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Abstract: Due to the social and economic implications, ¯ood frequency analysis
must be done with the highest precision. For this reason, the most suitable
statistical model must be selected, and the maximum amount of information must
be used. Floods in Mediterranean rivers can be produced by two different
mechanisms, which forces the use of a non-traditional distribution like the TCEV.
The information can be increased by using additional non-systematic data, or
with a regional analysis, or both. Through the statistical gain concept, it has been
shown that in most cases the use of additional non-systematic information can
decrease the quantile estimation error in about 50%. In a regional analysis,
the bene®t of additional information in one station, is propagated to the rest
of the stations with only a small decrease with respect to the at-site equivalent
analysis.

Key words: Flood frequency analysis, TCEV, non-systematic information,
regional, statistical gain.

1
Introduction
Flood frequency analysis consists basically of obtaining the relationship between
¯ood quantiles and their non-exceedence probability (also referred to as risk or
return period). It has been one of the main issues in hydrological survey, as it is
the basis for the design of hydraulic structures (e.g., dam spillways, diversion
canals, dikes and river channels), urban drainage systems, cross drainage struc-
tures (e.g., culverts, bridges and dips), ¯ood risk mapping, etc. Due to the social
and economic implications, ¯ood frequency analysis must be done with the
highest precision. For example, if the accepted risk for a dam spillway is given, the
value of the design ¯ow should be estimated as accurately as possible, since a
¯ood quantile estimate lower than real would increase the ¯ood risks at the dam
and downstream; on the other hand, an overestimate would increase the cost of
the spillway structure unnecessarily.

Mediterranean rivers present very dramatic ¯oods, caused both by cyclonic
and convective rainfalls. The heaviest rainfalls occur mainly during the fall,
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producing river ¯ows of several orders of magnitude higher than the mean
¯ow. These infrequent but large ¯oods cause huge damage at the ¯oodplain. The
3,000 million US$ damages caused by ¯oods in Spain in 1982 and 1983, and over
1,100 human lives lost in the last 30 years (Berga, 1991), not only justify
investment on structural and non-structural measures to prevent ¯oods, but also
the high cost of such investments demands a careful analysis of ¯ood behavior.

The most straightforward method for estimating ¯ood risk at a particular point
where a gauge station is located is to adjust a probability distribution function to
the recorded annual maximum ¯ows. Unfortunately this method may give rise to
highly variable ¯ood quantile estimators due to: i) the uncertainty of the statis-
tical model; ii) errors in data recording (especially for the largest ¯oods); iii) data
series shorter than the return period; and ®nally iv) the high variance and
skewness of annual maximum ¯ows, which cause great variability in the statistical
properties of the recorded samples.

In order to increase ¯ood quantile estimator reliability, great efforts have
been made in the last years to ®nd the most precise distribution function, the
most accurate and robust estimation method, as well as to increase the amount
of used information. For the last case, some of the proposed methods are: i)
regional analysis; ii) the use of additional non-systematic at-site information,
such as historical data or paleo¯oods; iii) using the ¯ow peaks above a certain
value as a random variable; iv) or the combination of any of the procedures
mentioned.

The work presented here is framed within this context. In a ®rst part, this
paper presents a statistical model for ¯ood frequency analysis of Mediterranean
rivers, which permits to include at-site historical data and/or paleo¯oods in a
regional framework. In a second part, the paper demonstrates the improvements
in estimating ¯ood quantile with this method relative to the use of at-site sys-
tematic records alone. Finally, an example of the practical application of the
model is also shown.

2
The statistical model

2.1
The Two-Component Extreme Value distribution function
The series of annual maximum ¯ows of many rivers in the world are character-
ized by what is called the ``dog leg effect'' and the ``separation phenomenon'', ®rst
described by Potter (1958) and Matalas et al. (1975) respectively. However, the
existence of ``separation phenomenon'' has been a controversial issue in the last
years (see for example the very interesting discussion between Ourda et al., 1997,
and Dawdy and Gupta, 1997).

Mediterranean rivers also present these features due mainly to the existence
of two kinds of ¯ood populations (Rossi et al., 1984). One of them will be referred
to as ``ordinary ¯oods''. These ¯oods are generated by frontal-type rainfalls with
low or medium convectivity, which is the most frequent type of rainfall and
produces the smaller ¯oods. On the other hand, the ¯oods called ``extraordinary
¯oods'' are less frequent, larger and generated by heavy convective rainfall events
occurring mainly in the summer and in the fall.

The traditional distribution functions, like the Gumbel or the logPearson Type
III, are not capable of reproducing the existence of these two different kinds of
events, thus being inappropriate and, as it will be illustrated in the practical
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application, even dangerous for the ¯ood frequency analysis of any Mediterra-
nean river. On the other hand, new distribution functions have been developed
considering this situation, such as the Two-Component Extreme Value or TCEV
(Rossi et al., 1984).

The simplest way of getting the expression of the TCEV is to assume that
annual maximum values for ordinary (X1) and extraordinary (X2) ¯oods come
from independent Gumbel populations. Therefore the annual maximum ¯ow is
the highest of these two, and its distribution function is the product of the initial
distribution functions:

FX�x� � exp ÿk1eÿh1x ÿ k2eÿh2x
ÿ � �1�

where k1 and h1 are the parameters of the ordinary ¯oods, and k2 and h2 of the
extraordinary ¯oods. The Gumbel distribution function can be considered as a
particular case, where the two scale parameters are equal. The probability density
function is the derivative of Eq. (1):

fX�x� � FX�x�w�x� �2�

where:

w�x� � k1h1eÿh1x � k2h2eÿh2x �3�

There are two standardized parameters, which can be obtained by the following
equations (Beran et al. 1986):

h � h2

h1
�4�

k � k2k
ÿh
1 �5�

The standardized parameter h represents the relationship in order of magni-
tude between ordinary and extraordinary ¯oods. On the other hand, the proba-
bility for an annual maximum ¯ow to be extraordinary is given by:

p2 � P�X1 < X2� �
Z 1
ÿ1

FX1
�x�fX2

�x� dx �6�

and after some manipulations it becomes:

p2 �
Z 1

0

exp ÿknh ÿ n
ÿ �

dn �7�

which in the normal range of h can be approximated by k (FranceÂs, 1995), i.e., k
approximately represents the extraordinary ¯ood probability.

With respect to the moments, the coef®cient of variation is a function of k1, k2

and h, but the skewness coef®cient is only a function of the standardized pa-
rameters (FranceÂs, 1995). Lastly, the TCEV has enough ¯exibility to reproduce the
``separation phenomenon'' (Beran et al. 1986).
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2.2
Regional analysis
A regional ¯ood frequency analysis consists of standardizing previously the series
of data recorded at different gauge stations, so that all the information can be
analyzed jointly. By increasing the sample size, errors in parameter estimation are
supposed to decrease if the region is statistically homogeneous and space cor-
relation is low, although this second condition is less important (Hosking and
Wallis, 1988). Regional analysis models differ in the method of standardizing the
parameters, in the distribution function employed and/or in the estimation
method. Cunnane (1988) presents an interesting revision of most of them. For the
TCEV, the method of standardization employed consists of (Rossi et al., 1984):

Yi;j � hi;1Xi;j ÿ ln ki;1 �8�

where Xi,j � initial series at the gauge station i, and ki,1 and hi,1 � the param-
eters corresponding to ordinary at-site ¯oods. This standardization implies that
the standardized parameters k and h de®ned by Eqs. (4) and (5) remain constant
within the region.

If Eq. (8) is replaced in Eq. (1), it follows that this method of standardization is
equivalent to assume that the regional parameters corresponding to ordinary
¯oods (named k¢1 and h01) must be equal to 1. Arnell and Gabrielle (1988) relax
this condition and obtain the parameters by means of an iterative method;
whereas Ferrer and Ardiles (1997) and Ferrari (1997) employ a combined method
which includes the concept of an ``index variable'' to improve the estimation of
the at-site parameters (ki,1 and hi;1) used in the standardization. In order to
simplify the way of obtaining the expressions of the asymptotic variances of the
quantile estimator, the method proposed in this paper for regional analysis is the
following:

i) For the standardization of the at-site data in Eq. (8) a Gumbel distribution
function is adjusted to the ordinary ¯oods at every gauge station, obtaining an
estimation of parameters ki,1 and hi;1. Prior to this, it is necessary to select the
ordinary ¯oods; one possibility is to use the skewness test for outliers elimination
described by Kottegoda (1984).

ii) To adjust the TCEV to the standardized data, thus obtaining the 4 regional
parameters k¢1, h01, k¢2, h02, without forcing the ordinary ¯ood regional parameters
to be 1.

2.3
Non-systematic information
Non-systematic information at a gauge station is any censored information for a
period prior to the systematic record. Depending on the source, we can distin-
guish between historical information and paleo¯oods. Historical information
comes from the marks in buildings, photographs, written records in newspapers
or books, verbal communications, etc., and it was ®rst used for ¯ood frequency
analysis by Benson (1950). Data from paleo¯oods are available through evidence
on the vegetation of the ¯oodplain (for example, ring abnormalities) and
paleolevels (for example, slackwater deposits). Paleohydrological techniques have
been described thoroughly by Baker (1987) and Baker et al. (1988).

Non-systematic information can be statistically classi®ed based on the type of
censoring (FranceÂs et al., 1994). When there is a given censoring limit XH, it is
called censored information type 1. This is the case when the information source
is historical, since there is always a threshold level of perception below which
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¯oods are not large enough to be remembered. The value of non-censored ¯oods
may or may not be known. We will follow Stedinger and Cohn's classi®cation
(1986), naming it ``censored information'' (CE) when the k ¯oods that exceeded
the threshold level of perception during the non-systematic period of length M
are known. If their values are unknown, it will be called ``binomial censored''
(BC). If there is no censoring limit, the information is censored information
type 2. In this case the k largest ¯oods during the non-systematic period are
known, k being a deterministic variable. As the largest paleo¯ood tends to remove
the evidence left by other large paleo¯oods, k is usually equal to 1; this infor-
mation is called ``maximum ¯ood'' (MF).

2.4
Parameter estimation by the method of Maximum Likelihood
The selection of the method of Maximum Likelihood (ML) for estimating the
parameters was not only based on its features (like the existence of asymptotic
variance and its capability of analyzing any additional quanti®ed data) but also
because of its general ability relative to other estimation methods for both ad-
ditional non-systematic information and regional analysis.

The ML method with additional non-systematic data has been used by many
investigators: with a Gumbel population by Leese (1973), Hosking and Wallis
(1986a), and Guo and Cunnane (1991); with the Two-Parameter Extreme Value
distributions by FranceÂs et al. (1994); with GEV by Phien and Fang (1989); with
the lognormal distribution by Condie and Lee (1982), Cohn and Stedinger (1987)
and Kroll and Stedinger (1996) (in this case with censored information alone),
and with the logPearson Type 3 by Pilon and Adamowski (1993).

With regard to regional analysis, the ML method has been used by Boes
et al. (1989) with the Weibull distribution; in the comparisons of Landwehr et
al. (1979) with the Gumbel distribution; Jin and Stedinger (1989) with GEV
including non-systematic information; and it is the most widely used method
with TCEV (Rossi et al. 1984; Arnell and Gabriele, 1988; Ferrari, 1997; Ferrer
and Ardiles, 1997).

The ML method consists of selecting those parameters which maximize the
likelihood function L(.), which is any function proportional to the joint proba-
bility density function of all the random variables of interest. In the case of using
systematic information alone, the log-likelihood function (much easier to maxi-
mize) shows the following expression for the TCEV:

LLSY�H� � ÿk1

XN

i�1

eÿh1xi ÿ k2

XN

i�1

eÿh2xi �
XN

i�1

lnw�xi� �9�

where Q � set of distribution parameters, xi � systematic recorded data, and
N � length of the systematic recording period. When using binomial censored
information, the increase in the log-likelihood function is given by:

LLBC�H� � �M ÿ k� ÿk1eÿh1XH ÿ k2eÿh2XH
ÿ �� k ln p �10�

where: k � number of ¯oods above the threshold level of perception XH,
p � the exceedence probability of XH, and M � length of the non-systematic
period. When using censored information, a new random variable Z appears,
which corresponds to ¯oods exceeding the threshold level of perception. In this
case the increase in the log-likelihood function becomes:
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LLCE�H� ��M ÿ k� ÿk1eÿh1XH ÿ k2eÿh2XH
ÿ �ÿ k1

Xk

j�1

eÿh1zj

ÿ k2

Xk

j�1

eÿh2zj �
Xk

j�1

lnw�zj� �11�

where zj � known historical ¯oods above the threshold level of perception. If the
available information for the non-systematic period is that of the maximum ¯ood
W, the increase of the log-likelihood function becomes:

LLMF�H� � ÿMk1eÿh1w ÿMk2eÿh2w � lnw�w� �12�

When more than one type of information is available simultaneously (e.g.,
systematic and non-systematic information), the function LL(.) will be obtained
by adding the corresponding functions of each type of information. In a regional
¯ood frequency analysis, the only difference is that all systematic and non-sys-
tematic information from each gauge station must be ®rstly standardized fol-
lowing Eq. (8).

3
Flood quantile estimation error
The mean square error is a measurement of the XT ¯ood quantile estimation
reliability. It is de®ned as:

MSE�X̂T� � E��X̂T ÿ XT�2� �13�

where E[.] is the expected value operator. This error is very dif®cult to obtain
analytically. Thus, either Monte Carlo simulations (to obtain the sample mean
square error), or the asymptotic value are used.

3.1
Sample mean square error
The sample mean square error of the ¯ood quantile estimator, is de®ned as:

SMSEi�X̂T� � 1

S

XS

j�1

X̂Tij ÿ XT

ÿ �2 �14�

where XT � the quantile value of return period T, X̂Tij � quantile estimator
in simulation j using information i, and S� total number of simulations. How-
ever, the SMSE de®ned by Eq. (14) is a random variable. It is, thus, an approx-
imated value which will tend to the true MSE value when the number of
simulations tends to in®nity. To obtain this, it is necessary to generate a great
number of synthetic series. In this work, many different scenarios have been
simulated, each with 5,000 simulations. The algorithm used to obtain random
values with uniform distribution at the interval [0, 1] has been a linear congru-
ential generator (Bratley et al., 1987).
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3.2
Asymptotic variance
Another method of solving the problem is by using the asymptotic variance. The
asymptotic variance or Cramer-Rao Lower Bound (CRLB) is a lower bound of the
variance of all unbiased estimators. The ML method is asymptotically unbiased,
thus the CRLB is the lower bound of its MSE when the amount of information
tends to in®nity. The matrix of the asymptotic variances and covariances of the
parameter estimators of a statistical model is given by the inverse of the Fisher
information matrix (Kendall and Stuart, 1967). The elements of this matrix are
obtained as:

Ii�j; k� � E ÿ o2LLi�H�
oHjoHk

� �
�15�

where LLi(.) � the log-likelihood function, Qj, Qk � the parameters used in the
model, and i � type of information used: i � 0 for systematic information
alone (SY), and i � 1 for SY plus additional BC information, i � 2 for SY plus
additional CE information, and i � 3 for SY plus additional MF information.
Unfortunately, for the TCEV distribution function, this matrix is highly complex
and it is not possible to write them in a compact form. In any case, all the
expressions can be found in FranceÂs (1995).

From the information matrix, the quantile asymptotic variance or Cramer-Rao
Lower Bound is given by:

CRLBi�X̂T� � VIÿ1
i V 0 i � 0; 1; 2; 3 �16�

where V is the derivative vector of ¯ood quantile with respect to the parameters.
Even when XT cannot be obtained explicitly, from Eq. (1) we can get its deriva-
tives:

V � oXT

ok1
;
oXT

oh1
;
oXT

ok2
;
oXT

oh2

� �
� eÿh1XT

w�XT� ;ÿ
k1XTeÿh1XT

w�XT� ;
eÿh2XT

w�XT� ;ÿ
k2XTeÿh2XT

w�XT�
� � �17�

3.3
Comparison between quantile asymptotic and sample variances
As SMSE requires Monte Carlo simulations with high computing demand, it is
better to use the asymptotic variance CRLB as an approximation to the mean
square error, MSE. If asymptotic and sample values are similar, the former will
also be close to the true values, and then CRLB could be used instead of MSE. To
compare CRLB and SMSE, the asymptotic and sample coef®cients of variation of
the quantile estimator have been plotted. Their expressions are, respectively:

ACVi�X̂T� � CRLB�X̂T�
XT

�18�

SCVi�X̂T� � SMSEi�X̂T�
XT

�19�
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Fig. 1 compares asymptotic and sample coef®cients of variation when using
systematic information alone (i � 0) or additional censored information (i �
2). The scenario represented, referred to as ``initial scenario'', has a systematic
period N of 100 years, a non-systematic period M of 500 years, the return period
of historical threshold level of perception H is 50 years, and the TCEV parameters
are k1 � 1, h1 � 1, k2 � 0.2 (by numerical integration of Eq. (7) this is
equivalent to an outlier probability p2 � 0.18) and h2 � 0:1. As it can be seen in
the ®gure, the differences between ACV and SCV are very small for medium and
high quantiles, whereas for low quantiles the difference increases. Similar results
are obtained with other types of additional information and a wide range of
scenarios. Therefore, the asymptotic variance is a good approximation of the
mean square error, which is the same conclusion obtained by FranceÂs et al. (1994)
for the Two-Parameter Extreme Value distributions. However, this result is
contradictory with the results obtained by Phien and Fang (1989), who concluded
that for the GEV distribution the CRLB is much lower than sample variance,
suggesting the use of the observed information matrix rather than using the
Fisher information matrix.

4
Asymptotic statistical gains with additional non-systematic information
The concept of statistical gain can be used as a way of measuring reliability in
¯ood quantile estimation when using any type of additional information besides
systematic records (FranceÂs et al., 1991). Asymptotic statistical gain is de®ned as:

ASGi � 1ÿ CRLB0

CRLBi
i � 1; 2; 3 �20�

The analytical expressions have not been obtained for the TCEV; however it
has been numerically proved that asymptotic statistical gains with additional
censored information type 1 (BC and CE) are exclusively a function of: i) the ratio
between non-systematic and systematic period lengths; ii) the return period H of
the historical threshold level of perception; iii) the return period T of the quantile
of interest; and iv) the standardized parameters k and h, de®ned in Eqs. (4) and
(5). On the other hand, asymptotic statistical gain using additional censored
information type 2 (MF) is exclusively a function of: i) the length N of the
systematic records; ii) the length M of the historical period; iii) the return period
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T of the quantile of interest; and iv) the standardized parameters k and h. The
in¯uence of these factors on the statistical gain is described qualitatively below.

4.1
Sensitivity to the standardized parameters
As it can be seen in Fig. 2, in the usual range of the standardized parameters the
statistical gain with additional binomial censored information (ASG1) increases
as the number of extraordinary ¯oods increases, i.e., as k increases. On the
contrary, it decreases as both ¯ood populations become closer in magnitude (i.e.,
as h increases). With regard to statistical gain using additional censored infor-
mation (Fig. 3) as the differences are small, for practical purposes it can be
considered as independent of the 4 TCEV parameters. Fig. 4 shows the asymptotic
statistical gain using the additional information of maximum ¯ood. This gain
decreases as the number of extraordinary ¯oods increases, and the in¯uence of
the standardized parameter h is lower.
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4.2
Sensitivity to the flood return period
The in¯uence of the ¯ood return period on the ASG can be seen in Fig. 5 for the
initial scenario. The statistical gain is minimum for a low return period, and it is
only appreciable for medium or high return periods. With censored information
type 1, maximum asymptotic statistical gain is reached with ASG1 for quantile
values equal to the threshold level of perception H, or slightly higher for ASG2,
decreasing slowly from this maximum value. Notice the small difference between
ASG1 and ASG2 in the initial scenario for all the range of quantiles analyzed. The
quantile which maximizes its statistical gain with censored information type 2 is
close to the non-systematic length M, although in practice, for medium and high
quantiles the statistical gain is constant.

4.3
Sensitivity to the threshold level of perception return period
The historical threshold level of perception is one of the factors affecting as-
ymptotic statistical gains with censored information type 1 (ASG1 and ASG2).
Contrarily, obviously it does not affect statistical gain with censored information
type 2 (ASG3). As Fig. 6 shows, only with threshold levels of perception higher
than 500 year return period, the maximum ¯ood information is more valuable
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than the censored information type 1, but this is not the usual case. The statistical
gain with binomial censored information is lower than with censored informa-
tion. This difference is negligible for medium and high threshold levels of per-
ception, whereas for low threshold levels of perception, ASG1 is very small.

4.4
Sensitivity to the length ratio r between systematic and non-systematic periods
The three statistical gains increase with ratio r, as can be seen in Fig. 7; but if r is
lower than 1 (in the ®gure, M < 100 years) the in¯uence of additional information
is negligible. With censored information type 1, statistical gains present an as-
ymptotic behavior. Furthermore, with censored information ASG2 tends to 1 as r
increases; i.e., if historical length is in®nite, quantile estimator variance with CE
information is null. This asymptotic behavior of ASG1 and ASG2 makes it sta-
tistically little bene®cial to increase the length of the non-systematic information
period. Contrarily, ASG3 increases more slowly, showing a maximum value for
very high M.

5
The application of the TCEV model in regional analysis
Once the at-site standardized parameters and the four regional TCEV parameters
have been estimated, the at-site ¯ood quantile is obtained from Eq. (8) by the
following expression:
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Xi;T � Yi;T � ln ki;1

hi;1
�21�

By taking the ®rst elements of a Taylor series in Eq. (21), the quantile estimator
variance can be approximated by

Var�Xi;T� � oXi;T

oYi;T
;
oXi;T

oki;1
;
oXi;T

ohi;1

� �
S

o0Xi;T

oYi;T
;
oXi;T

oki;1
;
oXi;T

ohi;1

� �
�22�

where S is the variance and covariance matrix of the random variables Yi,T, ki,1

and hi;1. With the hypothesis of independence between the regional ¯ood quantile
and the at-site standardized parameters, and if the variances and covariances are
approximated by the corresponding CRLB, we obtain:

Var�Xi;T� � 1

h2
i;1

CRLB�Yi;T� � 1

k2
i;1h

2
i;1
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3
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� �Yi;T � lnki;1�2
h4
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where CRLB (Yi,T) is the asymptotic variance of the quantile of a TCEV distri-
bution given by Eq. (16). On the other hand, CRLB (ki,1), CRLB (hi,1) and CRLB
(ki,1, hi;1) are the asymptotic variances and covariances of the parameters of the
Gumbel distribution; i.e., the elements of the inverse matrix of the Fisher infor-
mation matrix for the Gumbel distribution using systematic information alone,
which, in this case, can be obtained in a compact form (Leese, 1973; FranceÂs, 1995):

I0�1; 1� � ÿE
o2LLSY�H�

ok2

� �
� N

k2 �24�
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o2LLSY�H�
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o2LLSY�H�

ohok

� �
� N�C0�2� ÿ ln k�

kh
�26�

From Eq. (23) it seems clear that any improvement in regional quantile esti-
mation automatically affects at-site quantile estimation, with the same properties
as if the at-site analysis had been performed with an equivalent number of years.
The only difference lies in the fact that regional statistical gain must be lower than
the equivalent at-site value (Fig. 8), since in the ®rst case there are two more
parameters to analyze for each gauge station, which obviously decrease the quantile
estimator reliability. The effect of a ®xed amount of additional at-site information
decreases as the number of gauge stations in the region increases; likewise, for at-
site analysis, as systematic period length increases, statistical gain decreases.
Fig. 8 shows that the statistical gain obtained by additional at-site information of
type BC falls below 10% only with more than 20 stations, 100 years long each.

These results con®rm those obtained by Jin and Stedinger (1989); however,
Hosking and Wallis (1986a, 1986b) were skeptic about the advantages of the use
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of non-systematic information for regional analysis. Yet, it should be taken into
account that Hosking and Wallis consider as additional information only one
maximum ¯ood (which usually gives rise to the lowest statistical gain, as it has
been demonstrated in previous paragraphs) and they do not consider any other
sources of information. In addition, these authors add recording errors to that
single historical ¯ood or paleo¯ood, when, in practice, the errors produced in
determining a historical ¯ood and a large systematic ¯ood are of the same
magnitude; furthermore, if the non-systematic information values present signi-
®cant errors, they can be analyzed as binomial censored information.

6
Application to the Jucar and Turia rivers
The reason for applying the model to a practical case is to judge its validity from
two points of view: applicability and pro®tability. The example presented here is
the joint analysis of the ¯oods in the Jucar and Turia rivers, located on the
Spanish Mediterranean coast, by using the historical information available.

The area of the Jucar river catchment is 22,000 km2, although the top half of
the catchment does not contribute to the ¯oods produced in the lower catchment
area. The systematic recording period is 42 years. As for its historical informa-
tion, it is known that from 1388, 70 ¯ood events occurred causing damages in the
villages located at the river ¯oodplain. The Hydrological Research Center of the
Public Works Ministry of Spain (Centro de Estudios HidrograÂ®cos, 1983) quan-
ti®ed the 6 most important ¯oods which occurred since the 17th century; if the
censoring limit is placed at 6,200 m3/s, the values of the 5 ¯oods exceeding it are
known with an approximation similar to that of the great ¯oods recorded during
the systematic period. In this case, the historical information of the Jucar river
used is of the CE type with M � 154 years.

The Turia river, located to the north of the Jucar river, has a catchment area of
6,300 km2 and ¯ows in the city of Valencia. The total length of the systematic
record is 41 years. According to Carmona (1990), 22 ¯oods affecting the city of
Valencia occurred from 1321 to 1977. At the end of the 16th century the river bed
began to be channelized, with no other important structural changes from the
beginning of the 18th century to the beginning of the systematic recording period.
During this period the four ¯ood events affecting the city had to exceed the
arti®cial river channel capacity, which can be evaluated in 2,300 m3/s. However,
the exact values of these historical ¯oods are not accurately known. Therefore, in
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this case the historical information has been used as BC information, with
M � 235 years.

The coef®cient of spatial correlation between these two rivers is )0.0384, hence
they can be considered as independent series. On the other hand, the joint
analysis of the systematic and historical data of these two rivers was possible not
only due to their geographical proximity but also due to their similar hydro-
morphological features. Because of the small size of the region (only 2 gauge
stations) the analysis of their statistical homogeneity was done once the estima-
tion of the model was completed; then the plotting positions and the adjusted
function for both the standardized and at-site parameters were compared. The
regional parameters are: k¢1 � 0.9638, h01 � 1:0434, k¢2 � 0.0906 and
h02 � 0:0329, thus nearly ful®lling the regionalization hypothesis (regional pa-
rameters of the ordinary ¯oods equal to 1) in only one iteration. Figs. 9 and 10
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illustrate the TCEV adjustment for historical information and regional analysis;
the 95% con®dence limits assuming a normal distribution of the estimation error
with a variance equal to the corresponding CRLB value; the plotting positions by
using Hazen expression (Hirsch, 1987); and the adjustment of the Gumbel
function using systematic record alone. It is clear that the TCEV model is much
more appropriate than the Gumbel distribution, basically due to the fact that it is
capable of reproducing the ``dog leg effect'' presents in these rivers.

The use of additional historical information and joint analysis has decreased
considerably estimation error values in the statistical model. Table 1 shows how
error values decrease as the amount of information used in estimating the
1,000 year ¯ood quantile increases. It can be noted that the use of historical in-
formation reduces the estimation error by somewhat less than 50% and, in addi-
tion, if regional analysis is carried out, another 10% decrease can be further added.

7
Conclusions
This paper has presented an approach which permits to increase the information
used in estimating river ¯ood quantiles by means of the use of non-systematic
information in a regional analysis framework. The TCEV has been the distribu-
tion function employed which, as it has been proved in the case study illustrated
in this paper, ®ts well the statistical features of the Mediterranean rivers. On the
contrary, traditional distribution functions, like the Gumbel function, can give
rise to disastrous results, underestimating the quantile estimates for medium and
high return periods, and overestimating those for low return periods.

The improvements provided by using additional information and regional
analysis compared to using at-site systematic records alone have been numeri-
cally measured through the concept of statistical gain. To do that it has ®rstly
been checked that the asymptotic variance (CRLB) obtained analytically is a good
approximation to the mean square error of the quantile estimator.

For a particular quantile, the value of the non-systematic censored information
type 1 is a function of the length ratio between the non-systematic and the
systematic periods, of its return period, of the threshold level of perception return
period, and of the standardized parameters. In the case of non-systematic cen-
sored information type 2, its value is a function of the lengths of the systematic
and non-systematic periods, of its return period, and of the standardized
parameters. FranceÂs et al. (1994) showed for the Two-Parameter Extreme Value
distributions the statistical gain is not a function of their parameters. These
results do not contradict each other, because the TCEV standardized parameters
represent the frequency of extraordinary events and the relationship of the
magnitudes between ordinary and extraordinary ¯oods, which are properties
derived from the assumption of the existence of two different ¯ood populations.

On the basis of the sensitivity analysis, two very important observations on the
use of additional non-systematic information with a TCEV population should be

Table 1. 95% con®dence limits of the 1,000 years quantile with different information levels
for the case study

X1000 (m3/s) at-site SY at-site SY + historical regional SY + historical

Jucar river 22.711 �24.700 �12.700 �10.700
Turia river 2.222 � 6.130 � 3.250 � 2.650
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pointed out, also applicable at least to the Two-Parameter Extreme Value
distributions:

i) If the censoring threshold has a medium or high return period, the differ-
ences between ASG1 and ASG2 are small; in this case it is advisable to use the
additional information as binomial censored information. In the case study, the
censoring threshold for the Turia river had a return period of 70 years, whereas
for the Jucar river it was 35 years. Therefore, for the former, the historical
information has been used as binomial censored information without evaluating
the magnitude of the ¯oods, and for the latter as censored information.

ii) For practical purposes, it may be useless to compare statistical gains type 1
and type 2 as they may have different sources. However, if there is enough
historical information available, it may be non pro®table statistically to increase
the length of the historical period or to add paleo¯ood information.

Finally, with the regional statistical model presented here, the use of additional
information from any gauge station means greater reliability in ¯ood quantile
estimation in the whole region, with a statistical gain similar to that obtained in
an equivalent at-site analysis.
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