
Statistical and spatial assessment of soil heavy
metal contamination in areas of poorly recorded,
complex sources of pollution
Part 1: factor analysis for contamination assessment

A. Korre

Abstract The assessment of soil heavy metal contamination and the
quanti®cation of its sources and spatial extent represent a serious challenge to the
environmental scientists and engineers. To date, statistical and spatial analysis
tools have been used successfully to assess the amount and spatial distribution of
soil contamination. However, these techniques require vast amounts of samples
and a good historical record of the study area. Furthermore, they cannot be
applied in cases of complex or poorly recorded contamination and provide only a
qualitative assessment of the pollution sources. The author has developed a
methodology that combines statistical and geostatistical analysis tools with
geographic information systems for the quantitative and spatial assessment of
contamination sources.

This paper focuses on the techniques that may be employed to explore the
structure of a soil data set. Soil contamination data from Lavrio old mine site in
Greece were used to illustrate the methodology. Through the research, it was
found that principal component and factor analysis tools delineate the principal
processes that drive pollution distribution. However, the spatial assessment and
quanti®cation of multiple pollution sources cannot be resolved. This aspect is
explored in detail in the second paper of the series, focusing on the exploitation of
principal component and factor analysis results as inputs for canonical correla-
tion, geostatistical analysis and geographic information systems tools.

Key words soil contamination assessment, pollution sources, multivariate sta-
tistical analysis, geographic information systems

Abbreviations FA, factor analysis; GIS, geographic information systems;
PCA, principal component analysis

1
Introduction
Physical degradation of the soil is one of the main environmental issues as land
contamination by heavy metals or organic products is increasing not only at
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urban sites but also in some rural areas. The importance of natural and man-
made inputs of chemical elements in the surface environment in relation to the
health of plants, animals and man is known and accepted. Researchers in the late
1980s and into the 1990s have been trying to address the ¯uxes of toxic elements
in soil, water, dust and air together with their pathways to the target organism
(Thornton, 1993).

Toxic elements rarely occur alone and their associations and interactions with
one another and with other components of the environment are known to in-
¯uence their availability to organisms and their ultimate toxicity.

In recent years, advances in computer hardware and software intensi®ed the
application of quantitative analysis techniques that would otherwise be extremely
tiresome and time consuming. Research into the analysis of soil chemistry in-
formation has utilised statistical analysis tools to assist the selection of optimum
soil sampling patterns, to estimate measurement uncertainty due to sampling and
chemical analysis and to assist in assessing the risk of soil contamination (Fer-
guson, 1992; Goovaerts et al., 1997). Soil contamination research in the past has,
in most cases, been quantitative in terms of levels of pollutants sampled and
measured, however, the analysis of contamination has been limited to a de-
scriptive evaluation of the sources of soil pollution (Davies and Ballinger, 1990; Li
and Thornton, 1993). Therefore, the fundamental research question to be ad-
dressed in this ®eld is the quanti®cation of the extent of pollution, not just in
levels of pollutants but also in terms of their geographic spread; the relationship
between the pollutants that very often coexist; and the determination of the
sources of pollutants.

One issue of major importance in soil contamination studies is to distinguish
the natural background from anthropogenic anomalies. So far, this has been done
by using different sample types such as different horizons of the soil pro®le or by
comparing, statistically, rock and stream sediments, and soil analysis results
(Selinus and Esbensen, 1995). However, these techniques are expensive and time
consuming processes requiring vast amounts of data both from soil and baseline
studies. Furthermore, these methods do not clearly associate speci®c sources with
pollutants, and the estimation method allows only a qualitative interpretation of
the results that cannot be applied in cases were baseline data is not available.

Experience in contaminated land assessment and remediation has shown that
both the industry and the regulatory authorities would require a comprehensive
methodology for the quantitative assessment of soil quality and its spatial extent.
The author has developed a methodology which combines contemporary statis-
tics, multivariate statistics and geostatistics with modern spatial data analysis
techniques and geographic information systems (GIS) to meet these require-
ments, even for sites with complex background and poorly recorded history
(Korre, 1997).

The overall methodology is presented in two papers, which illustrate the
principles and the techniques forming the methodology. This ®rst paper of the
series highlights the differences, advantages and af®liation between principal
component analysis (PCA) and factor analysis (FA) tools for the assessment of the
principle processes driving soil contamination. The second paper focuses on
canonical correlation statistical analysis, geostatistical analysis and geographic
information systems (GIS) tools for the assessment of the sources of soil con-
tamination.

The methodology developed is illustrated using soil chemical analysis data
from Lavrio old mine site, one of the oldest examples of mining activity in
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Europe. The mines are situated at the south-eastern part of the Attiki peninsula,
about 60 km from Athens in Greece. The silver bearing structures around Lavrio
were known and exploited for more than 25 centuries. As a result, the area around
the ancient mines and processing plants is polluted with high heavy metal loads.
The methodology developed enabled the author to distinguish the naturally oc-
curring high heavy metal loads from the human induced pollution in the area.

2
Methodology for the assessment of soil contamination
The information required for all soil contamination assessment studies falls in
one of two categories. Quantitative information such as metal concentrations,
organic and inorganic content, pH, conductivity and the x-y co-ordinates are
required for the assessment of both the extent and the spread of pollutants.
However, in order to assess the nature and risk of soil contamination, additional
qualitative information such as soil type, geological background, land use and
many more site speci®c parameters are also essential. In order to integrate the two
types of data, techniques such as correspondence analysis and indicator kriging
have been used to analyse the qualitative information that has been coded into
discrete variables (Goovaerts and Journel, 1995; Goovaerts et al., 1997). It is
important to mention here that the methodology presented in this paper utilises
statistical and geostatistical analysis tools for the quantitative data analysis. The
qualitative information is integrated with the quantitative solution at the inter-
pretation stage making use of the spatial referencing and transformation capa-
bilities of GIS analysis tools.

The information recorded in any soil data set is the composite result of the
parent material for the soil, the dominant processes that guide the redistribution
of elements and substances as well as the pollution sources that have been active
in the study area. In order to appreciate the utility of different statistical analysis
tools in soil pollution assessment, one may consider each of these provisions as a
separate information tier.

The simple analysis tools provide the means to clean and screen up the
measured substances improving at the same time the statistical properties of the
data. In addition, when combined with geostatistics and GIS, they also allow some
initial evaluation of the range and extent of pollution. The PCA and FA tools
examine the structure of the soil data in the next tier reducing the number of
original variables to a small set of latent variables (components/factors). This tier
of information re¯ects the principal processes that play a role in the study area
and is enhanced by the synergy of geostatistical and GIS analysis. However, with
these tools, it is not possible to quantify or even distinguish multiple sources of
pollution that often coexist.

In some occasions, the dominant processes may relate to the sources of soil
pollution since, in nature, pollutants that originate from the same source illustrate
greater af®nity. However, this is not always the case, especially when human
activities have caused redistribution of the pollutants concerned. To illuminate
this next tier of information held in the soil data set, another method of `struc-
tural' analysis, canonical correlation is used.

One of the most important characteristics of any soil pollution survey is the
spatial dimension of the data. Estimation of the measured and latent variables at
unsampled locations is achieved via variogram modelling and ordinary kriging of
the variables. Subsequently, the geographic database held in GIS serves as the host
environment for additional spatial operations, such as vectorising the raster grids
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produced by ordinary kriging; spatial referencing between quantitative and
qualitative information and graphical presentation of the results.

The overall methodology for the assessment of soil contamination and its
sources is summarised in Fig. 1.

3
Principal component and factor analysis
Principal components analysis and factor analysis are statistical techniques used
to investigate the structure of a data set, in an effort to identify the procedures
controlling the scores of the variables in the data. The technique of PCA was ®rst
introduced by Karl Pearson (1901), however, a description of practical compu-
tation methods were established much later by Hotelling (1933). The early de-
velopment of factor analysis was due to Charles Spearman (1904), who noted that
most of the observed correlations could be accounted for by a simple model for
the scores.

Both principal components analysis and factor analysis are statistical tech-
niques applied to a single set of variables where the researcher is interested in
discovering which variables in the set form coherent subsets that are relatively
independent of one another. The speci®c aims of PCA and FA for a soil data set
are to summarise patterns of correlations among observed variables, reduce a
large number of observed variables to a smaller number of factors, to provide an
operational de®nition (a regression equation) for an underlying process by using
observed variables, or to test a theory about the nature of underlying processes.

Mathematically, the two methods produce several linear combinations of ob-
served variables, each linear combination being a component or factor. The
factors summarise the patterns of the correlations in the observed correlation
matrix and can in fact be used to reproduce the observed correlation matrix.
However, since the number of factors is usually far fewer than the number of the
observed variables, there is a considerable parsimony in factor analysis. Fur-
thermore, when scores on factors are estimated for each subject, they are often
more reliable than scores on individual observed variables. This is particularly
useful in soil contamination studies where the factor scores on subjects, i.e. soil
samples, could be further used for the spatial assessment and interpretation of the
factor solution.

Fig. 1. Soil contamination assessment methodology developed
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Steps in PCA or FA include selecting a set of variables, preparing the corre-
lation matrix, extracting the set of factors from the correlation matrix, deter-
mining the number of factors, rotating the factors to increase interpretability and
®nally, interpreting the results. Although there are relevant statistical consider-
ations to most of these steps, the ®nal test of the analysis is interpretability. In
practise, a factor is more easily interpreted when several observed variables
correlate highly with it, and those variables do not correlate with other factors.

One of the problems with these techniques is that there is no criterion beyond
interpretability against which to test the solution. A second problem is that, after
extraction, there are in®nite numbers of rotations available, all accounting for the
same amount of variance in the original data, but with factors de®ned slightly
differently. The ®nal choice among alternatives depends on the researcher's as-
sessment of the solution's interpretability and scienti®c utility. There are two
general classes of rotation, orthogonal and oblique. If the rotation is orthogonal,
so that all the factors are uncorrelated, the loading matrix produced portrays the
results. If the rotation is oblique, there are several additional matrices: the factor
correlation matrix containing the correlations among the factors and two other
matrices in place of the loading matrix. These two are the structure matrix with
the correlations between factors and the variables and the pattern matrix of
unique relationships between each factor and each observed variable, uncon-
taminated by overlap among factors. The meaning of the factors after oblique
rotation is ascertained from the pattern matrix. Lastly, for both types of rotation,
there is a factor-score coef®cient matrix used to estimate scores on factors from
scores on observed variables for each individual observation.

It is worth mentioning here that in a good factor analysis the correlations in the
residual correlation matrix (the differences between the observed and the re-
produced correlation matrix) are small, indicating a close ®t between observed
and reproduced matrices. Table 1 illustrates some of the commonly encountered
matrices and their descriptions.

A variety of procedures for factor extraction and rotation that are available are
described in Mulaik (1972), Harman (1967) and Rummel (1970). The following
paragraphs describe the most commonly used methods and give an insight into
their differences and application.

3.1
Factor extraction techniques
Amongst all extraction techniques, principal components and principal factors
are the most commonly used. All techniques calculate a set of orthogonal com-
ponents or factors, which in combination reproduce R. The criteria used to es-
tablish the solution, such as maximising the variance or minimising the residual
correlations, differ from one technique to another. Even so, the differences in
solutions are small for data sets with a large sample size, numerous variables and
similar communality estimates. In fact, one test of the stability of a factor analysis
solution is that the same factors appear regardless of which extraction technique
is employed.

One of the most important decisions is the choice between PCA and factor
analysis. Mathematically, the difference occurs in the contents of the positive
diagonal in the correlation matrix. In both methods the variance that is analysed
is the sum of the values in the positive diagonal. This is 1.0 for all elements in
PCA, which means that all the variance is distributed over the components, in-
cluding the error and unique variance for each observed variable. The ®rst
principal component is the linear combination of observed variables that maxi-
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mally separates subjects by maximising the variance of the component scores.
The second component is formed from the residual correlations and is the linear
combination of observed variables that extracts maximum variability uncorre-
lated with the ®rst component, and the procedure continues until all variance is
accounted for.

In factor analysis, on the other hand, only the variance that each observed
variable shares with other observed variables is available for analysis. Exclusion of
error and unique variance from factor analysis is based on the belief that such
variance only obscures the recognition of underlying processes. Shared variance
is calculated by communalities, which are values between 0.0 and 1.0 that are
inserted in the positive diagonal of the correlation matrix. However, because
unique and error variances are omitted, a linear combination of factors ap-
proximates, but does not duplicate, the observed correlation matrix and scores on
observed variables.

In other words PCA analyses variance, whereas factor analysis analyses co-
variance (communality). The aim of PCA is to extract maximum variance from a
data set with a few orthogonal components, whereas the objective of factor

Table 1. Commonly encountered matrices in principal components and factor analysis
(modi®ed after Tabachnick and Fidell, 1989)

Label Name Rotation Sizea Description

R Correlation matrix Both orthogonal
and oblique

p ´ p Matrix of correlations
between variables

Z Variable matrix Both orthogonal
and oblique

N ´ p Matrix of standardised
observed variable scores

F Factor-score matrix Both orthogonal
and oblique

N ´ m Matrix of standard scores on
factors or components

A Factor loading
matrix

Pattern matrix

Orthogonal

Oblique

p ´ m Matrix of regression-like
weights used to estimate
the unique contribution
of each factor to the
variance in a variable.
If orthogonal, also
correlations between
variables and factors

B Factor-score
coef®cients matrix

Both orthogonal
and oblique

p ´ m Matrix of regression weights
used to generate factor
scores from variables

C Structure matrixb Oblique p ´ m Matrix of correlations
between variables and
(correlated) factors

U Factor correlation
matrix

Oblique m ´ m Matrix of correlations
among factors

L Eigenvalue matrixc Both orthogonal
and oblique

m ´ m Diagonal matrix of eigen-
values, one per factor

V Eigenvector matrixd Both orthogonal
and oblique

p ´ m Matrix of eigenvectors, one
vector per eigen value

a Row by column dimensions where p = number of variables, N = Number of subjects,
m = number of factors or components
b Also called characteristic roots or latent roots
c Also called characteristic vectors
d If the matrix is of full rank, there are actually p rather than m eigenvalues and eigen-
vectors. Only m are of interest, however, so the remaining p-m are not displayed.#

265



analysis is to reproduce the correlation matrix with a few orthogonal factors.
This implies that, whereas PCA gives a unique mathematical solution, most
forms of factor analysis are not unique. The assumptions of factor analysis imply
that, in general, the common factors are not linear combinations of the observed
variables. In fact, even if the data contain measurements on the entire popula-
tion of observations, it is not possible to compute the scores of the observations
on common factors. Nevertheless, the scores can be estimated in a variety of
ways.

This problem of factor score indeterminacy has led to other extraction tech-
niques that can be considered as approximations of common factor analysis. One
of these techniques is the image factor extraction, called so because the analysis
distributes among factors the variance of an observed variable that is re¯ected by
the other variables (the squared multiple correlation). Image factor extraction
provides a unique mathematical solution and, since the components are de®ned
as linear combinations, they are computable. However, this advantage is offset by
the fact that even if the data ®t the factor analysis model perfectly, the component
methods do not generally recover the correct factor solution. Therefore, when the
aim of the analysis is to determine the communality between the variables, this
method should not be used (Dziuban and Harris, 1973; Lee and Comrey, 1979).

Another technique is the maximum likelihood factor extraction which was
developed originally by Lawley (1963). This extraction method estimates popu-
lation values for factor loadings by calculating loadings that maximise the
probability of sampling the observed correlation matrix from a population.
Within constraints imposed by the correlations among variables, population es-
timates for factor loadings are calculated in such a way that they have the greatest
probability of yielding a sample with the observed correlation matrix. This
method is preferred by most statisticians (Lawley and Maxwell, 1971). The ad-
vantages of this technique include that it has desirable asymptotic properties
(Bickel and Doksum, 1977) and gives better results than principal factor analysis
in large samples. It is also possible to test hypotheses about the number of
common factors using this method. The maximum likelihood solution is equiv-
alent to Rao's canonical factor solution which maximises the determinant of the
partial correlation matrix (Morrison, 1976). Thus, as a descriptive method, it does
not require a multivariate normal distribution. The validity of Bartlett's chi-
squared test for the number of factors does not require approximate normality
and additional regularity conditions that are usually satis®ed in practise before
entering multivariate analysis (Geweke et al., 1980).

Another extraction method developed by Comrey (1962) and Harman and
Jones (1966), is the unweighted least squares minimum residual factoring (Mi-
nres). The goal is to minimise squared differences between the observed and
reproduced correlation matrices. Only the off-diagonal differences are consid-
ered, and communalities are derived from the solution rather than being esti-
mated as part of the solution. The procedure gives the same results as principal
factors if the communalities are the same.

The method of generalised mean squares factoring also seeks to minimise off-
diagonal squared differences between observed and reproduced correlation ma-
trices, however in this case, weights are applied to the variables. Differences for
variables that have substantial shared variance with other variables are weighted
more heavily than the differences for variables that have substantial unique
variance. In other words, differences for variables that are not as strongly related
to other variables in the set are not as important to the solution.
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Finally, the alpha factor extraction, which grew out of psychometric research,
focuses interest in discovering which common factors are found consistently
when repeated samples of variables are taken from a population of variables. The
problem is to identify mean differences that are found consistently among
samples of subjects taken from a population of subjects. However, the concern
lies with the reliability of the common factors, rather than the reliability of group
differences. For this reason, in alpha factoring, the communalities are estimated
using iterative procedures that maximise the coef®cient alpha (a measure derived
in psychometrics for reliability) for the factors.

The author believes that the maximum likelihood extraction technique is the
one that suits the nature of soil contamination data best. The main reasons are
that the data sets generated from a potentially polluted area are most likely to
include variables which are not normally distributed. In addition, the method
allows to test statistically different hypotheses about the number of factors that
represent the original set best. This point will be illustrated further utilising the
elemental concentrations measured for soil samples from the Lavrio old mine site.

3.2
Rotation
The results of factor extraction, unaccompanied by rotation, are likely to be hard
to interpret regardless of the extraction method used. Rotation is used to improve
the interpretability and scienti®c utility of the solution. Rotation does not im-
prove the quality of the mathematical ®t between the observed and reproduced
correlation matrices and, as in the case of different extraction techniques, dif-
ferent rotation methods tend to give similar results if the pattern of correlation in
the data set is fairly clear. Different rotation techniques described in Gorsuch
(1983), Harman (1967) or Mulaik (1972) fall into two main categories: the or-
thogonal and the oblique methods. The most widely used examples of these
techniques are summarised in Table 2.

Varimax, quartimax and equamax are all orthogonal techniques, with varimax
being the most commonly used of all the rotation methods available. In varimax,
the objective is to maximise the variance of the loadings within factors, across

Table 2. Summary of rotational techniques

Rotational technique Type Objective of the analysis

Varimax Orthogonal Minimise complexity of factors by maximising
variance of loadings on each factor

Quartimax Orthogonal Minimise complexity of variables by maximising
variance of loadings on each variable

Equamax Orthogonal Simplify both variables and factors
Orthomax Orthogonal Simplify either factors or variables depending on

the value of gamma (C)
Parsimax Orthogonal Performs an orthomax rotation for C =

(nvar á (nfact)1)/(nvar + nfact)2), where
nvar = number of variables and nfact =
number of factors

Orthoblique Oblique Rescale factor loadings to yield orthogonal
solution; nonrescaled loadings

Promax Oblique Orthogonal factors rotated to oblique positions
Procrustes Oblique Rotate to target matrix
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variables. The loadings that are high after extraction become higher and those
that are low become even lower. As a result, the interpretation of the factors
becomes easier. Quartimax does for variables what varimax does for factors.
However, the method is not nearly as popular as varimax because researchers are
usually more interested in simple factors than in simple variables. Equamax is a
hybrid between varimax and quartimax that tries simultaneously to simplify the
factors and the variables. Mulaik (1972) reports that equamax tends to behave
erratically unless the researcher can specify the number of factors with con®-
dence.

The oblique rotation techniques are used when the researcher suspects that the
processes represented by the factors are correlated. Oblique rotations offer a
continuous range of correlations between factors. Of these techniques, the orth-
oblique rotation uses the quartimax logarithm to produce an orthogonal solution
on rescaled factor loadings; therefore, the solution may be oblique with respect to
the original factor loadings.

In promax rotation, an orthogonally rotated solution (usually varimax) is ro-
tated again to allow correlations among factors. The orthogonal loadings are
raised to powers (usually 2, 4, or 6) to drive small and moderate loadings to zero
while larger loadings are reduced, but not to zero. As a result, even though factors
correlate, simple structure is maximised by clarifying which variables do and do
not correlate with each factor.

Finally in procrustes rotation, a target matrix of loading (usually 0's and 1's) is
speci®ed by the researcher, and a transformation matrix is sought to rotate ex-
tracted factors to the target if possible. If the solution can be rotated to the target,
then the hypothesised factor structure is considered con®rmed. Unfortunately, as
Gorush (1983) reports, with procrustean rotation factors tend to be highly cor-
related and sometimes a correlation matrix generated by random processes is
rotated to the target with apparent ease.

Factor extraction yields a solution in which observed variables are vectors that
terminate at the points indicated by the co-ordinate system. The factors serve as
axes for the system, the co-ordinates of each point are the entries from the
loading matrix for the variable, and the length of the vector for each variable is
the communality of the variable. If the factors are orthogonal, the factor axes are
all at right angles to one another, and the co-ordinates of the variable points are
the correlations between the common factors and the observed variables.

One of the primary objectives of principal component and factor analysis is to
discover the minimum number of factor axes needed to reliably position vari-
ables. A second major goal, and the motivation behind rotation, is to discover the
meaning of the factors that underlie the responses to the observed variables.
Factor rotation repositions factor axes so as to make them interpretable, thus
changing the co-ordinates of the variable points, while retaining the positions of
the points with respect to each other.

3.3
Limitations of principal components and factor analysis
As most applications of principal components and factor analysis are exploratory
in nature, both the theoretical and the practical limitations of these procedures
are not very strict. The decisions upon which the number of factors and rotational
schemes are selected are based on pragmatic rather than theoretical criteria.

The design of factor analysis, however, differs from other analysis methods in
several important aspects (Comrey, 1973). The ®rst task is to generate hypotheses
about factors believed to underlie the domain of interest. Statistically, it is im-

268



portant to include enough factors so that the solution is stable. Logically, in order
to reveal the process underlying the data, all relevant factors have to be included
and failure to measure an important factor may distort the apparent relationships
among measured factors. Next, for each hypothesised factor, some variables that
are believed to be pure measures of the factor are included as marker variables.
The marker variables are highly correlated with one and only one factor and, load
on it regardless of extractional or rotational technique. Complexity is indicated by
the number of factors with which a variable correlates; this being one factor for
marker variables and up to several factors for complex variables. If variables
differing in complexity are all included in an analysis, those with similar com-
plexity levels may correlate with each other because of their complexity and not
because they relate to the same factor. These variables may become trapped in
factors that have little to do with the underlying processes.

An additional requirement is that the sample chosen for the analysis exhibits a
spread in scores with respect to the variables and the factors measured. If all
subjects achieve approximately the same score on some factor, correlations
among the observed variables are low and the factor may not emerge in the
analysis. Therefore, selection of subjects expected to differ on the observed
variables and underlying factors is an important design consideration.

It is not advisable that the results of several samples are pooled together as they
may differ with respect to some criterion or shift in time, and therefore may
obscure differences rather than illuminate them. On the other hand, if different
samples do produce the same factors, pooling them is desirable because of the
resulting increase in sample size.

In practical terms, because both principal component analysis and factor
analysis are very sensitive to the sizes of correlations, it is critical that reliable
correlations are employed. Sensitivity to outlying cases, problems with missing
data and degradation of correlations between poorly distributed variables of
course have negative effects on the analysis and have to be corrected. Further to
these considerations, a matrix that is factorable should include several sizeable
correlations. The expected size depends, to some extent, on the size of the sample,
with larger samples tending to produce smaller correlations. However, if no
correlation exceeds 0.30, the use of factor analysis may not be appropriate.

High bivariate correlations are not, however, a de®nite proof that the corre-
lation matrix contains factors. It is helpful, instead, to examine the matrices of
partial correlations where pairwise correlations are adjusted for the effects of all
other variables. If there are factors/components present, high bivariate correla-
tions become very low partial correlations.

There are several more sophisticated tests of the factorability of R, like the anti-
image correlation matrix and Kaiser's measure of sampling adequacy. The anti-
image correlation matrix contains the negatives of partial correlations between
pairs of variables with effects of other variables removed. If R is factorable there
are mostly small values among the off-diagonal elements of the matrix. Kaiser's
measure of sampling adequacy is a ratio of the sum of squared correlations to the
sum of squared correlations plus the sum of squared partial correlations, with the
value approaching 1 if partial correlations are small. Values above 0.60 are
considered as being suitable for factor analysis (Tabachnick and Fidell, 1989).

After the analysis, the variables that are unrelated to others in the set are
identi®ed. These variables are usually not correlated with the ®rst few factors
although they often correlate with factors extracted later. These factors are usually
unreliable both because they account for very little variance and because factors
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that are de®ned by just one or two variables are not stable. It is important to note
that a variable with a low squared multiple correlation with all other variables and
low correlations with all important factors is an outlier among the variables and is
usually ignored in the analysis.

Finally, cases may be unusual with respect to their scores on the components
or the factors calculated with principal components or factor analysis. The de-
viant scores are from cases for which the factor solution is inadequate and ex-
amination of such cases for consistency is informative if it reveals the kinds of
cases for which the components/factors are not appropriate.

3.4
Estimates of communalities
The difference between principal component and factor analysis is that, in the
positive diagonal of R, communality values are used in place of 1.0's. However,
there is some dispute regarding how these communality values should be esti-
mated.

Usually, the starting estimate of communality is the SMC (squared multiple
correlation) of each variable as dependent variable with the others in the sample
as independent variables. As the solution develops, communality estimates are
adjusted by iterative procedures to ®t the reproduced to the observed correlation
matrix with the smallest number of factors. The iteration ®nally stops when
successive communality estimates are very similar.

The ®nal estimates of communality are also SMCs, but now between each
variable as dependent variable and the factors as independent variables. The ®nal
communality values represent the proportion of variance in a variable that is
predictable from the factors underlying it, and they do not change with orthog-
onal rotation.

Image extraction and maximum likelihood extraction work differently to factor
analysis, in the sense that the SMCs are used as the communality values
throughout the analysis. In maximum likelihood extraction, the number of fac-
tors, rather than the communalities, is estimated and the off-diagonal correlations
are forced to produce the best ®t between observed and reproduced matrices.

The importance with which the estimates of communality should be regarded
depends on the number of the observed variables. According to Tabachnick and
Fidell (1989) if the number of variables exceeds 20, the sample SMCs will probably
provide reasonable estimates of communality. Furthermore, with 20 or more
variables, the elements in the positive diagonal are few compared with the total
number of elements in R, and their sizes do not in¯uence the solution very much.
If the communality value for all variables in the analysis are of approximately the
same magnitude, the results of principal components and factor analysis are very
similar.

In the event that the estimated communalities are equal or exceed one, referred
to as the Heywood and ultra-Heywood cases respectively, there is a clear indi-
cation that the analysis and the results are not valid. Very low communalities, on
the other hand, indicate that there are outlying variables in the data set.

3.5
Adequacy of extraction and rotation of factor solution
Because inclusion of more factors in a solution improves the ®t between the
observed and reproduced correlation matrices, adequacy of extraction is tied to
number of factors. The larger the number of factors extracted the better the ®t
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and the greater the percentage of variance explained by the factor solution.
However, the larger the number of factors extracted, the less parsimonious the
solution is and, if the aim is to account for all the variance (PCA) or covariance
(FA) in the data set, the number of factors should match the number of variables.

The selection of the number of factors is probably more critical than the
selection of extraction and rotational techniques or communality values. There
are several ways to assess adequacy of extraction and the number of factors
(Gorsuch, 1983).

A ®rst quick estimate of the number of factors is obtained from the sizes of
eigenvalues after a principal components extraction and, as the variance that each
standardised variable contributes to a principal component's extraction is one,
components with eigenvalues less than one are not as important.

A second criterion is a scree test (Cattell, 1966) of eigenvalues plotted against
factors. Factors in descending order are arranged along the abscissa with eigen-
values as the ordinate. The plot is usually negatively decreasing and it is the
change of slope that indicates how many factors should be selected. Under less
than optimal conditions, the test is still accurate to within one or two factors.

Another test is the residual correlation matrix, where the elements of the
matrix are actually partial correlations between pairs of variables with the effects
of factors removed. Several moderate residuals (0.05±0.10) or a few large residuals
(>0.10) suggest the presence of another factor (Tabachnick and Fidell, 1989).

For principal components extraction and maximum likelihood extraction in
con®rmatory factor analysis there are signi®cance tests for number of factors.
Bartlett's test evaluates all factors together and each factor separately against the
hypothesis that there are no factors. However, there are disagreements regarding
the use of these tests (Gorsuch, 1983).

The choice between orthogonal and oblique rotation is made after the number
of reliable factors is decided. Very often the nature of the data encourages oblique
rotation rather than orthogonal. In practice, the best way to decide between
orthogonal and oblique rotation is to request for oblique rotation with the desired
number of factors and then examine the correlations among the factors. If cor-
relation values exceed 0.3; then there is 10% or more overlap in the variance
among the factors. If this is the case and unless there are compelling reasons for
orthogonal rotation, oblique rotation is in favour. Compelling reasons include the
wish to compare structure in groups, need for uncorrelated factors in further
analysis, or a theoretical need for orthogonal rotation.

3.6
Interpretation of factors and factor scores
The proportion of variance accounted for by a factor is the amount of variance in
the original variables that has been condensed into one factor. The proportion of
covariance indicates the relative importance of the factor to the total covariance
accounted for by all factors. The importance of a factor is evaluated by the
proportion of variance or covariance associated with the factor after rotation.

The internal consistency of the solution, in other words the certainty with
which the factor axes are ®xed in the variable space, is given by the squared
multiple correlations of factor scores predicted from the scores on observed
variables. In a good solution the SMCs range between 0 and 1, and the larger they
are the more stable are the factors. Values of 0.70 or better are considered high
and mean that the observed variables account for substantial variance in the
factor scores (Tabachnick and Fidell, 1989).
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The aim of factor interpretation is to understand the underlying dimension
that uni®es the group of variables loading on it. In both orthogonal and oblique
rotations, loadings are obtained from the loading matrix, A, however, the
meaning of loadings is different in the two rotations.

After orthogonal rotation, the values found in the loading matrix are the
correlations between variables and factors. Values in excess of 0.30 for these
correlations usually being chosen for interpretation. After oblique rotation, the
loadings in the pattern matrix are not correlations but are a measure of the
unique relationship between the factor and the variable. Because factors correlate,
the correlations between the variables and the factors (structure matrix, C) are
in¯ated by overlap between factors. It is even possible that a variable may cor-
relate with one factor through its correlation with another factor rather than
correlate directly. Comrey (1973) suggests that loadings in excess of 0.71 (50%
overlapping variance) are considered excellent, 0.63 (40% overlapping variance)
very good, 0.55 (30% overlapping variance) good, 0.45 (20% overlapping vari-
ance) fair, and 0.32 (10% overlapping variance) poor.

4
Data screening and preparation

4.1
Accuracy of data and missing values
There is a whole set of issues that need to be considered before the main statistical
analysis of a soil data set is undertaken. A very important ®rst step is to examine
the univariate descriptive statistics for accuracy of input. Within-range variables,
and plausible means and standard deviations ensure that the input data is correct.
Since most multivariate procedures analyse patterns of correlation (or covari-
ance) among variables, it is important that they are as accurate as possible. Under
some rather common research conditions, correlations are overestimated, un-
derestimated, or simply inaccurately computed. If composite variables are used
and they contain in part the same items, correlations are in¯ated. On the other
hand, a falsely small correlation between two continuous variables is obtained if
the range of responses to one of the variables is restricted in the sample.

One of the most pervasive problems in data analysis is that of missing data. If
only a few data points are missing in a random pattern in a large data set, the
problems are usually not serious and almost any procedure for handling them
yields similar results. If, however, a large number of data are missing from a small
to moderate-size data set, the problems can be very serious, and in fact, it is the
pattern of missing data that is more important than its volume. The decision
about how to handle missing data lies among several bad alternatives:

· deleting any cases with missing values or the variables that contain them.
· estimating the missing values and using the estimates during data analysis.

There are three schemes for doing so: using prior knowledge, inserting mean
values, and using regression.

· using a missing data correlation matrix, where all available pairs are used to
calculate each of the correlations. In such a case though, some of the corre-
lations are more stable than others. Furthermore, they are not comparable and
can go out of range in their relative sizes. The eigenvectors calculated from
them can become negative; therefore, positive eigenvalues are in¯ated. Obvi-
ously statistics derived under these conditions are very likely distorted and this
option should be used very carefully.
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· treating the missing data as available data by creating a dummy variable where
cases with complete data are assigned 0 and cases with missing data are as-
signed 1. This is very important in cases where the failure to respond is itself a
very good predictor. The mean is inserted for missing values so that all cases
are analysed and the dummy variable is used as another variable (Cohen and
Cohen, 1975).

In soil contamination research, prior knowledge is not often available, espe-
cially in cases of unknown potentially polluted sites. What is very important is
to consider why the values are missing. If for example, some samples were
simply not analysed for particular soil constituents or some variables have
erratic values that have been detected through the screening process or just not
recorded, then the mean value is the preferred option. If, on the other hand,
the value is missing due to the concentration being lower than the detection
limit for a particular constituent, then the only plausible alternative to case
deletion is to use the detection limit, or a value up to 10% lower than the
detection limit.

4.2
Outliers
Outliers are found in both univariate and multivariate situations among all types
of variables and lead to errors with no indication as to which effect they have in a
particular analysis. There are four reasons for the presence of an outlier:

· incorrect data.
· failure to specify missing value codes in computer control language so that

missing value indicators are read as real data.
· the outlier is not a member of the population that was intended for sampling

(and should be deleted).
· the case is from the intended population but the distribution of variance has

more extreme values than a normal distribution. In this case the researcher
should consider changing the value of the case so that it is no longer unduly
in¯uential.

Detection of univariate outliers can be easy with the use of graphical methods
or by identifying the cases with standardised scores in excess of �3.00 as
potential outliers. Multivariate outliers are cases that have an unusual pattern
of scores. The statistical procedure used to screen for multivariate outliers is
the computation of the Mahalanobis distance for each case. A very conservative
probability estimate for a case being an outlier, say probability of less than
0.001, is appropriate (Tabachnick and Fidell, 1989). Once multivariate outliers
are identi®ed, it is important to de®ne the variables on which the cases are
deviant as it is essential to identify the kinds of cases for which results do not
generalise.

Soil pollution surveys are usually carried out in areas of suspected contami-
nation. As a result, outlying values for the variables measured are both expected
and important. The options available to reduce the in¯uence of the outliers are: to
eliminate the cases; to remove the variables involved if they are highly correlated
with others or they are not critical; or to transform the variables so that the scores
are not so deviant. Data collection, the sampling campaign and chemical analysis
of soil samples are generally time consuming and expensive. Therefore, it is
crucial to conserve, if possible, the outlying cases in the data set and, to do so,
transformation of the variables is the preferred solution.
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4.3
Normality, linearity and homoscedasticity
The underlying principle for most multivariate procedures and most statistical
tests is the assumption of multivariate normality. Multivariate normality is the
assumption that each variable and all linear combinations of the variables are
normally distributed. When the assumption is met, the residuals of analysis are
also normally distributed and this is one way to test for normality. The other
option is to examine the distributions of the variables themselves with statistical
or graphical methods. For normal distributions, skewness and kurtosis are zero
and their signi®cance can be tested against the null hypothesis of zero. It is
advisable to transform the variables if non-normality is found among variables or
residuals. Although there is no guarantee, upon securing univariate normality, it
is more likely that the multivariate normality condition will be met.

The assumption of linearity requires that there is a straight line relationship
between two variables. The reasons are that the solutions are based on the general
linear model, the signi®cance tests used are based on the assumption of linearity
and only the linear relationships among variables are analysed. If there are
substantial non-linear relationships among variables, they are ignored unless the
variables are transformed so as to capture the non-linear relationship. The as-
sumption of homoscedasticity is that the variability in scores for one variable is
roughly the same at all values of the other variable and can be evaluated through
bivariate scatterplots.

Although data transformations are recommended as a remedy for outliers and
failures of normality, linearity and homoscedasticity, it is also known that they
may increase dif®culty of interpretation. In other words, it would be far easier to
interpret soil elemental concentrations rather than their log, square root or in-
verse transforms.

4.4
Multicollinearity and singularity
Multicollinearity and singularity are problems that occur in a correlation matrix
when variables are too highly correlated. With multicollinearity the correlation is
0.90 and above and, with singularity, variables are perfectly correlated with one of
the variables being a combination of one or more of the other variables. The
logical problem is that, with the exception of factor analysis, redundant variables
are not needed in the same analysis as they reduce the degrees of freedom for
error and they actually weaken the analysis. The statistical problem is that sin-
gularity prohibits and multicollinearity renders unstable matrix inversion.

Summarising the above considerations, Table 3 presents a checklist of general
guidelines for screening data. However, it is important to stress that further to the
afore mentioned screening methods, each statistical analysis technique has spe-

Table 3. Data screening procedure

A. Inspect univariate descriptive statistics for accuracy of input,
B. Evaluate amount and distribution of missing data and deal with the problem,
C. Identify and deal with non-normal variables,

· Check skewness and kurtosis ± probability plots
· Transform variables

D. Identify and deal with univariate and multivariate outliers,
E. Check pairwise plots for nonlinearity and heteroscedasticity,
F. Evaluate variables for multicollinearity and singularity.
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ci®c assumptions and limitations which have to be taken into account prior to its
use.

The following paragraphs provide a more detailed description of the statistical
analysis techniques and the underlying theoretical background, focusing partic-
ularly on principal component and factor analysis methods for soil contamination
data.

5
Principal component analysis and factor analysis for Lavrio data

5.1
Mining and geology of Lavrio area
The ancient mines of Lavrio are situated at the south-eastern part of Attiki
peninsula about 60 km from Athens in Greece. The silver bearing deposits of the
area have been exploited for more than 25 centuries. There are over a thousand
ancient mining shafts around Lavrio which were used to explore the subsurface.
Of the mixed sulphide ores of lead, zinc and iron, the ancient miners were only
interested in the rich lead and silver ore. The peak of mining and processing
activity was between the 6th century BC and the Roman times. At the end of the
19th century several million tons of tailings and slag, some recovered from the
beaches of Lavrio, were found to be suf®ciently rich that the latter day miners re-
processed them for many years.

The majority of the ores of Lavrio occur within the marbles, particularly at the
contacts of the marbles with the schists. The primary ore comprises of two groups
of minerals: iron-manganese ore and mixed sulphides of Zn, Fe and Pb, which
frequently exist together or alternate.

The adverse health effects of metals on humans due to mining activities have
been well known since the ancient times and are recorded in ancient documents
by various writers such as Aristotle, Dimosthen and Strabo. During the past few
decades, the environmental damage has become more evident and assessable.
Epidemiological studies in the area have shown a high blood lead burden in
school age children which has been associated with IQ de®ciencies (Lavrion
Health Centre, 1989). More recent research includes soil pollution assessment
studies (Korre and Durucan, 1995a, b; Demetriades et al., 1996; Korre, 1997;
Durucan and Korre, 1997) and contaminated soil remediation research (Ko-
ntopoulos et al., 1996; Skoufadis et al., 1997) carried out in the same area.
The soil samples utilised in the study reported in this paper series were collected
over an area of more than 120 km2. The 425 samples collected and chemically
analysed for 24 elements (Table 4) were further analysed geostatistically to esti-
mate and map the concentrations of the metals (Korre and Durucan, 1995; Korre,
1997; Durucan and Korre, 1997).

5.2
Data screening and preparation
In the particular case of the Lavrio data set, there were three variables that had
missing values for some of the observations. These were four samples for Mo, 21

Table 4. Elements identi®ed by the chemical analysis

Li Na K Be Mg Ca Sr Ba
Al La Ti V Cr Mo Mn Fe
Co Ni Cu Ag Zn Cd Pb P
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samples for Ag and eight samples for Cd. In reality, this meant that the elemental
concentrations were below the detection limit of the ICP-AESpectrometer,
therefore, the missing values were not replaced with the mean of the sampling
population, nor they were given zero concentrations.

In order to keep the observations, rather than delete them completely and lose
the information on all other variables, it was decided to assign to them the
minimum values that have been detected, keeping in mind that this introduces
some asymmetry at the lower end of the sampling population. This is expected to
be stronger in the case of Ag where are the most missing values.

The next step was to identify possible univariate outliers in the samples and try
to explain them. For this reason the data was standardised, using the mean and
the standard deviation. The values that were produced were the standardised
scores of the variables and those in excess of �3.00 were the potential outliers.
Such values were extracted for each variable and plotted on bubble plots in order
to uncover their locations in the study area and try to explain them in conjunction
with the sampling campaign notes, the geological background, the mining data
and the historical data for the area.

Subsequently, it was important to minimise the in¯uence of outliers. However,
at Lavrio, extreme values are expected and represent quite a large proportion of
the sampling population. As 100 different samples were identi®ed as potential
outliers, it was decided not to delete the outlying cases and to transform the
variables instead.

In order to select the correct transformation for each variable, all were sub-
jected to elementary statistical analysis with univariate and bivariate methods.
From the density diagrams it was shown that most elements are far from normally
distributed in the study area, with Li, K, Al, and V in near normality when the
outliers are removed. All other elements (variables) were transformed using ap-
propriate functions. Table 5 displays the transformations used for each variable.

In order to check the homoscedasticity and linearity of the data set, the
variables were subjected to bivariate analysis, calculating the Pearson-product
moment correlation coef®cients. The transformed variables exhibited notably
stronger correlations, thus enhancing the characteristics of the sampling popu-
lation. This further proved the success of the transformation procedure and
safeguarded the use of the transformed data set for subsequent analysis.

The test for outliers and multivariate normality after transformation revealed
that there were still quite a few observations that deviated signi®cantly from the
rest of the sampling population. Since their in¯uence could not be minimised
otherwise, it was decided to remove them at this stage. Figure 2 illustrates the
mahalanobis distance ± chi squared plots for the original and the ®nal data set
that was subsequently used in the multivariate analysis. This ®nal data set con-
sisted of 415 samples out of the original 425 with no missing values for the
variables and with most of them already transformed.

Table 5. Transformation methods applied to the variables

Transformation Elements

Logarithm (log x) Na, Mg, Ba, Cr, Mo, Mn, Fe, Co, Cu, Ag, Zn, Cd, Pb
square root (

���
x
p

) Be, La, Ti, Co, Ni, P
inverse (1/x) Ca
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5.3
Principal component and factor analysis of Lavrio data
Before applying PCA and factor analysis techniques to the data, the factorability
of the correlation matrix that had to be assessed. The examined correlation matrix
of the data set contained numerous signi®cant correlations. In addition, the
values of partial correlation matrix were shown to be mostly low and Kaiser's
measures were found to be in excess of 0.60 for the all variables except for Ca and
Sr. Therefore, the correlation matrix was approved as factorable.

Principal components extraction with varimax rotation was used for the initial
evaluation of the data set and to estimate the number of factors. The ®rst 12
eigenvalues generated through the analysis are displayed graphically in the scree
plot of Fig. 3.

The maximum number of components that had eigenvalues larger than 1 was
®ve, however, since retention of so many components was considered dif®cult to
interpret, sharp breaks in size of eigenvalues were sought using the scree test. It
was found that the differences between the ®rst ®ve factors are large, however,

Fig. 2. Mahalanobis distance ± chi
squared plots for the Lavrio soil
data; (a) the total sampling
population after correcting for
missing values and (b) the ®nal
data set used for the multivariate
analysis
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there was little difference in variance explained by components 3, 4 and there-
after. This was taken as evidence that there were probably 3 or 4 components.

The principal components extraction model with varimax rotation was applied
to the data. The results were examined for the residual correlations, the ®nal
communality estimates calculated for the 3 components, the proportion of vari-
ance explained by each component and the pattern matrix before and after ro-
tation.

From the amount of variance explained by each component (Table 6), it was
concluded that the 4th and 5th components do not add signi®cantly to the
variance explained by the ®rst three components. On the other hand, the square
off-diagonal residuals (values above 0.05) and the ®nal communality estimates
(low values) illustrated that some of the variables were not represented well by the
solution. This was more evident for Ca, Sr, P and Ti. Another aspect that became
apparent from the rotated component pattern plots was that the original variables
in the ®rst biplot were aligned at an angle to the two components (Fig. 4) which
may indicate the presence of non-orthogonal components. These aspects were
further investigated through the application of principal factor and maximum
likelihood extraction techniques to the data. The following paragraphs depict the
improved results that were obtained with the maximum likelihood extraction in
comparison to the principal factors extraction for the Lavrio data.

For both analysis methods the communality estimates in the positive diagonal
of the correlation matrix were calculated with the squared multiple correlation
method (SMC). Several principal factor analysis runs were performed to ®nd the
optimum number of factors, specifying 3 to 5 factors. The trial runs with 4 and 5
factors showed that 4 factors had eigenvalues larger than one. Figure 5 illustrates

Fig. 3. Scree plot of PCA eigenvalues for the Lavrio
data

Table 6. Variance explained by each component before and after varimax rotation for the
Lavrio data set

Component 1 2 3 4 5
Before Rotation 8.069 3.787 3.096 1.567 1.378
After Rotation 6.359 5.378 3.216 1.696 1.476
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the eigenvalues calculated for each factor. The 5th factor had an eigenvalue below
1.0 and no loading above 0.50, the criterion for interpretation chosen for the
study. In addition, the 4th factor had eigenvalue just above unity, however, after
rotation the only variable loading on the factor was Ca, which has already been
identi®ed as a possible outlier among the variables.

In the corresponding scree plot (Fig. 6) of the maximum likelihood extraction
solution the ®rst three factors showed distinctively higher eigenvalues than the
subsequent factors. Therefore, only three factors were chosen for the follow-up
runs of the analysis and the interpretation of the factor solution. It was notable
from the ®nal communality estimates (Table 7) that the factor extraction solution
does not generalise for four of the variables: Ti, K, Ca and Mg. Therefore, these
variables were not used to interpret the factors. The factors extracted were rotated
using both orthogonal (varimax) and oblique methods (promax) in order to
evaluate their adequacy for the data set. As shown in the scatterplots of the
orthogonal factor loadings (Fig. 7) and, as further con®rmed by the correlations
between the three factors after oblique rotation, there is a negative correlation
between FACTORs 1 and 2 (r = )0.3448) and negligible correlations between the
other two pairs of factors.

As already mentioned, oblique rotation is adding complexities in reporting
results. However, since three factors are enough to describe the data, promax
rotation with varimax pre-rotation method was employed.

The results, as shown in the factor structure matrix in Table 8, strengthen the
association of the factors with those variables that load signi®cantly on them and
reduce even more the values for the variables that are weakly related with the
unrotated factors.

Comparing the results for the two different rotation methods proves that the
variables that load strongly on the factors do not change with rotation, but those
that are weakly attracted on them change positions. Another change that becomes
apparent is in the relative proportion of variance explained by each factor (Ta-
ble 7) which is more uniformly distributed among the factors after oblique ro-
tation. The maximum likelihood extraction technique yielded similar results to
the factor analysis solution. The three factor solution was found not to generalise
for Ti, K, Mg, and Ca, and was not particularly representative for Li and Sr

Fig. 4. Rotated component pattern
plot between Component 1 and 2
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Fig. 6. Scree plot of maximum likelihood
eigenvalues for the Lavrio data

Table 7. Principal factor extraction results and variance explained by each factor after
varimax and promax rotation (power = 3)

Root mean square off-diagonal residuals: over-all = 0.063

Final communality estimates after varimax rotation: total = 14.366
Li Na K Be Mg Ca Sr Ba
0.316 0.491 0.500 0.906 0.358 0.044 0.074 0.383
Al La Ti V Cr Mo Mn Fe
0.926 0.796 0.140 0.688 0.567 0.625 0.695 0.748
Co Ni Cu Ag Zn Cd Pb P
0.845 0.888 0.737 0.868 0.921 0.837 0.883 0.131

Variance explained by each factor
Rotation method FACTOR 1 FACTOR 2 FACTOR 3

Before rotation 7.887 3.607 2.872
Varimax rotation 6.192 5.175 2.998
Promax rotation (3) eliminating other factors 5.293 4.505 2.999
Promax rotation (3) ignoring other factors 6.836 6.010 3.063

Fig. 5. Scree plot of 13 factor eigenvalues for the
Lavrio data
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Fig. 7. Factor pattern plots after
varimax rotation for the Lavrio data
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(Table 9). Furthermore, for Ca, Sr, P, Ti, Li and Mg, the weighted ®nal commu-
nality estimates were low, extending the above list with P, whereas K was shown
to recover due to a higher weight value.

After varimax rotation, the ®rst two maximum likelihood factors extracted
were found to correlate (r = )0.3580) slightly stronger than the corresponding
factor extraction solutions. As shown in the factor reference structure plots of
Fig. 8, the other pairs of variables do not correlate signi®cantly. The resulting
structure and reference structure matrix are shown in Table 10 and the relevant
factor scatterplots are shown in Fig. 8, along with the reference axis correlation
value and the corresponding angle values.

The simplicity of the maximum likelihood factor solution is asserted by the
excellent and very good correlations between certain variables and the factors. In
terms of complexity, Fe is identi®ed as the most complex variable with fair to
good loadings on all three factors.

The list of variables that correlated best with the factors after orthogonal and
oblique rotation proved that the solutions were consistent. This was the case for
both principal factor and maximum likelihood extraction methods.

Furthermore, comparison between the two extraction methods con®rmed the
adequacy of the solutions for the data set analysed since both extraction tech-
niques gave similar results for the variables that are best correlated with the
factors.

Table 8. Factor pattern matrix after varimax rotation, and factor structure matrix after
promax rotation (power = 3)

Rotated factor pattern
(varimax rotation)

Rotated factor structure
(correlations, promax rotation)

FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 1 FACTOR 2 FACTOR 3

Zn 0.952 0.093 )0.071 0.956 0.272 0.012
Pb 0.931 0.042 )0.121 0.924 0.216 )0.037
Ag 0.912 0.136 )0.135 0.919 0.305 )0.057
Cd 0.910 0.084 )0.041 0.911 0.255 0.038
Cu 0.832 0.141 0.156 0.847 0.900 0.226
Mn 0.744 0.323 0.195 0.789 0.462 0.250
Mo 0.630 0.477 0.037 0.698 0.589 0.076
Fe 0.622 0.415 0.435 0.688 0.533 0.474
P 0.336 0.092 )0.100 0.344 0.152 )0.073
Ti )0.272 0.257 0.007 )0.103 0.088 0.111
Be 0.122 0.944 0.014 )0.228 0.201 )0.027
Al 0.136 0.939 0.162 0.285 0.950 0.138
La 0.219 0.859 )0.101 0.268 0.950 )0.010
K 0.210 0.675 0.015 0.349 0.883 )0.112
Na 0.202 0.612 )0.274 0.313 0.703 0.010
V 0.293 0.569 0.528 0.290 0.635 )0.277
Ba 0.330 0.505 )0.138 0.389 0.624 0.531
Co 0.145 )0.046 0.907 0.402 0.556 )0.126
Ni )0.055 )0.405 0.850 )0.116 0.321 0.364
Cr 0.171 )0.515 0.522 0.153 )0.002 0.917
Mg )0.284 )0.224 0.476 )0.101 )0.393 0.855
Li )0.182 0.355 0.396 0.099 )0.464 0.554
Ca )0.125 0.112 0.127 )0.306 )0.266 0.457
Sr 0.015 )0.055 )0.265 0.001 )0.056 )0.261
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For the interpretation of the results, the extraction and rotation method se-
lected was that of maximum likelihood with promax rotation. The reason for
selecting this extraction technique is that it does not require a normal and regular
multivariate population.

As proven during the screening and elementary analysis, this assumption suits
the nature of the Lavrio data since the transformed variables used for the analysis
are only approximately normally distributed and divergence from multivariate
normality is even stronger. As for the rotation method, the presence of only three

Table 9. Maximum likelihood extraction results and variance explained by each factor
after varimax and promax rotation (power = 3)

Convergence criterion satis®ed Signi®cance tests based on 415 observations:
Test of H0: No common factors
vs HA At least one common factor

Chi-square = 10029.44 df = 276 Prob > chi��2 = 0.0001
Test of H0: 3 factors are suf®cient
vs HA More factors are needed

Chi-square = 2133.129 df = 207 Prob > chi��2 = 0.0001
Chi-square without Bartlett's correction = 2190.447
Akaike's information criterion = 1776.447
Schwarz's Bayesian criterion = 942.594
Tucker and Lewis's reliability coef®cient = 0.737
Root mean square off-diagonal residuals: Over-all = 0.064

Final communality estimates and variable weights
Total communality weighted = 105.709 Unweighted = 14.072

Li Na K Be Mg Ca Sr Ba
Communality 0.231 0.482 0.442 0.928 0.299 0.035 0.063 0.367
Weight 1.300 1.930 1.793 13.926 1.427 1.036 1.067 1.579

Al La Ti V Cr Mo Mn Fe
Communality 0.895 0.825 0.141 0.647 0.510 0.609 0.647 0.699
Weight 9.504 5.706 1.164 2.835 2.042 2.559 2.828 3.323

Co Ni Cu Ag Zn Cd Pb P
Communality 0.914 0.902 0.688 0.893 0.952 0.869 0.913 0.121
Weight 11.652 10.244 3.211 9.304 21.013 7.628 11.501 1.138

Variance explained by each factor

Rotation method FACTOR 1 FACTOR 2 FACTOR 3

Before rotation
Weighted 57.628 27.247 20.834
Unweighted 7.491 3.691 2.890

Varimax rotation
Weighted 52.790 30.996 21.923
Unweighted 6.191 4.900 2.981

Promax rotation (3) eliminating
other factors

Weighted 47.160 27.966 21.913
Unweighted 5.205 4.277 2.968

Promax rotation (3) ignoring
other factors

Weighted 55.409 36.692 22.041
Unweighted 6.770 5.851 3.029
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Fig. 8. Factor reference structure
plots after promax rotation
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factors introduced few complications and, since there is no absolute need for
orthogonal solution, oblique rotation was preferred.

Table 11 summarises the maximum likelihood solution. The loading value
selected as the interpretation criteria was 0.50. Each factor was attributed, in
descending loading order, the variables that correlate best with it and that should
be used for interpretation.

Table 10. Maximum likelihood factor structure and reference structure matrices after
promax rotation (power = 3)

Rotated factor structure
(correlations, promax rotation)

Reference structure
(semipartial correlation, promax rotation)

FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 1 FACTOR 2 FACTOR 3

Zn 0.969 0.265 0.002 0.939 )0.089 )0.079
Pb 0.938 0.204 )0.037 0.933 )0.145 )0.119
Ag 0.933 0.282 )0.062 0.900 )0.061 )0.138
Cd 0.927 0.240 0.036 0.900 )0.097 )0.041
Cu 0.814 0.307 0.220 0.735 0.031 0.160
Mn 0.751 0.482 0.212 0.601 0.242 0.171
Mo 0.691 0.583 0.043 0.515 0.362 0.015
Fe 0.652 0.591 0.410 0.446 0.378 0.386
P 0.318 0.124 )0.117 0.305 0.003 )0.141
Ca )0.093 0.095 0.069 )0.143 0.142 0.086
Be 0.293 0.960 )0.110 )0.043 0.908 )0.071
Al 0.304 0.742 0.048 )0.040 0.896 0.086
La 0.373 0.890 )0.199 0.078 0.796 )0.173
K 0.292 0.661 0.008 0.060 0.597 0.026
V 0.388 0.636 0.452 0.130 0.563 0.461
Na 0.318 0.611 )0.322 0.138 0.510 )0.312
Li )0.077 0.324 0.257 )0.231 0.394 0.290
Ba 0.417 0.519 )0.183 0.266 0.383 )0.189
Ti )0.174 0.240 )0.121 )0.267 0.316 )0.086
Co 0.130 0.059 0.951 0.025 0.079 0.947
Ni )0.114 )0.334 0.897 )0.082 )0.252 0.889
Cr 0.096 )0.404 0.567 0.204 )0.431 0.530
Mg )0.281 )0.263 0.424 )0.242 )0.144 0.435
Sr )0.006 )0.073 )0.233 0.045 )0.093 )0.239

Table 11. Variables attributed to each factor

FACTOR 1 FACTOR 2 FACTOR 3 Not attributed to any factor

Zn Be Co Fe
Pb Al Ni P
Ag La Cr Ca
Cd K Li
Cu V Ba
Mn Na Ti
Mo Mg

Sr
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It is was then possible to identify the factors as known processes in the Lavrio
area:

· FACTOR 1 is a combination of the presence of mixed sulphide ore in the study
area and the human induced redistribution of the elements related to the
deposits through mining,

· FACTOR 2 attracts the elements that relate with the clay content of the sampled
soils and have very different geochemical properties from the elements at-
tracted to the ®rst factor, and

· FACTOR 3 represents, in general lines, the geological background re¯ecting the
presence of small ultrama®c bodies in the mass of the overthrust phyllite nappe.

Finally, the elements that are not attributed to any factor are either too complex in
their distribution (as already mentioned for Fe), or do not comply with the
processes that have been identi®ed for the factors and the elements that agree
with them. They therefore do not comply with the factor solution either.

6
Conclusions
In order to select the most appropriate technique to answer the research ques-
tions imposed in soil contamination studies, it is essential to start with the basis
of all multivariate analysis techniques which is suitable data.

In this research it was found that the nature and characteristics of the available
soil pollution data should drive the analysis. On the other hand the techniques
employed are directed by the nature of the research questions that need to be
addressed. When the research question concerns the underlying structure of the
data, the appropriate method to extract this information is principal component
and factor analysis.

The next tiers of the methodology are presented in the second paper of the
series. The aim will be to appraise the geographic distribution of the dominant
processes in soil composition and/or contamination and to enable the researchers
to distinguish different sources of pollution that coexist.
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