
Abstract Valley fever (coccidioidomycosis) is a disease
endemic to arid regions within the Western Hemisphere,
and is caused by a soil-dwelling fungus, Coccidioides
immitis. Incidence data for Pima County, reported to the
Arizona Department of Health Services as new cases of
valley fever, were used to conduct exploratory analyses
and develop monthly multivariate models of relation-
ships between valley fever incidence and climate condi-
tions and variability in Pima County, Arizona, USA. Bi-
variate and compositing analyses conducted during the
exploratory portion of the study revealed that antecedent
temperature and precipitation in different seasons are im-
portant predictors of incidence. These results were used
in the selection of candidate variables for multivariate
predictive modeling, which was designed to predict devi-
ation from mean incidence on the basis of past, current,
and forecast climate conditions. The models were speci-
fied using a backward stepwise procedure, and were
most sensitive to key predictor variables in the winter
season and variables that were time-lagged 1 year or
more prior to the month being predicted. Model accuracy
was generally moderate (r2 values for the monthly mod-
els, tested on independent data, ranged from 0.15 to
0.50), and months with high incidence can be predicted
more accurately than months with low incidence.
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Introduction

Coccidioidomycosis, commonly known as valley fever,
is a disease endemic to parts of the Western Hemisphere.

It is found in limited regions in the United States, as well
as areas in Central and South America including Mexico
and Argentina. The most highly endemic regions within
the United States (Fig. 1) include Kern County in the
San Joaquin Valley of California (hence the name valley
fever) and Pima, Pinal, and Maricopa counties of Arizo-
na (Maddy 1965). Major urban areas within the endemic
zone include Bakersfield, California, and Phoenix and
Tucson, Arizona. The disease is caused by Coccidioides
immitis (C. immitis), a soil-dwelling fungus that is sensi-
tive to climate conditions. While the basic relationships
between climate conditions and valley fever incidence
are generally acknowledged, they have received little
study and are poorly understood (Kolivras et al. 2001).

Valley fever infections begin in the lung, when the
fungus becomes airborne and is inhaled by a host. Hu-
mans, other mammals especially dogs and cattle, and
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Fig. 1 Areas of the United States and northern Mexico that are
considered endemic for valley fever. (Adapted from Kirkland and
Fierer 1996)
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reptiles are all susceptible to the disease. The majority of
the people infected (about 60%) either present no symp-
toms, or experience mild, cold-like symptoms (Smith et
al. 1946). Some may endure a variety of flu-like condi-
tions, including fever, coughing, and chest pain, which
usually appear after an incubation period of 10 days to 3
weeks (Smith et al. 1946; Stevens 1995; Mardo et al.
2001). Of those infected by C. immitis, about 1% devel-
op the disseminated form of the disease when the fungus
spreads beyond the lungs (Einstein and Johnson 1992).
Disseminated valley fever can express itself with a wide
variety of conditions, including joint damage, skin le-
sions, and potentially fatal meningitis. Those with mild
symptoms may recover quickly, while people with dis-
seminated disease may experience chronic symptoms for
an extended period of time. Within the U.S., there are
approximately 100,000 new infections each year with
about 1% of infections resulting in death (Valley Fever
Center for Excellence 2001). This number is simply an
estimate, however, since most infected people do not be-
come ill enough to seek medical treatment, and their
cases are therefore not reported. While most infected
people do not seek medical care, the treatment of serious
cases can be costly. Treatment within the U.S. costs ap-
proximately $9 million per year, and results in a loss 
of about 1,000,000 person-days of labor (Pappagianis
1980).

Occupation is a factor shown to affect exposure to the
fungus, while factors including gender, age, ethnicity,
and immune status have been linked to the likelihood of
experiencing disseminated disease. Although anyone liv-
ing in or spending time in the endemic region can be ex-
posed, those working outside, including agricultural and
construction workers (Johnson 1981) and archaeologists
(Werner and Pappagianis 1973) are more likely to be ex-
posed to the fungus than those working in other occupa-
tions and, on average, experience a higher incidence of
disease. People under the age of 5 and over the age of 
50 years are more susceptible than others to developing 
a disseminated case, as are men and people of Afri-
can–American or Filipino descent (Pappagianis 1988).
Immunosuppressed individuals, including those who are
HIV-positive, organ transplant patients, diabetics, and
women in their third trimester of pregnancy, are also
more susceptible than others to disseminated disease
(Valley Fever Center for Excellence 2001).

A brief summary of the lifecycle of the fungus is use-
ful for understanding the link between climate conditions
and valley fever incidence. C. immitis is considered to be
a dimorphic fungus (Fig. 2), meaning that its lifecycle
consists of two different phases (Fiese 1958). In the soil,
C. immitis exists in the saprophytic phase. Given proper
conditions, slender filaments of cells, called hyphae,
grow as a saprophyte in the upper part of the soil. When
the soil dries, alternating cells in the hyphae die and the
remaining viable detached cells become arthroconidia
(spores). Some portions of the live fungus remain in the
soil, while other spores may become airborne due to a
natural (generally wind) or anthropogenic disturbance of

the upper portion of the soil. Once a host inhales a spore,
the invasive phase of C. immitis begins and the fungus
reproduces within the lungs (Fig. 2). The infection in the
invasive phase is generally contained in the pulmonary
system, but in some cases it disseminates to other parts
of the body. In some cases, the death of the host, such as
a rodent, returns spores to the soil, thus completing the
cycle and beginning the saprophytic phase.

C. immitis responds to the moisture content and tem-
perature of soil, therefore a relationship exists between
climate conditions and valley fever incidence (Kolivras
et al. 2001; Hugenholtz 1957; Maddy 1957, 1958). How-
ever, little research examining the role of climate vari-
ability in the occurrence of valley fever has been per-
formed since the 1950s and 1960s. Most studies anecdot-
ally mention the presence of a link between climate and
incidence, but they do not quantitatively examine that re-
lationship. No modeling studies attempting to predict in-
cidence on the basis of climate conditions have been
conducted. Kolivras et al. (2001) reviewed the existing
literature and found that, of the studies during that peri-
od, only a few compared climate and incidence data. In
particular, the study by Hugenholtz (1957) looked for a
correlation between such information, but only 14 years
of incidence data were available at that time.

The role of precipitation in the lifecycle of C. immitis
is twofold: the fungus requires moisture to complete its
lifecycle, but a period of dry conditions enables the hy-
phae to break apart and develop fungal spores that may
become airborne (Pappagianis 1980). After rain, the fun-
gus grows rapidly until the soil dries or until competitors
stifle its growth (Reed 1960; Maddy and Coccozza 1964).
After the soil dries and spores have formed, wind or an-
thropogenic disturbances liberate the fungal spores, which
may then be dispersed and cause infections if they are in-
haled. Therefore, past research has led to the development
of a hypothesis that states that a cycle of wet and dry con-
ditions is necessary for outbreaks of the disease to occur.
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Fig. 2 Coccidioides immitis exists in both saprophytic (left) and
parasitic (right) phases. (Adapted from Fiese 1958)



Temperature also plays a vital role in the growth of 
C. immitis through surface soil sterilization. It is hypoth-
esized that during prolonged periods of hot, dry condi-
tions, for example during summer when little rain is re-
ceived, the surface of the soil is partially sterilized and
many competitors are removed, but C. immitis spores re-
main viable below the surface (Maddy 1965; Reed
1960). When rain falls, conditions in the surface soil
eventually approach the ideal for the growth of the fun-
gus. It is thought that C. immitis then returns to the sur-
face layer, which contains few competing organisms, and
grows fairly rapidly in this ideal environment (Maddy
1957). A subsequent dry period then allows the fungus to
encyst and become airborne, and infections to occur.

Because of data availability, this study focuses on 
Pima County, which is located in south central Arizona in
the Sonoran Desert (Fig. 1). Pima County, Arizona (es-
sentially the greater Tucson region) has one of the highest
rates of valley fever in the world, and is experiencing a
rapid growth of people susceptible to the disseminated
form of the disease, including the elderly and immuno-
suppressed people (Galgiani 1999). Characteristic of
much of the endemic area, Pima County receives low 
annual precipitation (approximately 300 mm in 
Tucson), which is coupled with a wide range in diurnal
and seasonal temperatures (Fig. 3). The region is charac-
terized by a bimodal precipitation pattern, with win-
ter/spring (December through March) and late summer
(July through September) rainfall peaks separated by dry
periods (Sheppard et al. 2002). Winter precipitation is re-
ceived mainly as a result of frontal systems that enter the
southwestern portion of the United States, with character-
istic soaking rains that may last several days. Following
the northward retreat of frontal systems in spring is 
a dry foresummer period (April through June) in which 
insolation and temperatures are high owing to a lack of
cloud cover under the overlying subtropical anticyclone.
Summer precipitation occurs as a result of the North
American monsoon, and is characterized by intense thun-
derstorms with high spatial and temporal variability in
precipitation (Sheppard et al. 2002). Monsoon circulation
is usually in place around the beginning of July, and typi-
cally lasts through mid-September. Following the end of
the monsoon pattern, a relatively dry period occurs in Oc-
tober and November until the beginning of winter precip-
itation, typically in December (Fig. 3). These average
patterns show large variability from year to year, and are
affected in part by climate fluctuations such as the El
Niño–Southern Oscillation (Sheppard et al. 2002). The
climate of Pima County is therefore conducive to high
valley fever incidence when considered within the frame-
work of the fungus’s response to climate conditions given
the annual cycle of wet and dry conditions. Other rela-
tively time-invariant environmental factors within the en-
demic area, including soil type and salinity, also provide
an environment favorable to the growth of the fungus
(Kolivras et al. 2001). However, this study focuses on the
covariability and potential predictive association between
climate conditions and disease incidence.

The broad aims of this research are twofold. Given
the paucity of information in the literature, the first goal
is to improve our understanding of the basic relation-
ships between climate and valley fever through explor-
atory data analyses, including bivariate correlation ana-
lyses and compositing analyses of antecedent climate
conditions. Using the understanding of climate and val-
ley fever gained through the exploratory data analyses,
our second goal is to develop monthly multivariate mod-
els to predict valley fever incidence on the basis of cur-
rent or forecast climate conditions. Through this step, we
also aim to improve understanding of the response of 
C. immitis to changes in climate conditions through an
examination of the climate variables best related to, and
the best predictors of, valley fever incidence.

Data and methods

Data

Monthly valley fever incidence data, by month of estimated onset
of disease symptoms, for Pima County for 1948–1998 were ob-
tained from the Arizona Department of Health Services (ADHS).
Valley fever became a reportable disease in 1995 in states where 
it is endemic, but incidence data have been gathered for over 
50 years in Arizona. Compliance is expected to be fairly good, al-
though incidence data only represent sufferers who become ill
enough to seek medical care. Monthly data were used in order to
examine patterns at sub-annual time scales. Although some inci-
dence data are available at weekly time scales, the lag between in-
fection and reporting makes the use of such data inappropriate.

Ideally for this study, we would analyze the relationship be-
tween valley fever and climate using actual fungal count data from
the soil or air rather than incidence data. Unfortunately, fungal
count data are currently unavailable for several reasons: The fun-
gus is very difficult to isolate in the soil, and the culturing process
requires special laboratory biosafety facilities and is very time-in-
tensive. As a result, there are no time-series of spore data amena-
ble to climatic analysis. Instead, we use incidence data, which are
several steps removed from the effect of climate (Fig. 4). Follow-
ing an airborne dispersal of C. immitis spores in which a host be-
comes infected, if symptoms appear and the host’s condition be-
comes severe, which may take weeks or months, the infected per-
son will visit a doctor. The physician then reports to Arizona De-
partment of Health Services (ADHS) the estimated date of disease
onset, which may be quite uncertain or approximate.

There are concerns about the quality of the incidence data too.
Figure 5 illustrates the data record, and several points require
comment. As shown by the graph, there are no available data for
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Fig. 3 Average monthly precipitation (bars) and temperature
(line) at Tucson International Airport, Tucson, Arizona (1961–
1990)



1973–1979, decreasing the 51-year data record to 44 years. Per-
haps the major problem in the data record is the lack of a consis-
tent reporting standard and diagnostic criteria over time. The
method of reporting cases of valley fever to the ADHS by doctors
has changed over the past 50 years because of variation in physi-
cian diagnosis and case definition, and the use of laboratory verifi-
cation in recent years (K. Komatsu, personal communication
2000). Overreporting may explain the very high number of cases
during the late 1950s and 1960s, but interannual variability in the
period of record may still be dominated by reporting changes and
changes in disease classification codes. The data from 1980 to
1998 are considered to be more trustworthy than the entire data
record since annual variation is less extreme during that time.
Also, in the mid-1990s, reporting techniques were standardized

when the disease became a reportable illness through a standard
case definition. In addition, the number of susceptible people has
changed over this period, disease awareness has increased, and
soil disturbance due to development has varied as well. These fac-
tors play a role in the unevenness of the time series. There may be
a difference between urban/rural reporting; however, given that
the majority of Pima County’s population is within the Tucson
metropolitan area, such a reporting difference would not greatly
affect the data in this study.

Monthly climate data for southeastern Arizona (Climate Divi-
sion 7, which includes Pima County) were obtained from the Na-
tional Climatic Data Center (NCDC). In addition to temperature
and precipitation, we used the Palmer Drought Severity Index
(PDSI) as a proxy for soil moisture since an appropriate measure
for Pima County was not available for 1948–1998. A negative
PDSI value indicates dry soil conditions, while a positive value in-
dicates moist conditions. The balance between wet and dry condi-
tions in the soil is likely to affect the growth and distribution of 
C. immitis, and therefore PDSI was deemed a useful variable to in-
clude in the study. One caveat with the use of PDSI is that tempo-
ral autocorrelation is intrinsic to the index. The method used to
create the value means that the index does not change rapidly with
changes in temperature and precipitation patterns. Rather, the in-
dex changes slowly and smoothly over a period of several months,
much like soil moisture conditions (Guttman 1991). Finally, the
index is not currently forecast into the future, and would therefore
not be useful in a model incorporating forecast climate conditions.
For these reasons, PDSI was used for exploratory analyses, but not
included in model development. Other climate data were acquired
from NCDC for an individual station, Tucson International Air-
port, which is located in the south-central part of the city and pro-
vides data representative of the larger urban area. Since 98% of 
Pima County’s population resides in the Tucson metropolitan area
(United States Census Bureau 2001), it was acceptable to apply
Tucson station climate data to countywide valley fever data. The
station data included average daily maximum, minimum, and dew
point temperatures and average daily wind speed. These daily data
were averaged to produce monthly values for comparison to the
monthly incidence data.

Exploratory data analysis

To understand the basic relationships between valley fever and cli-
mate, and to determine the most appropriate climate variables to
include in the multivariate predictive model, an exploratory data
analysis was performed in two steps. Initially, bivariate compari-
sons of climate variables and incidence were performed. Then, the
climate conditions leading up to a month with particularly high or
low incidence were examined through a compositing analysis. The
results of the exploratory portion of the study guided the develop-
ment of multivariate regression models to predict monthly inci-
dence using antecedent climate conditions.

The monthly climate variables included in the bivariate analys-
es were total precipitation, average, minimum, and maximum tem-
peratures, dew point temperature, average wind speed, and the
PDSI. For these analyses, valley fever incidence data from 1980 to
1998, standardized by the mid-year Pima County population esti-
mate (United States Census Bureau 2001), were used. As previ-
ously mentioned, these data are considered to be more reliable
than the entire long-term record.

The analyses were performed using lags of 1–24 months in or-
der to determine the timing of the influence of climate variables
on incidence. The lags accounted for a delay in the impact of cli-
matic conditions on the growth and dispersal of C. immitis. Inci-
dence in a particular month was compared to each of the climate
variables in the preceding months, up to a period of 2 years. The
relationship was examined visually with scatterplots, and by cal-
culation of Pearson’s correlation coefficients between variable
pairs.

It is likely that some correlations are due to chance, but many
are significant at the 95% level, and some are significant at the
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Fig. 4 Incidence data are several steps removed from the effects
of climate conditions on fungal growth

Fig. 5 Annual cases of valley fever, Pima County, Arizona
(1948–1998, data unavailable 1973–1979). Much of the temporal
variability may be related to changes in reporting



99% level. Fourteen significant correlations (5% of 288) would be
expected to be due to chance in our comparison of 12 months of
incidence data with up to a 24-month lag in climate variables, and
in our analysis more than 14 significant values were found when
correlating incidence and all climate variables.

In order to use the entire record of incidence data (1948–1998)
for the composite analyses (the second portion of the exploratory
data analysis), the raw case counts were transformed to account
for the changes in reporting methods over the period. During any
one particular year, it is likely that the same reporting standards
were used. Therefore, month-to-month variability in any one year
is likely to be relatively precise, even if the raw data are inconsis-
tent over longer periods. Incidence in each month was expressed
as a percentage of the respective year’s annual total (e.g., January
1983 as a percentage of total incidence in 1983) (Fig. 6). Devia-
tion from the mean monthly percentage of the annual total was
then calculated for each month (e.g., January 1983 percentage
above or below average percentage for all Januarys), and the ten
highest and lowest of these transformed incidence deviations were
identified for each month. Climate conditions throughout the peri-
od of record (1948–1998, excluding 1973–1979) were averaged
by month. Differences from mean climate conditions were then
calculated and composited (averaged by month) for temperature
and precipitation for the 48 months preceding these high and low
incidence deviations. The composite values were graphed, and the
relative incidence values were visually compared to climate val-
ues. This procedure added to the information found during the bi-
variate analysis, and allowed for the development of better-
informed models. Antecedent above or below-average climate
conditions were compared to similarly above or below-average
valley fever incidence (e.g., are high January incidences preceded
by hotter/cooler and wetter/drier than average conditions?). Auto-
correlation in the data from month to month was found to be low,
and it is unlikely that a reporting bias explains our results since
months with both high and low incidence were analyzed at the
monthly time scale.

Modeling overview

To improve our understanding of multivariate relationships be-
tween climate variables and incidence, and to explore the potential
for forecasting disease outbreaks, multiple linear regression mod-
els were developed for each month. Candidate input variables
were selected from the results of the exploratory data analyses,
and screened by principal-components analysis to avoid multicol-
linearity. Variables included in the model development portion of
the study were temperature and precipitation. The variables in-
cluded in model development also incorporated a number of inter-
action terms that were developed for each month, in which precip-
itation and temperature variables selected from the exploratory da-
ta analyses were multiplied to allow for complex relationships.
PDSI was useful during the exploratory analyses, but was not used
for model development.

The 44-year time-series of incidence data for each month was
examined for outliers, which were found to be artifacts resulting
from the data transformation process. Six different months had
one outlier each in the 1948–1998 time series, which were exclud-
ed from model development; no other outliers were identified. The
models were designed to predict deviation from mean incidence
(explained above), and were cross-validated on independent data.

Eleven to fourteen initial variables for each month were select-
ed for model development. Some of those variables were highly
correlated with one another; therefore a principal-components
analysis was conducted for each month in order to avoid multicol-
linearity and increase parsimony. The original variables were re-
duced to between five and eight components for each month,
which explained 72% to 78% of the variance. The highest-loading
variable in each component, as well as those variables that were
not highly loading in any component but it was logical to include
given findings reported in the literature, were entered into the
modeling procedure.

The monthly models were initially developed on all data using
a backward stepwise regression procedure to reduce the variables
to those that were statistically significant (α = 0.10). The relative-
ly small number of years (n = 44) for model building made stan-
dard cross-validation techniques, in which a subset of the data is
set aside for testing, difficult to use. Therefore, a standard jack-
knife (leave-one-out) cross-validation technique was employed.
After a monthly model had been developed on all data using the
backward stepwise procedure, the selected variables were forced
into individual non-stepwise models in which data for 1 year were
left out. This process was repeated so that each year was left out
of the process one time. Each instance of the model was then used
to predict the year that was omitted. This resulted in n = 44 inde-
pendent data points for validation from the 44 similar, but not
quite identical models.

Results and discussion

Bivariate analysis

Incidence in late summer (July, August, and September)
is negatively correlated with precipitation in the summer
months immediately before (Table 1). High monsoonal
precipitation may decrease the likelihood of fungal
spores becoming airborne, decreasing incidence in the
months that follow. Incidence during the same period in
late summer is also positively correlated with precipita-
tion during the winter and early spring (March and
April). The relationship implies that these soaking rains
may provide the moisture needed for the fungus to grow
within the soil. This pattern repeats itself at longer time
scales. Summer precipitation at a 1 year lag is negatively
correlated with incidence during the following late sum-
mer and fall, while February precipitation is positively
correlated with incidence during spring and summer 
1 year later.

Average air temperatures in July and August are posi-
tively associated with incidence in Pima County in au-
tumn (Table 2). There is a positive relationship between
incidence in late winter and spring, and temperature in
the preceding 7–9 months. Incidence in other months ap-
pears to be affected less by average temperature, al-
though temperatures in December through February 
are positively correlated with incidence with a lag of
14–19 months. An analysis similar to that of average air
temperature was conducted with minimum and maxi-
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Fig. 6 Mean monthly percentage of total annual incidence
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mum air temperatures and incidence (not shown). Mini-
mum air temperatures in July and August are positively
correlated with incidence in the months that follow, par-
ticularly early fall and winter. Maximum temperatures in
July, August, and September appear to positively affect
incidence in the short term, in the 1 or 2 months that fol-
low. Higher than normal maximum temperatures in sum-
mer may lead to increased evaporation and below-nor-
mal soil moisture, thereby allowing the fungus to be-
come airborne and infections to occur in the next few
months. This finding also fits well with previous re-
search that associates high temperatures with soil steril-
ization. Given the results of our correlation analysis, it
appears that extreme summer temperatures in particular
are important, and lead to higher than normal incidence
in the following winter.

Average dew point temperatures in the first 7 months
of the year are significantly associated with incidence in
only 1 or 2 months with few clear, consistent patterns
(not shown). It was expected that dew point temperature,
as an indicator of moisture content in the air, would af-
fect the ability of the fungus to become airborne; a high
moisture content in the air would translate to somewhat
moist topsoil. However, the few seemingly spurious high
correlations did not indicate any clear association be-
tween dew point temperature and incidence.

At least for this temporal scale, no relationships be-
tween wind speed and incidence were significant (not
shown). It is more likely that individual, daily wind
events, such as very high gusts, affect incidence rates of
valley fever. Gust data and maximum sustained wind
speed were not analyzed in this study because they occur
on timescales much shorter than 1 month (daily or hour-
ly); their possible importance suggests they should be
examined in future studies.

The PDSI value has a lagged negative influence on
incidence in every month in which there is an apparent
relationship. Incidence in winter and spring is correlated
with PDSI in summer and fall, a pattern that repeats it-
self over longer periods as well (Table 3). In the short
term, PDSI is likely negatively correlated with incidence
because greater soil moisture prevents the fungus from
becoming airborne. Conversely, if PDSI values are near
zero or negative, the soil is likely to be dry and more in-
fections may occur. PDSI is negatively correlated with
incidence on longer time scales as well. Incidence in fall
is negatively correlated with PDSI at lags of 8–24
months, as well as in the 3 months immediately preced-
ing.

Composite relationships

Months with a high (low) relative incidence are often
immediately preceded by lower (higher) than average
precipitation. During the summer (June through Septem-
ber), months with a high (low) relative incidence are
characterized by higher (lower) than average precipita-
tion for much of the previous 12–36 months. Although

deviation from mean precipitation is highly varied prior
to a month with high relative incidence, in most monthly
graphs (not shown) a pattern appears 24 months earlier
that indicates above-average precipitation. This again
points to the long-term importance of moisture enabling
the fungus to grow abundantly in the soil.

The January graph (Fig. 7) provides an example of
the complexity of the composite analysis for precipita-
tion. The pattern is highly varied both for months with
high and low incidence. Some expected patterns are visi-
ble however. In December and January 2 years prior to a
January with a high percentage of total annual incidence,
above-average precipitation is received, while a drying
trend is present in the September and October immedi-
ately preceding it. In contrast, low-incidence Januarys
are preceded by dry winters 2 years earlier, and possibly
by wet summers 18 months before. Therefore, an oppo-
site pattern is apparent for months with high and low in-
cidence.

The temperature composite graphs are also highly
varied, but some overall patterns are apparent. The
graphs are summarized for the sake of space con-
straints, with an analysis of the January graph provided
as an example. Months with a high percentage of total
annual incidence are often preceded by higher than av-
erage temperatures. This factor is likely related to soil
moisture, as well as the soil sterilization hypothesis in-
volving summer temperatures. High temperatures in-
crease evaporation, leaving the soil dry and the fungus
able to become airborne. Some months with a low per-
centage of total annual incidence are preceded by lower
than average temperatures; however the pattern is not
as consistent as that of high-incidence months. Approx-
imately 2 years prior to a month with high incidence,
the composite graphs for some months show below-av-
erage temperatures. This decrease in temperature coin-
cides with the period of increased precipitation that al-
lows the fungus to grow in higher than average num-
bers.

94

Fig. 7 Precipitation composites (average deviation from mean
precipitation 1948–1998, 1973–1979 excluded) leading up to Jan-
uarys with high and low percentage of total annual valley fever in-
cidence. The rightmost point represents December immediately
prior to the high/low Januarys, the second rightmost point repre-
sents November 2 months prior, etc
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The composite graph for Januarys (Fig. 8) with a high
percentage of total incidence illustrates the above points.
Temperatures in October are above average and, along
with below-average precipitation (Fig. 7), soil moisture
conditions likely allow fungal spores to become airborne
more easily. Winter months (January, February, and
March) 2 years prior to a January with high incidence
experience below-average temperatures and receive
above average precipitation, as indicated by Fig. 7.
These conditions in the soil may foster an environment
conducive to the growth of the fungus. For low-inci-
dence Januarys, there is an inconsistent temperature pat-
tern over the preceding 18 months, although the
April–June dry foresummer period nearly 2 years before
seems unusually warm.

The temporal smoothing inherent to PDSI is apparent
in most composites, in that PDSI does not fluctuate
greatly over the 4-year period. Most monthly composites
indicate that a month with high (low) incidence is pre-
ceded by drier (wetter) than average conditions, as indi-
cated by PDSI. For some months, such as November,
with above-average incidence (Fig. 9), PDSI values fall

below the mean for the entire 48-month composite. 
Other months, including January (Fig. 10), show PDSI
values that fluctuate around the mean in the preceding
years. In the January example (Fig. 10), high-incidence
Januarys have high PDSI values (presumably higher soil
moisture) 18 months to 2 years before, followed by a
clear drying trend. Low-incidence Januarys show a
somewhat contrasting pattern, with dry or moderate con-
ditions leading up to a moist period in the previous 5 or
6 months. Generally, a marked dry period is found about
6 months prior to a month with higher than average inci-
dence. This dry period may allow the fungus to form
spores within the soil and be dispersed more easily. The
months June through September with above-average in-
cidence are preceded by above average PDSI values for
almost the entire 48-month composite (not shown). This
pattern was not expected, but perhaps indicates that the
fungus responds on shorter timescales than PDSI vari-
ability.

April, May, and October with a high percentage of an-
nual incidence show an interesting moisture pattern that
fits well with past findings. In the composite graph for
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Fig. 8 Temperature composites
(average deviation from mean
temperature 1948–1998,
1973–1979 excluded) leading
up to January are also highly
varied and complex. The right-
most point represents Decem-
ber immediately prior to the
high/low Januarys, the second
rightmost point represents 
November 2 months prior, etc

Fig. 9 Palmer Drought Severi-
ty Index (PDSI) composites
show that average deviation
from mean PDSI conditions
fluctuate very little prior to 
November with either a high 
or a low percentage of total an-
nual valley fever incidence
(1948–1998, 1973–1979 
excluded). The rightmost point
represents October immediate-
ly prior to the high/low 
Novembers, the second right-
most point represents 
September 2 months prior, etc



all 3 months (Fig. 11), above-average moisture condi-
tions are apparent about 2–3 years prior to a month with
high incidence, according to PDSI values, and a reverse
pattern exists during some months with a low percentage
of annual incidence (not shown). This supports hypothe-
ses in the literature regarding the role of soil moisture in
the growth and dispersal of C. immitis.

Model development and variables

The final variables included in each monthly model are
outlined in Table 4, along with the P value for each vari-
able. Most of the variables selected by the modeling pro-
cedure occur 1 year or more before the month being pre-
dicted. It appears that short-term climate conditions are
not as important in predicting incidence as long-term

conditions. This is partly counter-intuitive, but may be a
result of shorter-term processes being filtered out in the
many steps between fungal growth and severe disease in-
cidence (Fig. 4). About 40% of the variables chosen are
either winter temperature or winter precipitation over
varying periods. It therefore appears that conditions dur-
ing winter have more of an effect on incidence during
any month than conditions during other seasons, and are
therefore more useful in prediction. Winter precipitation
is more consistent and evaporates less quickly than that
from summer thunderstorms (Sheppard et al. 2002). It is
characterized by soaking rains rather than intense down-
pours, and perhaps the resulting greater and more pro-
longed soil moisture is more important to the C. immitis
lifecycle than in summer, when rainfall often flows over
the surface without soaking into the soil or is rapidly
evaporated. The inclusion of winter temperatures in the
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Fig. 10 Average deviation
from mean PDSI conditions
shows high variation prior 
to January with a high and 
a low percentage of total 
annual valley fever incidence
(1948–1998, 1973–1979 ex-
cluded). The rightmost point
represents December immedi-
ately prior to the high/low 
Januarys, the second rightmost
point represents November 2
months prior, etc

Fig. 11a–c PDSI composites
for April (A), May (B), and
October (C) with a high 
percentage of total annual 
valley fever incidence show
similar patterns of moist and
dry conditions



models may indicate that the fungus is not able to sur-
vive at temperatures below a certain threshold, or at least
that higher winter temperatures are more conducive to
high incidence than cooler conditions. Given the im-
proved ability to forecast winter temperature and precipi-
tation in the Southwest, because of the relationship be-
tween winter climate and the Southern Oscillation Index

(Sheppard et al. 2002), it is fortuitous that our incidence
models rely more on winter than on summer variables. It
was expected that the interaction terms would be useful
predictors given the importance of soil moisture, but on-
ly four were included in the final regression models.
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Table 4 Variables and coeffi-
cients for each monthly model,
ranked by standardized coeffi-
cient

Month Variables Standardized P
(β) coeff.

January Apr–Jun temp, 1.5 years prior –0.305 0.032
Dec–Jan precip, 1 year prior –0.297 0.043
Dec temp, 1 year prior –0.294 0.045
Oct temp, 1 year prior 0.283 0.042

February Sep–Jan precip trend 0.389 0.02
Nov–Dec temp, 2 years prior 0.330 0.04

March Feb–Mar precip, 2 years prior 0.568 0.00
Nov–Dec precip, 1 year prior –0.524 0.01
Feb–Mar precip 2 years prior × Mar–Jun temp, –0.493 0.00
2 years prior
Dec–Mar precip trend, 1 year prior 0.480 0.01
Aug–Nov precip –0.342 0.00
Jan temp, 2 years prior 0.335 0.01
Oct–Jan precip, 2.5 years prior –0.237 0.03

April Dec–Mar temp, 3.5 years prior –0.358 0.012
Nov temp, 2.5 years prior –0.316 0.025

May Feb–Apr precip –0.372 0.010
Aug–Dec precip, 0.5 year prior –0.337 0.032
Sep–Oct temp, 1.5 years prior –0.290 0.063
Nov–Jan temp, 1.5 years prior 0.273 0.056

June Sep–Dec precip, 0.5 year prior 0.462 0.00
Apr–Aug precip trend, 3 years prior 0.427 0.00
Sep–Dec precip, 0.5 year prior × Jul–Oct temp, –0.414 0.00
0.5 year prior

July Jul–Dec precip, 2 years prior 0.509 0.000
Nov–Mar temp, 1.5 years prior 0.367 0.005
Jun precip × Jun temp –0.271 0.031
Apr temp, 3.5 years prior –0.253 0.037
Nov–Mar precip, 0.5 year prior 0.252 0.050
Dec temp, 0.5 year prior 0.214 0.085

August Jul–Sep temp, 1 year prior –0.608 0.000
Sep precip, 1 year prior 0.462 0.005
Apr precip, 2.5 years prior × Apr–Jun temp, 0.402 0.008
2.5 years prior
Jul temp 0.313 0.036
Oct–Jan temp, 1.5 years prior 0.255 0.083
Jan precip, 0.5 year prior 0.238 0.087

September Jul–Nov temp, 1 year prior –0.361 0.007
Dec–Feb precip, 0.5 year prior 0.324 0.012
Aug–Oct precip, 3 years prior 0.254 0.051

October May–Sep temp 0.632 0.00
May–May precip, 2.5 years prior –0.501 0.00
Mar–May precip, 0.5 year prior –0.243 0.04

November Sep precip × Sep–Oct temp 0.334 0.010
Jan temp, 1.5 years prior –0.333 0.005
Jun–Sep temp trend, 3.5 years prior –0.317 0.007
Feb–Jun temp, 1.5 years prior 0.306 0.019

December May temp, 1.5 years prior –0.415 0.002
Dec temp, 1 year prior 0.340 0.010
Jul temp, 0.5 year prior –0.306 0.019



Model evaluation

All models were evaluated using the independent data
and predictions from the jack-knife process when the
models were developed. The coefficient of determination
(r2, or explained variance) on independent data ranges
from 0.15 (February) to 0.50 (March) (Table 5). In all
cases, the F statistic associated with the model was sig-
nificant (α = 0.05). The best model results in terms of
explained variance were found in models for months that
have the highest percentage of total annual incidence, so
we are better able to predict incidence in the months that
are of the highest concern. It may be that months with
the highest incidence have a clearer climate signal than
months with low incidence where the apparent relation-
ship between climate and incidence may be the result of
the noisiness of the data. The root-mean-squared error
(RMSE) was calculated for each model (Table 5), and
ranges from 27% to 50% of the mean transformed inci-
dence values. Although RMSE values are high, those
months with the highest percentage of total annual inci-
dence have lower RMSE values than months with low
percentages. The models are able to predict independent
points fairly well but, as is common with regression,
they fail to capture extremes in many cases. Future mod-
els could improve upon these experimental models by in-
cluding population variables, such as the influx of elder-
ly people during fall and winter months. Figure 12 illus-
trates the ability of the November model to predict ob-
served values. The March (Fig. 13) and February

(Fig. 14) models, with the highest and lowest r2 values
respectively, are included for comparison.

Residuals were examined in an attempt to explain the
portion of the variance unaccounted for by the model
variables. No clear consistent pattern is apparent in the
residuals that can be explained by a variable that was not
included. However, it is likely that a portion of the unex-
plained variance in incidence is due to climatic events
that occur on shorter time scales. Individual wind and
dust events occurring on a daily or weekly basis affect
incidence; however, they are not captured in the model

99

Fig. 12 The November model is able to predict the variation in
deviation from mean valley fever incidence (data unavailable
1973–1979); however, it fails to capture extreme values in most
cases

Fig. 13 Although extreme val-
ues are still missed in the
March model, it is able to cap-
ture much of the year-to-year
variability and had the highest
r2 value (0.50 on independent
data) of all monthly models

Fig. 14 The February model, with the lowest r2 value (0.15 on in-
dependent data), fails to predict many of the observed values accu-
rately

Table 5 Evaluation statistics for the 12 monthly models. Root-
mean-squared error (RMSE) percentages of average deviation
from mean incidence are moderate for months with high percent-
age of annual incidence

Month Model Independent RMSE 
r2 (Adj. r2) r2 (%)

Jan 0.32 (0.24) 0.17 32
Feb 0.26 (0.21) 0.15 44
Mar 0.67 (0.61) 0.50 33
Apr 0.40 (0.33) 0.29 47
May 0.28 (0.21) 0.14 50
Jun 0.44 (0.40) 0.34 34
Jul 0.53 (0.45) 0.31 37
Aug 0.42 (0.32) 0.21 42
Sep 0.42 (0.38) 0.32 52
Oct 0.49 (0.45) 0.44 27
Nov 0.53 (0.48) 0.40 38
Dec 0.39 (0.34) 0.41 40



because of the limitations of monthly data. Also, soil
moisture is likely an important factor in the lifecycle and
dispersal of C. immitis, and therefore some way should
be found to include PDSI as an indicator of antecedent
conditions in future modeling work. Finally, anthropo-
genic factors including changes in land use and construc-
tion activity may also account for a portion of the unex-
plained variance.

Concluding remarks

The first portion of this study consisted of an exploratory
data analysis that sought to identify the basic relation-
ships between climate conditions and valley fever inci-
dence. The bivariate and composite analyses provided
insight into the conditions up to 4 years prior to a month
with high or low incidence. This process also aided in
the selection of candidate variables for the multivariate
models. Predictive models were developed using a back-
ward stepwise regression, and incorporated temperature
and precipitation variables at varying periods prior to the
month being predicted. The resulting models included
variables that were mainly from periods of more than 
1 year prior to the month being predicted. Also, winter
climate conditions appear to be important incidence pre-
dictors, as winter temperature and precipitation variables
frequently appear in the models. Months with the highest
percentage of total annual incidence have the best-per-
forming models, according to r2 and RMSE. Therefore,
we are best able to predict incidence in the months that
experience the greatest number of cases.

Several hypotheses in the literature were supported by
our findings, while evidence was not apparent for others.
The results of the compositing analyses were consistent
with the hypothesis regarding the timing of soil moisture
conditions on the growth and dispersal of C. immitis,
whereby moisture is required for the fungus to grow in
large amounts within the soil, but a dry period is required
for airborne dispersal. This pattern was found in the com-
posite graphs for months experiencing above-average in-
cidence. Also, the soil sterilization hypothesis was indi-
rectly supported by findings in the bivariate analysis link-
ing temperature and incidence. The positive relationship
between incidence and summer temperatures indicates
that high summer temperatures may lead to a high num-
ber of cases in the months that follow, perhaps because of
decreased soil moisture or soil sterilization. During the
study, interesting relationships were found that had not
previously been documented that may be real, or may be
artifacts of the data processing and analyses. They are
statistically significant, however, and should be investi-
gated further. The importance of winter precipitation and
temperature variables in the models points to the winter
season as having more of an impact on year-round inci-
dence than other seasons. This result was unexpected giv-
en previous studies and the exploratory analysis. In future
studies, more attention should be given to the role of win-
ter climate in influencing incidence.

Valley fever incidence is increasing within the en-
demic zone in Arizona as the general population grows,
as well as in the population of susceptible groups 
(Ampel et al. 1998; Galgiani 1999). The rate of valley
fever more than doubled between 1997 and 2001 (ADHS
2002). Previous research has linked valley fever inci-
dence with climate conditions. This study adds to that
literature by improving our understanding of the com-
plex relationship between incidence and climate, specifi-
cally temperature and precipitation, and by developing
monthly predictive models that will be used experimen-
tally for future model improvement and development.
We are working with state health officials as well as re-
searchers within the Valley Fever Center for Excellence
at the University of Arizona to improve the monthly
models, so that in the future they may serve as a guide 
to the likelihood of above or below-average incidence 
in the coming months. Pima County is currently experi-
encing an upward trend in cases (Ampel et al. 1998;
Galgiani 1999), and model results can be used to identify
whether a portion of the increase is related to climate.
Given past, current or forecast temperature and precipita-
tion conditions, the user can determine if incidence will
be high in future months as a type of early warning
system. We envisage that, as understanding and model
accuracy improve with continuing study, the information
can be passed on to health-care providers who can pre-
pare for increased cases by ensuring that the proper treat-
ment is available. Also, doctors in other regions may rec-
ommend that susceptible people do not travel to or
through the endemic zone if conditions are right for in-
creased cases, and people in occupations such as arche-
ology or geology might use special precautions when
working in the field or plan work during a time when cli-
mate conditions indicate that exposure is less likely.
Model runs using forecast climate conditions are sensi-
tive to the quality of those forecasts, which must be con-
sidered by the user.

Future modeling could be combined with spatial vari-
ables including soil type, disturbance regime, and prox-
imity to a riparian zone (Kolivras et al. 2001). An analy-
sis of wind gust data and an appropriate measure of soil
moisture would be very useful to aid our understanding
of the relationship between climate conditions and valley
fever incidence. The noisiness of the incidence data may
make them a good candidate for non-linear approaches
such as artificial neural networks. Finally, better time-
series data for valley fever or C. immitis could greatly
improve analyses and models. More consistent incidence
statistics may be available for particular populations
(e.g., military bases, campus health services), and fungal
spore count data may become available as laboratory
techniques are developed for accurate testing of soil
samples.
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