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Abstract In this study we set out to investigate the
possibility of linking phenological phases throughout the
vegetation cycle, as a local-scale biological phenomenon,
directly with large-scale atmospheric variables via two
different empirical downscaling techniques. In recent
years a number of methods have been developed to
transfer atmospheric information at coarse General Cir-
culation Model’s grid resolutions to local scales and
individual points. Here multiple linear regression (MLR)
and canonical correlation analysis (CCA) have been
selected as downscaling methods. Different validation
experiments (e.g. temporal cross-validation, split-sample
tests) are used to test the performance of both approaches
and compare them for time series of 17 phenological
phases and air temperatures from Central Europe as
microscale variables. A number of atmospheric variables
over the North Atlantic and Europe are utilized as
macroscale predictors. The period considered is 1951–
1998. Temporal cross-validation reveals that the CCA
model generally performs better than MLR, which
explains 20%–50% of the phenological variances, where-
as the CCA model shows a range from 40% to over 60%
throughout most of the vegetation cycle. To show the
validity of employing phenological observations for
downscaling purposes both methods (MLR and CCA)
are also applied to gridded local air temperature time
series over Central Europe. In this case there is no

obvious superiority of the CCA model over the MLR
model. Both models show explained variances from 40%
to over 70% in the temporal cross-validation experiment.
The results of this study indicate that time series of
phenological occurrence dates are very compatible with
the needs of empirical downscaling originally developed
of local-scale atmospheric variables.

Keywords Empirical downscaling · Phenological
phases · Vegetation cycle · CCA · MLR

Introduction

The main aim of this study is to investigate the possibility
of linking phenological phases throughout the vegetation
cycle, as a local-scale biological phenomenon, directly
with large-scale atmospheric variables via two different
downscaling approaches: multiple linear regression
(MLR) and canonical correlation analysis (CCA).

The effect on the biosphere of a future climate with
possibly higher air temperatures and changed precipita-
tion patterns constitutes one of the great concerns of
community studying the climate impact. Although the
spatial resolution of the GCM is continuously being
enhanced, downscaling of atmospheric information from
the GCM scale to the regional scale and individual points
is still necessary to provide input for ecological models,
such as forest-gap models or biogeochemical models.
Basically there are two strategies to connect large-scale
atmospheric variables with local-scale atmospheric vari-
ables: dynamical and empirical downscaling; large-scale
atmospheric information is transferred to local-scale
atmospheric variables that describe the biophysical envi-
ronment and represent the input for models simulating
biological processes (for example, forest-gap models, e.g.
Lexer et al. 2002; Price et al. 2001; Bolliger et al. 2000; or
phenological models, e.g. Menzel 1997; Osborne et al.
2000).

In recent years a number of empirical downscaling
methods have been developed that link the large-scale
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atmospheric circulation with the local-scale atmosphere
(von Storch et al. 2000). If a local-scale biosphere
phenomenon and large-scale atmospheric variables can be
linked directly through an empirical relationship, statis-
tical downscaling techniques might be applied without the
effort of modelling between the local-scale biosphere
phenomenon and the local-scale atmosphere.

There are a number of biospheric variables that, for
instance, reveal a strong link with the large-scale North
Atlantic Oscillation phenomenon (c.f. Post and Stenseth
1999; Chmielewski and R�tzer 2001; Straile 2002;
Ottersen et al. 2001; Scheifinger et al. 2002). Such
biospheric variables should be particularly suited to
statistical downscaling procedures (e.g. Heyen et al.
1998; Kr�ncke et al. 1998; Maak and von Storch 1997).

To evaluate the usefulness of local-scale phenological
time series in empirical downscaling a set of macroscale
variables has been selected, which represent the variabil-
ity of the large-scale field distribution. These are linked
with the local-scale phenological series by means of an
empirical relationship, which is derived from observations
on both scales.

Maak and von Storch (1997), using the flowering of
Galanthus nivalis and CCA, demonstrated the potential of
such an approach. In this study we selected 17 pheno-
logical phases throughout the seasons covering most of
the vegetation cycle over a greater part of Central Europe
as local-scale variables, so that the usefulness of pheno-
logical phases in empirical downscaling could be assessed
from very early spring to autumn phases. This differs
from the few similar studies, which have so far been
restricted to certain selected phases (e.g. Maak and von
Storch 1997; Chmielewski and R�tzer 2001).

The following two sections are devoted to the data and
the methods respectively. Subsequently the phenological
phases considered, which are distributed over the vege-
tation cycle, are linked via MLR and CCA to large-scale
atmospheric processes. In Results the two methods are
evaluated in different validation experiments and com-
pared. Split-sample tests and temporal cross-validation
serve as validation procedures. The methods are also
applied to local-scale air temperature. Consequently the
performance of the direct downscaling procedures can be
compared with those of a classical application of
empirical downscaling. Thus the usefulness of the phe-
nological phases as local-scale variables can be assessed.
In the case of the flowering of G. nivalis we compare our
results with those of Maak and von Storch (1997).

Materials and methods

Data

On the large scale, monthly fields of atmospheric variables
(Table 1) over an area from 50�W to 30�E and 35�N to 65�N are
used. The dataset spans the period from 1951 to 1998 and was
provided by the National Centre for Atmospheric Research
(NCAR) reanalysis project (Kalnay et al. 1996).

Monthly North Atlantic Oscillation (NAO) time series are from
the data set publicly available from the Climate Research Unit in
the UK (Jones et al. 1997).

On the local scale, observations of 17 phenological phases (see
Table 2) are available from Germany, Austria, Switzerland and
Slovenia (Fig. 1) for the period 1951–1998, collected for the EU-
funded project POSITIVE (http://www.forst.tumuenchen.de/EXT/
LST/METEO/positive). The data have been checked for consisten-
cy and outliers with methods described in Scheifinger et al. (2002).
In order to facilitate further analysis, the observations have been
interpolated to a 1� � 1� grid, covering much of Germany,
Switzerland, Austria and Slovenia (Fig. 1).

The downscaling procedures are also applied to time series of
monthly air temperature deviations for comparative purposes. The
time series are from the ALPCLIM project (Environmental and
Climate Records from High Elevation Alpine Glaciers, funded by
the European Commission, http://crusoe.iup.uniheidelberg.de/gla-
cis/ALPCLIM), where long instrumental air temperature time series
from Alpine countries have been collected (B�hm et al. 2001). In
this work, monthly anomaly series are used and refered to the
monthly means of the period 1901–1998, interpolated to a 1� � 1�
grid, overlapping with the POSITIVE grid (Fig. 1).

Methods

Empirical orthogonal functions (EOF) of two-dimensional fields of
atmospheric variables over a certain area are frequently used to
represent the main fraction of the field variance (von Storch and
Zwiers 1999). Hence, their time coefficients (principal components,
PC) often serve as predictors in empirical relationships (e.g.

Table 1 List of large-scale atmospheric variables

No. Variable Pressure level (hPa)

1 Relative humidity 850, 700, 500
2 Specific humidity 850, 700, 500
3 u and v components of the wind 850, 700, 500, 200
4 Air temperature 850, 700, 500, 200
5 Geopotential height 850, 700, 500, 200
6 Vorticity 850, 700, 500, 200
7 Divergence 850, 700, 500, 200
8 Sea-level pressure
9 Relative topography 700–850 hPa

Table 2 List of phenological phases and their mean month of
occurrence in Central Europe

No. Phase Month

1 Corylus avellana beginning of flowering March
2 Galanthus nivalis beginning of flowering March
3 Tussilago farfara beginning of flowering March
4 Anemone nemorosa beginning of flowering April
5 Larix decidua leaf unfolding April
6 Betula pendula leaf unfolding April
7 Aesculus hippocastanum leaf unfolding April
8 Taraxacum officinale beginning of flowering April
9 Fagus sylvatica leaf unfolding April

10 Picea abies May sprouting May
11 Aesculus hippocastanum beginning of

flowering
May

12 Syringa vulgaris beginning of flowering May
13 Sambucus nigra beginning of flowering June
14 Sambucus nigra ripe fruit September
15 Aesculus hippocastanum autumn colouring October
16 Betula pendula autumn colouring October
17 Fagus sylvatica autumn colouring October
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Hewitson and Crane 1992; Matulla et al. 2002). In the multiple
linear regression (MLR) approach, PC are actually utilized as
predictors. Canonical correlation analysis (CCA) is performed after
separately transforming the observations on both scales to EOF
coordinates (von Storch and Zwiers 1999).

Multiple linear regression

Multiple regression is a widely applied transfer function to link
macro- with microscale variables at individual points (e.g. Hewitson
and Crane 1992). The empirical relationship between the PC (Xi) of
the macroscale variables and time series of the microscale variables
(Yi) is described by the following multiple regression model:

Yj;t ¼ bj;0 þ
XN

k¼1

bj;kXk;t

whereby bi,k represent the regression coefficients, j is the index for
the grid point, t that for the time step and k refers to the independent
variable.

After subtracting the mean seasonal variation from the time
series of the atmospheric fields, the EOF are calculated for each of
the 12 months. In order to enlarge the sample size, and hence obtain
less ambiguous results (von Storch and Hannosch�ck 1985), the
data of the previous and following months have been added to
support the analysis, resulting in a moving data window spanning 3
months. The methods for deriving the EOF and the time expansion
coefficients (PC) are described in detail in von Storch and Zwiers
(1999).

In order to apply the regression model to phenological data,
phenological occurrence dates, which are given in year days, have
to be related to a certain month. This is achieved by taking the 48-
year (1951–1998) mean occurrence date of the phenological phase
at each individual grid point. Phases occur mainly in March, April,
May, June, August, September and October. As independent
variables the time expansion coefficients of the first five EOF of
temperature in 850 hPa and geopotential height in 850 hPa are
selected as predictors for the MLR model. Plant phenological
events are related to air-temperature totals accumulated over a
longer period preceding the phenological event (Menzel 1997). To

accommodate this, instead of 1 month, 2 months – the month of
occurrence and the previous month – were entered into the analysis,
resulting in 20 independent variables for the regression model. We
use a stepwise multiple regression (IMSL routine RBEST) proce-
dure to assist in determining the best regression model for each
group of independent variables. For comparative purposes, monthly
air-temperature time series have been regressed with the same set
of independent variables.

The first and second EOF of the sea-level pressure field (SLP)
are highly correlated with the NAO index (e.g. Fyfe et al. 1999).
Consequently a set of EOF from one or two atmospheric variables,
such as those mentioned above, should describe a higher fraction of
the atmospheric variability over the North Atlantic and Europe than
the NAO index alone. Therefore one would expect, for instance, the
MLR model based on such EOF and their associated PC to explain
a higher fraction of the variance of the local-scale phenological
series than a regression model based on the NAO index alone.
Figure 2 compares the success of MLR when the NAO index (Jones
et al. 1997) and the above-mentioned PC are used. Both models
have been calibrated over the period 1951–1998. The use of PC
mainly improves the modelling of early spring and autumn phases
and, to a lesser degree, that of late spring and summer phases.

The spatial differentiation of the explained variance appears
rather low, differences being small between the Southern and
Northern or the Eastern and Western halves of the observation area
(not shown).

Only a few EOF seem to dominate the regression relation. The
most important appear to be the first EOF of the 850 hPa air-
temperature distribution of the month previous to the phenological
occurrence date and the same EOF of the actual month of
occurrence. The success of the different EOF entering the MLR via
their associated PC depends on the actual phase. Hence, there is a
seasonal cycle whereby the influence of the two temperature EOF is
reduced as the year advances. Towards late spring and summer an
unclear composition of EOF replaces the dominance of the two
temperature EOF. Because of its importance, the first EOF of the
850 hPa temperature fields is depicted in Fig. 3.

Figure 3 describes the air-temperature difference between the
northeastern Atlantic and Europe. This air-temperature EOF is
strongly linked with the first two EOF of the 850 hPa geopotential
height fields (Matulla et al. 2002), which themselves are highly
correlated with the NAO index (e.g. Fyfe et al. 1999).

Fig. 2 Grey dots The common variability between the North
Atlantic Oscillation (NAO) time series of Jones et al. (1997) and
phenological time series at the 1� � 1� grid as a function of mean
entry date of the phenological phase. Black dots The variance
explained by the multiple regression model with 20 independent
variables (calibration period = validation period)

Fig. 1 1� � 1� grid of the phenological observation area. Pheno-
logical time series have been interpolated to this grid
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Canonical correlation analysis

CCA has found wide application as an analysis and downscaling
technique in the field of meteorology, including precipitation
downscaling (von Storch et al. 1993; Gyalistras et al. 1994; Busuioc
and von Storch 1996) and downscaling of phenological phases (e.g.
Table 2).

Phenological occurrence dates serve as local-scale variables.
Combinations of two large-scale atmospheric fields serve as large-
scale variables. In the first step, both the macro- and microscale
variables are subjected to an EOF analysis, resulting in the amount
of data required to continue the work being greatly reduced and the
signal in the time series retained. In the second step the correlation
structure between the remaining random fields, derived from the
phenological phases and the large-scale field combinations under
consideration, is analysed with CCA. CCA is constructed to find
those patterns in which the time coefficients show maximal
correlation.

Maak and von Storch (1997) explained 72% of the flowering
date variance of G. nivalis in Northern Germany with the first pair
of canonical correlation patterns. As the large-scale field they used
the 2 m air temperature. Table 3 shows results from our study of the
flowering date of G. nivalis and compares these to findings of Maak
and von Storch (1997). Chmielewski and R�tzer (2001) found that
the spatial patterns of the first three CCA pairs between the 2 m air
temperature and the beginning of growing season, as marked by the
beginning of leafing of four species (Betula pubescens, Prunus
avium, Sorbus aucuparia and Ribes alpinum, data from Interna-
tional Phenological Gardens), are closely linked over Europe.
Taken together, the first three canonical correlation patterns explain
73% of the yearly variability of the beginning of the growing
season. In our work CCA describes the simultaneous variations of
local appearances of phenological phases in Central Europe and
two large-scale atmospheric variables over the North Atlantic and
Europe. In order to obtain the best CCA model, all possible
combinations of independent variables, listed in Table 1, were

tested. The results indicate that quite a number of combinations of
independent variables perform equally well. The interdependence
of the atmospheric variables might explain that observation. For the
large-scale variables the number of EOF is chosen such that a
minimum of 80% of the variance is explained. The maximum
number of EOF allowed has been set to 16.

For most phenological phases the first one or two leading EOF
explained more than 85% of the variability. Only autumn phases
required up to ten or more. Figure 4 illustrates the spatial pattern of
the first CCA pair of relative humidity and air temperature anomaly
fields during February, March and April in 850 hPa, on the one
hand, and the phenological phase: the beginning of flowering of
Taraxacum officinale, on the other. One finds a temperature dipole
over the selected area with positive anomalies centred over
Northern Germany and Southern Scandinavia and negative anoma-
lies over the North Atlantic. This pattern is comparable with the
2 m air-temperature anomaly pattern shown in Fig. 4 in Maak and
von Storch (1997). Positive temperature anomalies seem to
coincide with negative anomalies of relative humidity. Higher air
temperatures cause T. officinale to flower 5–10 days earlier, the
greatest advancement being in the area of the greatest temperature
anomalies in the north and the least advancement at the southern
boundary of the area.

Results

First, the general ability of downscaling methods to link
phenological phases with large scale atmospheric vari-
ables is evaluated. Second, the performance of both
downscaling methods, MLR and CCA, is compared.
Third, both techniques are applied to local-scale air
temperature. Hence the usefulness of phenological series
can be compared to a “classical” local-scale variable in
empirical downscaling. The findings, based on the
flowering of G. nivalis, are compared (see Table 3) with
those of Maak and von Storch (1997).

Three different validation approaches are applied to
compare the performance of the statistical models. In the
first experiment the model calibration and validation
period span the total period for which data are available
(1951–1998). The second validation experiment is a split-
sample test with a calibration period from 1951 to 1980
and an independent validation period from 1981 to 1998.
In the third validation case, temporal cross-validation is
applied, where the model is calibrated over 48 different
47-year periods, successively skipping 1 independent
year, for which the model is applied. This results in a

Table 3 Results of a comparison of multiple linear regression (MLR) and canonical correlation analysis (CCA) for the beginning of
flowering of Galanthus nivalis. c Calibration period, v validation period

Beginning of flowering of the snowdrop
G. nivalis

Explained variance at local grid
points or stations (mean value)

Percentage of grid points
with P < 0.05

Maak and von Storch (1997) 1971–1990

CCA, c 1971–1990, v 1951–1970 0.55

This work 1951–1998

MLR c 1951–1998 v 1951–1998 0.78 100
MLR c 1951–1980 v 1981–1998 0.48 98
MLR temporal cross-validation: 1951–1998 0.41 100
CCA c 1951–1998 v 1951–1998 0.60 100
CCA c 1951–1980 v 1981–1998 0.62 100
CCA temporal cross-validation: 1951–1998 0.53 100

Fig. 3 The first empirical orthogonal function (EOF) of the
February, March and April 850 hPa air temperature field explaining
40.3% of its variance
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modelled time series over the total period of 48 years,
which is compared with the observed series. As evalua-
tion parameter the variance explained by the models is
calculated.

Correlations, on which the explained variances are
based, are accepted only if significant at the 95% level,
otherwise the explained variance value is rejected for
further statistical treatment. Therefore one has to consider
not only the mean explained variance achieved but also
the numbers above the bars in the figures, showing the
percentage of grid points with significant correlations.

Phenological phases

Figures 5 and 6 show the results of the validation
approach described above. The most striking features are:

1. The decreasing level of the MLR performance from
the first experiment to the temporal cross-validation
and then to the split-sample test. This is not observed
in case of the CCA model, where the explained
variances remain within a restricted range. The drop in
explained variance for the phenophases is especially
pronounced when in the calibration period values of

70%–80% are achieved, and, at the same time, in the
other two validation experiments the values remain
below 50% (Fig. 5).

2. The deficiencies of MLR and CCA in their ability to
describe the autumn phases. For these phenophases
both measures of skill, the explained variance as well
as the percentage of gridpoints with a significant
correlation, clearly take values below the others.

3. MLR is much more sensitive to the differences in time
span available for calibration. Reducing the calibration
period by 17 years (temporal cross-validation has 47
years for calibration and the split-sample case 30
years) reduces the MLR performance much more than
that of the CCA (Figs. 5 and 6).

4. In the case of phenological phases as local-scale
variables and temporal cross-validation (see Fig. 7),
CCA generally performs better than MLR. Specifical-
ly, the phases during April improve by between 15%
and over 30%. For all phases from the very early
spring (March) to early summer (June), CCA results
are, in contrast to those of MLR, statistically signif-
icant at all gridpoints.

5. There is a seasonal cycle in the explained variance:
earlier phases achieve a higher amount of explained
variance than the later ones. During March and April

Fig. 4a–c First canonical patterns for the predictors (a, b) and for
the dependent variable (c). a Air temperature. b Relative humidity.
c The pattern of the phenological phase: the beginning of flowering
of Taraxacum officinale. The first ten predictor EOF and the first

two EOF of the phenological phase were used, explaining 82% and
88% of the respective total variances. The correlation coefficient
between the time coefficients is 0.92
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Fig. 5 Results of the three validation procedures for the multiple
regression model (MLR). Calibration period identical with valida-
tion period 1951–1998 (black); split-sample test: calibration 1951–
1980, validation 1981–1998 (white); temporal cross-validation
(grey). Mean squared correlations between measured and modelled

time series are separately plotted for each of the 17 phenological
phases (see Table 2). Only significant correlations (P < 0.05) enter
the analysis. Percentages of grid points with significant correlations
are displayed above the bars

Fig. 6 Same as Fig. 5 but for canonical correlation analysis (CCA)

Fig. 7 Comparing the results of the temporal cross-validation
procedure between MLR (black) and CCA (white) for the
phenological phases 1951–1998. Results are plotted for each of
the 17 phenological phases (see Table 2) separately. Bars Mean

squared correlation between measured and modelled time series (P
< 0.05). Percentages of grid points with significant correlations are
written above the corresponding bar
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explained variances of more than 50% are the rule in
the case of CCA. The fraction of explained variance is
relatively high during March and April, decreases in
May and June and decreases even further during early
and full autumn. This might be related to an increasing
uncertainty with time and is in accordance with
Menzel (2002), for example. In the case of MLR the
seasonal pattern in performance is not so pronounced
(Fig. 7). However, compared to the other phases, the
performance during early and full autumn is clearly
reduced.

Air temperature

Both techniques, MLR and CCA, are better at modelling
local-scale air temperature (Figs. 8 and 9) than are

phenological phases as local-scale variables. As was the
case with phenological phases, the MLR model shows a
much larger drop in explained variance from the calibra-
tion case to the other validation cases. However, the
decreased success in the case of air temperature appears
less than that for the phenological phases. The perfor-
mance variables of the CCA do not display any system-
atic difference between the three validation procedures.
Moreover, the pattern of seasonality in explained variance
is clearly different for air temperature, if compared with
that of the phenological phases.

Figure 10 reveals a slightly better performance by the
CCA model (see also Fig. 7). The reason for both
observations might be associated with the restricted
geographical extent of the air temperature data set, which
involves only the POSITIVE area covered south of 49�N

Fig. 8 Results of the three validation procedures for the multiple
regression model (MLR), calibration period identical with valida-
tion period 1951–1998 (black), calibration period 1951–1980 and
validation period 1981–1998 (white) and temporal cross-validation

(grey). Results are plotted for each month of the year separately.
Bars Mean squared correlation between measured and modelled
time series (P < 0.05). The percentage of grid points with
significant correlations is written above the corresponding bar

Fig. 9 Same as Fig. 8 but for canonical correlation analysis (CCA)
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and therefore does not provide enough spatial variability
for the CCA.

Conclusions

We have tested 17 phenological phases throughout the
vegetation cycle as local-scale predictors in empirical
downscaling relationships and compared them to local-
scale air temperature, a predictor for which empirical
downscaling was originally designed. As empirical tech-
niques we utilized MLR and CCA, hence our findings
have implications for both the local-scale variables and
the downscaling techniques.

Local-scale variables

The analyses indicate that phenological observations as
non-atmospheric independent variables perform compa-
rably to local-scale air temperature. Hence they are no
less suited for the purpose of downscaling than other
local-scale atmospheric variables. This is perhaps be-
cause, in middle and higher latitudes, the seasonal cycle
of plants, especially in spring to summer, is mainly
governed by the local-scale air temperature.

To date, in many studies linking phenological series to
large-scale atmospheric processes, regressions, made up
of the NAO index, are used. As a result of our analyses
one might generalize that transfer functions based on a
number of EOF of one or two large-scale atmospheric
variables perform better than regressions based on the
NAO time series alone (see Fig. 2).

Downscaling techniques

Temporal cross-validation reveals that the CCA model
performs generally better than the MLR model. MLR can
explain 20%–50% of the temporal variance of the
phenological phases, whereas the CCA model shows a
range from 40% to over 60%. Especially for phenological
phases during April, the CCA model achieved an
improvement of 15%–30%. Phases occurring after April
are more difficult to model for both of the two models.
The inclusion of the spatial information of the microscale
variable seems to make CCA superior to MLR.

For air temperature the CCA model is not obviously
better than the MLR model, which might be related to the
restricted spatial range of the temperature data. Both
models show better performances for temperature than for
phenological phases, ranging from 40% to over 70%
explained variability in the case of temporal cross-
validation. It appears that the CCA model can extract
more information from the independent variables over the
time available than can the MLR model. It might be the
case that the MLR models require a longer time for
calibration than the CCA models. Consequently, if data
are available only over restricted periods, CCA should be
the model of choice.

The results of this study indicate that time series of
biospheric variables (e.g. phenological occurrence dates)
are very well suited for empirical downscaling, which was
originally developed for local-scale atmospheric vari-
ables. Moreover the findings suggest that CCA should be
used in preference to MLR or the NAO index alone in
order to transfer information between the scales. Howev-
er, autumn phases are more difficult to model than spring
phases, which might be related to the increasing amount
of uncertainty during the vegetation cycle.
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