the continous network
output, and the estimation of the probability of the target variable
takes the value 1.

When working with binary targets, the usual error function is
the deviance (Hastie 1987), dev (Table 1), that somehow measures
the credibility of the probability estimation considering the binary
variable value.

As we have explained, a probability estimation provides us with
a binary variable Ŷ , an estimation of the target binary variable Y.
This is a two-class classification problem. So the total misclassi-
fication probability, mcp, can be considered as the error function;
the mcp is the probability of having a target variable valued at 0 and
the estimation Ŷ valued at 1, MCI, added to the probability of
having a target variable valued at 1 and the estimation Ŷ valued 0,
MCII (Table 1).

We can consider separately the type I error, errorI, and the type
II error, errorII (Table 1). The type I error is the probability of
estimation Ŷ being 0 conditioned to the target variable Y taking a

Fig. 2 Diagram of a multilayer perceptron with one hidden layer
(Ni-Nh-No) with Ni input variables Xi, Nh nodes in the hidden layer
with processed information hj, No predictions or output ok, No target
variables yk and the ANN’s weights between connections w

Table 1 Equations

Deviance Devðo; YÞ ¼ �2½YLogðoÞ þ ð1� YÞLogð1� oÞ�;
being o the probability estimation and Y the binary variable

1.1

Misclassification probability mcp ¼ P Ŷ 6¼ Y
� �

¼ MCI þMCII ¼ P Ŷ ¼ 1; Y ¼ 0
� �

þ P Ŷ ¼ 0; Y ¼ 1
� �

mcp
¼ P Y ¼ 0ð Þ � P Ŷ ¼ 1 Y ¼ 0j

� �
þ P Y ¼ 1ð Þ � P Ŷ ¼ 0 Y ¼ 1j

� � 1.2

Error type I errorI ¼ P Ŷ ¼ 0 Y ¼ 1j
� �

1.3
Error type II errorII ¼ P Ŷ ¼ 1 Y ¼ 0j

� �
1.4

Relationship mcp ¼ P Y ¼ 1ð Þ � errorI þ P Y ¼ 0ð Þ � errorII 1.5

Empirical probability PðAÞ ¼ Number of cases where A occurs
Total number of cases ¼ card fA occursgð Þ

card fall examplesgð Þ 1.6
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value of 1; in our problem this is the probability of predicting a
below-threshold level day on a over-threshold level day (false se-
curity). The type II error, the probability of estimation of Ŷ to be 1,
conditioned to value 0 of the target variable Y , that is, the prob-
ability of predicting a over-threshold level day on a below-thresh-
old level day (false alarm). Balancing both errors is necessary.
Usually one of the errors is fixed, and the classifier that minimizes
the other error is selected. All these error measures are estimated
using the empirical probability formula (Table 1) over a collection
of observations, F. Several equations will involve a function,
namely the cardinal, card. The cardinal of a set A is the number of
elements that belong to the set A.

In many real problems, e.g., ecological, epidemiological or
medical problems, both error types, errorI and errorII, do not have
the same importance and one of them must be penalized. One
reason may be the different proportion of cases with a target
variable valued at 0. In many problems, the economic or health
consequences of a false negative are very different from the con-
sequences of a false positive, so it is necessary to penalize sepa-
rately both errors.

The deviance does not distinguish between both kind of errors,
so it leads the ANN performance to reach an equal balance between
both empirical errors. In this problem, the proportion of 1-valued
days is very small compared to the proportion of 0-valued days, so
the deviance is not the best choice of error function so another loss
function must be considered. We have defined the follow error
function:

errorK1�K2ðo; YÞ ¼ K1 � Y � ð1� oÞ þ K2 � ð1� YÞ � o; with K1;K2 > 0;

with o representing the ANN output, i.e., the estimated probability,
and Y the binary target variable

This function penalizes both errors separately. The constants K1
and K2 will decode which error is more serious. During the training
process this function can be minimized or equally:

errorKðo;YÞ ¼ K � Y � ð1� oÞ þ ð1� YÞ � o; with K > 0

The constant K value determines the penalization. If K>1 the
class 1 observation misclassification will be penalized; on the other
hand if K<1 the class 1 observation misclassification will be pe-
nalized; finally if K=1 both misclassifications will be considered as
equally serious.

Results and discussion

Four levels of pollen concentration were considered, lev =
20, 30, 70, 80 g/m3. We have generated four artificial
neural networks, one for each alert level. Explicit ex-
pressions of the four neural networks are showed in Ta-
bles 2 and 3.

The period between 2 January 1993 and 11 March
2000, is the data set used to train the neural networks. In
order to evaluate the performance of the ANNs before a

Table 2 Artificial neural network equations. Matrix of parameters

ANN model Ŷt ¼ thresholdðot � 0:5Þ

ot ¼ sigmoid �who
01 þ who

11 � h1 þ who
21 � h2 � who

31 � h3 þ who
41 � h4 � who

51 � h5
� �

hj ¼ sigmoid wah
0j � wah

1j � DRt�1 � wah
2j � DMTt�1 þ wah

3j � pollent�1

� �
; with 1 < j < 5

sigmoid ðxÞ ¼ expðxÞ
1þexpðxÞ thresholdðxÞ ¼ 1 if x > 0 and 0 if x < 0

Matrix of ANN parameters

wah
01 wah

02 wah
03 wah

04 wah
05

wah
11 wah

12 wah
13 wah

14 wah
15

wah
21 wah

22 wah
23 wah

24 wah
25

wah
31 wah

32 wah
33 wah

34 wah
35

who
01 who

11 who
21 who

31 who
41 who

51

0

BBBB@

1

CCCCA

Table 3 ANN selected matrix of parameters

Level Matrix of parameters Level Matrix of parameters

20 �0:752 1:430 �1:375 �1:846 �1:041
�1:643 0:657 �1:282 1:685 0:158
�0:391 �1:022 0:335 �0:250 1:530
1:938 0:530 �0:545 0:858 0:174

0

BB@

1

CCA

70 �1:323 0:033 1:817 �0:675 1:359
0:006 0:789 �0:082 �0:543 0:024
�0:804 �2:078 0:804 �1:706 �0:861
�1:931 0:730 �1:171 1:900 0:900

0

BB@

1

CCA

�0:109 0:748 0:082 �0:145 0:045 �0:346ð Þ ð�1:547 0:521 0:794 �1:155 0:650 0:364Þ

30 1:275 1:129 1:769 1:149 0:034
1:883 1:398 �2:139 1:853 0:007
1:051 �0:734 1:298 0:328 �1:081
�1:482 1:436 0:096 0:533 1:812

0

BB@

1

CCA

80 0:411 �0:379 0:017 1:221 1:040
0:352 0:086 1:013 �0:863 �0:150
�1:677 �1:158 �1:745 2:001 �0:906
0:663 1:527 1:081 �0:576 1:509

0

BB@

1

CCA

�0:355 �0:306 0:858 �0:103 �0:652 0:880ð Þ �1:179 0:246 0:370 0:403 0:866 0:560ð Þ

Fig. 3 Predicted conditional probabilities against the target vari-
able, for pollen levels 30 and 80 g/m3 over a training set section and
the validation set.The dotted horizontal line separates the two
prediction zones. If the predicted conditional probability is above
the line, the binary prediction will take the value 1, and if it is
below the dotted line, the binary prediction will take the value 0
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new situation, we have considered a validation set that
started on 12 March 2000 and ended on 1 December
2001. The selected validation set contained two consec-
utive Betula pollination periods because of the biannual
behaviour of the studied pollen.

The parameter K involved in the error function takes
different values for the different levels. The K values have
been selected around the value of the empirical proportion
between the below-threshold level pollen days and the
over-threshold level pollen days, Zlev. [Table 4, (section
4.1)]. In fact, if Zlev is select as K the ANN minimizes the
misclassification probability. During Betula pollination
the number of days with pollen in the air is less than the
number of days when the pollen concentration is zero, so
K is greater than one. Higher values of lev bear higher Zlev
values, and thus higher K values.

In order to show, compare and discuss the results we
must consider two different complementary concordance
measures. The proportion of good classification over the
observations with the target variable value equals 1, GCI,
and the proportion of good classification over the obser-
vations with the target variable value equals 0, GCII
(Table 4). Table 5 shows the results obtained.

Figure 3 shows the predicted conditional probabilities
against the target variable, for the levels 30 and 80 over a
training set section and the validation set.

Pollen forecasting has become an important aim in
aerobiology. The objective is to provide accurate infor-
mation on pollen in the air to sensitive users in order to
help them optimize their medication.

Usually, aerobiological information spread is made by
using fixed categories in relation to threshold values. In
this sense, our goal was to look for a model to allow us to
know the probability of the Betula daily mean pollen
concentration increasing over several threshold values,
some of which have previously been cited as responsible
for allergic symptomatology (Negrini et al. 1992; Corsico
1993).

Neural networks provided us a good result for fore-
casting the probability that a given value of Betula pollen
concentration occurs. Between 83 and 92% of the oc-

currences in the year 2000, and 100% of the occurrences
in the year 2000, of pollen concentration values reaching
the thresholds considered (>20, >30, >70 and >80 g/m3)
were predicted in advance. Similarly, in the year 2000
between 92 and 93% of the occurrences of pollen con-
centrations below a threshold value were correctly pre-
dicted, while for 2001 this figure was between 96 to 97%.
Therefore, neural networks are a good tool to predict the
probability of pollen concentrations reaching or exceed-
ing a threshold value, and thus help the dissemination of
aerobiological information to the population suffering
from allergic problems. This is a first step towards the
automatization of the prediction system.
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card t=Yt¼1f g 4.2

GCII ¼ 1� P̂ Ŷ ¼ 1 Y ¼ 0j
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