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Application of the BME approach
to soil texture mapping

D. D'Or, P. Bogaert, G. Christakos

Abstract. In order to derive accurate space/time maps of soil properties, soil
scientists need tools that combine the usually scarce hard data sets with the more
easily accessible soft data sets. In the field of modern geostatistics, the Bayesian
maximum entropy (BME) approach provides new and powerful means for
incorporating various forms of physical knowledge (including hard and soft data,
soil classification charts, land cover data from satellite pictures, and digital
elevation models) into the space/time mapping process. BME produces the
complete probability distribution at each estimation point, thus allowing the
calculation of elaborate statistics (even when the distribution is not Gaussian). It
also offers a more rigorous and systematic method than kriging for integrating
uncertain information into space/time mapping. In this work, BME is used to
estimate the three textural fractions involved in a texture map. The first case study
focuses on the estimation of the clay fraction, whereas the second one considers
the three textural fractions (sand, silt and clay) simultaneously. The BME maps
obtained are informative (important soil characteristics are identified, natural
variations are well reproduced, etc.). Furthermore, in both case studies, the
estimates obtained by BME were more accurate than the simple kriging (SK)
estimates, thus offering a better picture of soil reality. In the multivariate case,
classification error rate analysis in terms of BME performs considerably better
than in terms of kriging. Analysis in terms of BME can offer valuable information
to be used in sampling design, in optimizing the hard to soft data ratio, etc.
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1

Introduction

In recent years, increasing attention has been paid to the problem of soil pollution
and subsequent remediation procedures (e.g., Boulding, 1995; Asante-Duabh,
1996). Authorities become aware of the fact that soil resources are scarce and have
to be preserved for future generation (Dzombak et al., 1993). From a scientific
point of view, this fact implies that efficient methods are needed to assess reliably
the extent of the pollution and the risk incurred by neighbouring inhabitants.

Various methods of spatial analysis and estimation have been developed in the
last few decades. From simple methods such as nearest neighbor, Delaunay tri-
angulation and inverse distance weighting, spatial analysis has evolved to the
family of minimum mean squared error (MMSE) methods, including the various
types of kriging (Agterberg, 1974; Arlinghaus, 1995; Olea, 1999). These methods
use a linear combination of the available data to estimate the spatial distribution
of the natural variable of interest and compute an estimation error variance.
Kriging techniques, however, have some serious limitations, such as, an inability
to account for important physical knowledge bases, and a conventional character
lacking epistemic content. Also, underlying most kriging techniques is the
Gaussian assumption, and in many cases (e.g., ordinary, simply and intrinsic
kriging) the analysis is restricted to linear estimators. Moreover, recent types of
kriging (e.g., indicator kriging) suffer from theoretical and practical problems
(failing the monotonic cumulative distribution property, leading to unfeasible
probability values, involving large numbers of kriging systems and variograms,
etc.).

Accurate data being in most cases scarce or very expensive to acquire, new
methods are needed for incorporating in a systematic and rigorous way a wider
range of data types and scientific information, e.g., intervals, probability func-
tions, engineering charts, and physical laws. The Bayesian maximum entropy
(BME) approach introduced by Christakos (1990, 1992, 1998) provides a theo-
retically sound and physically meaningful method that is appropriate for such
goals. The purpose of this work is to investigate BME’s potential for estimating
the soil textural fractions in space by integrating a small hard data set with a
larger soft data set. The clay and sand contents are important factors for pollutant
dynamics in the soil, influencing its water retention and adsorption capacity.
Pedotransfer functions allow one to estimate the water retention curve in a soil
and often take into account the percentage of clay or sand in the soil (Cosby et al.,
1984; Vereecken et al., 1989). It is, thus, crucial to get the most accurate estimates
possible for the textural fractions.

2
How soft data can improve estimation accuracy

2.1

The spatiotemporal random field concept

Most natural variables are assumed to vary continuously in space and time. From
a stochastic viewpoint, the observed reality is considered to be just one realization
of the natural variable among several other physically possible realizations. This
consideration leads to the concept of spatiotemporal random field (S/TRF). Let
p = (s, t), where s denotes the spatial location vector and ¢ the temporal coor-
dinate. A S/TRF X(p) is usually characterized by the mean function

my(p) = X(p), which expresses trends or systematic structures, and the covari-
ance function ¢,(p,p’) = E{[X(p) — X(p)][X(p’) — X(p)]}, which represents



spatiotemporal interactions and dependencies. (In this work, capital English
letters, e.g., X, will denote random fields, small English letters, e.g., x, will denote
random variables and small Greek letters, e.g., y, will denote their realizations.)

2.2
The BME analysis
When confronted with an environmental problem, soil scientists need to resort to
various kinds of knowledge. They usually begin with their previous experience
about similar situations, their knowledge of the laws of science, and their justified
beliefs or assumptions regarding the natural phenomenon under consideration.
These kinds of knowledge may be denoted as the “general knowledge base” G,
since it is vague enough to characterize a large class of situations. On the other
hand, scientists will also use data collected at the specific site, e.g., measurements
of certain soil variables at points p; (i = 1,...,m). This kind of knowledge will be
denoted as “specificatory knowledge base” (or “case-specific knowledge base”) S.
The physical data yg,, of the S-base may be divided into two main groups: (i)
Hard data, consisting of the available exact measurements of the natural variable.
A set of hard data is denoted yy,,.q = (X1 - - » Lm, )» Where y; is a realization of the
variable at point p; (i = 1,...,my); (ii) Soft data, including intervals and prob-
ability functions. A soft data set is denoted as yof = (X, 115 -+ ZLm)- Several
examples of soft data sets are given in Christakos (2000). Note that, in the
mapping context the map vector Zpap = (Yhard» Zsoft> k) includes the vector of
unknown values y; of the natural variable X(p,) at points p,. At these points, the
value of the random field has to be estimated using the hard and soft data
available within a local neighborhood. The union of the general and specificatory
knowledge yields the total knowledge K = G U S about the natural phenomenon
of interest.

From an epistemic viewpoint, BME analysis involves three stages, namely, the
prior (or G) stage, the meta-prior (or S) stage, and the posterior (or integration K)
stage.

2.2.1

Prior stage

At the prior stage, only knowledge available prior to any measurement is con-
sidered; in other words, only the G-base is used. The goal of this stage is to
maximize the information content of the model given G. Let fG()m,,) denote the
G-based (prior) probability density function (pdf) of the random vector

Xmap = (X1, - .., Xm, Xx) before any case-specific data have been taken into con-
sideration. Mathematically, one seeks to maximize the expected map information

E[Info<xmap)] = _/ln[fG(Xmap)] fG(Xmap)deap ) (1)

subject to the physical constraints issued from the G-base. In many cases, these
constraints can be expressed as

E[ 1] = /gi(Xmap)fG(Xmap)deap ) (2)

where the form of the g, function depends on the kind of G-knowledge available.
Simple examples of such functions are the moments of order one and two and the
normalization constraint (Serre and Christakos, 1999),
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80(Xmap) = 1 = E[go] =1 (normalization constraint) , (3)
(1)) =xi = Elg,) = E[xi] (¢=1,...,m+1) (mean at point p;) , (4)

& (i 1) = i — %il[1j — Xj] = Elgs] = El[xi — xi][x; — X, (5)
(o=m+2,...,(m+1)(m+4)/2) (covariances c(x;,x;)) .

Constraints resulting from higher-order moments like kurtosis and skewness,
constraints related to the variogram model or to certain multiple-point statistics
can be also considered. The solution to the maximization problem (1) leads to the
following general expression for the G-based multivariate pdf

Nc

f6(lmap) = Z7 exp [Z mga(xmap)] , (6)
=1

where the partition function Z and the multipliers y, are found from the solution

of the system of BME equations

N.
7 = /CXP |:Z :uug:t(;{map):| deap ? (7)

=1

E[ 06] =z /g(x(Xmap) exXp [Zc Macg&(}(map)]d%map : (8)

222
Meta-prior stage
At the meta-prior stage, case-specific data are collected and organized, which

include hard and interval (soft) data, thus leading to the specificatory knowledge
base S.

223

Integration or posterior stage

At this stage, the pdf is updated in the light of the S-base considered at the meta-
prior stage, leading to the K-based pdf (Christakos and Li, 1998)

felr) =47 / FoGtman) ot - 9)

where A = [, f6(Xdata) Asoe 1S @ normalization coefficient and I is the domain of
the interval (soft) data vector y,.g. Different expressions of the posterior pdf are
associated with different kinds of soft data (e.g., probability, functional or fuzzy
data). Equation (9) is sometimes viewed as an information-processing rule.

23

BME mapping

The prior, G-based pdf (6) is substituted into the information-processing rule (9)
of the integration stage, thus leading to the following expression for the posterior,
K-based pdf of the map



N,
fi(w) = (A2)™! / exp {nga(xmap)} Wlcott - (10)

I

where o = 1,..., N.. Equation (10) offers a complete stochastic characterization
of the map at point pi. Specific estimates can be derived from this pdf. For
example, the BME mode estimate J; at point pj is obtained by maximizing the
posterior pdf (10) with respect to y; = jx which yields the BME mode equation
below

Ne a ZZ;I; :uocg“(Xma )
/ {exp |:Z :uo:got(Xmap):| ' an = Aot =0 . (1 1)
Te=7x

T =1

Note that the solution 7, obtained from Eq. (11) is, generally a nonlinear function
of the data. Other estimates (like the median or the conditional mean) can be also
derived from Eq. (10).

In the following, soil maps are produced from the combination of hard and soft
data sets. Hard data are usually collected as full profile description, i.e., the
horizons of a soil profile are first visually described (number of horizons, name,
texture, structure, color, depth, etc.). Then samples from each horizon are ana-
lyzed for several variables (particle size, content in various chemical elements,
CEG, etc.). Soft data usually come from auger boring, remote sensing or other
sources (but no laboratory analyses). The goal of this work is to evaluate the
performance of BME as a tool for incorporating soft data in soil texture mapping.
The two case studies presented here deal with simulations. This allows us to
compare under controlled conditions the soil maps generated from BME and
geostatistical kriging techniques with the simulated soil map (which, for the
purpose of the present analysis is assumed to be the actual/reference map).

3
Univariate case: estimation of the clay content

3.1

Clay content simulation maps

Clay content data were collected and analyzed at the Dinant region (Belgium).
The theoretical covariance model fitted to these data was of the exponential form
with a sill of 35.65%? and a range of 4000 m. A sequential Gaussian simulation of
the clay content in the top horizon was performed on a 100 x 100-nodes grid (the
distance between two adjacent nodes is 160 m). The simulated clay content map is
plotted in Fig. 2c. This map will be considered as the actual map and will serve as
a reference for comparisons.

3.2

Sampling strategy

Hard data (complete soil profile descriptions) were collected at arbitrary locations
throughout the region, while interval (soft) type data (e.g., from a soil map or
from auger borings) were collected on a grid. This sampling strategy is consistent
with soil survey practice. In particular, soft data were generated by classifying the
clay content into 10 interval classes, i.e., 0-10, 10-20,...,90-100%, and assuming
that the actual (but unknown) values at each point lies within these intervals.
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Using this sampling strategy, the reference map was sampled, yielding 148
arbitrarily located hard data points and 1156 soft data points located on the
160 x 160 m grid. These hard and soft data sets were used to derive the estimated
soil maps.

3.3

Estimation strategy and comparisons

Based on the 148 hard data points available, the spatial structure of the clay
content was represented by the experimental variogram (Fig. 1). A spherical
model was fitted to this experimental variogram with a sill of 39.23 (%)? and a
range of 6850 m. On the basis of the hard and soft data sets, estimates were
obtained at 10,000 simulation points using the SK and the BME techniques. The
two sets of estimates were compared with the simulated values (Fig. 2c) in terms
of: (i) the mean error (ME; which offers a measure of the estimation bias); (ii) the
mean squared error (MSE; which is used as a measure of precision); and (iii) the
error distribution (which globalizes the two former characteristics and adds
information about the probability of identifying the actual value).

34

Results and discussion

Figure 2 shows the maps of the SK and BME estimates, as well as the reference
map. The BME map is a better estimation of the reference map than the SK map.
Detailed features are well identified by BME, while they are strongly smoothed out
by SK (e.g., with SK, only the zones of extreme low or high values can be seen).
Table 1 summarizes the ME and MSE results for BME and SK. The ME of the BME
and SK estimates are not significantly different from zero, indicating that the two
estimators are unbiased, as we expected from theory. The lower MSE for BME

50 248 B

Variogram (%?)

o¥ES iy
0 1000 2000 3000 4000
Distance (m)

gy sy n N
5000 6000 7000 8000 9000 10000

Fig. 1. Experimental variogram of the clay content (crosses), theoretical model (thin line)
and fitted experimental model (bold line). The number of couples of points used for
estimation is indicated next to each point. Clay content is expressed in % of the total soil
composition
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Table 1. Mean error (ME) and mean squared error (MSE) for BME and SK, expressed as
the proportion of clay in the total soil composition, in %

BME SK
ME —0.0743 —-0.3295
MSE 2.8199 10.9342

3000 T T T T
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2000
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count

1000

500
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-15 -10

Estimation error (%clay)

Fig. 3. Clay content estimation error distributions for BME (plain line) and SK

(dashed line)

compared to SK indicates a higher accuracy of the estimates. Globally, BME is
more accurate than SK, reflecting the important contribution of the soft data to
the reduction of the estimation error. The shape of the estimation error distri-
bution confirms these assessments (Fig. 3). The peak of the BME estimation error
distribution is higher than that of SK, indicating a higher probability of obtaining
an estimation error close to zero.

The improvement in spatiotemporal mapping accuracy gained by BME,
compared to traditional kriging methods, is due to BME’s ability to effectively
take into account the knowledge contained in the soft data. While SK is based
only on the 148 hard data points, BME makes good use of the 1156 soft data
points, as well. The larger the ratio of soft to hard data is, the better the BME map
will be compared to the SK map.

4
Multivariate case: the joint estimation of the three textural fraction
(sand, silt and clay)

4.1

Simulation maps

The simulation scheme is the same as in the univariate case above. A sequential
Gaussian co-simulation algorithm was run at the 10,000 nodes of the 160 x 160 m



Belgian Textural Triangle
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Fig. 4. Belgian textural triangle providing the soil type as a function of the three textural
fractions (expressed in %)

grid. The theoretical variogram model is exponential with a range of 1600 m and
the following covariance matrix:

90.79 —86.34 —4.09
—86.34 115.97 —29.46
—4.09 —-29.46 33.74

One map was obtained for each fraction (sand, silt and clay). Furthermore, a
classification was performed according to the textural triangle of the Belgian soil
classification (Fig. 4). In this way, a soil map could be built from the knowledge of
the textural fractions. Figure 6c represents the simulated textural units and will be
used as the reference map.

4.2

Sampling strategy

Following the same philosophy as in the univariate case above, 150 hard data
points were selected at random, and 1134 soft data points were sampled on a grid
for each one of the three fractions. According to the textural soil diagram shown
in Fig. 4, for each textural fraction the boundaries of the soil class to which the
soft data points belong were taken as values of the bounds for the soft data
intervals. A linear model of coregionalization (LMC) was then estimated from
the 150 hard data points. An exponential model was fitted to the experimental
(cross-) variograms with a range of 3500 m and the following covariance matrix:

110.45 —100.74 —9.46
—100.74 134.59 —33.63
—9.46 —33.63  43.35
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Figure 5 shows the experimental (cross-) variograms, as well as the theoretical
and fitted experimental models.

4.3

Estimation strategy and comparisons

Estimated soil maps were drawn after classifying each point of the spatial region
according to the textural triangle on the Belgian soil classification (Fig. 4). As in
the univariate case, the estimates obtained from the BME and SK methods were
compared to the reference map in terms of the ME, MSE, and estimation error
distributions. In addition to these comparisons, the classification error rate was
used to compare the estimated soil maps with the reference soil map.

4.4

Results and discussion

Figure 6 shows the BME and SK soil maps, as well as the reference soil map.
Clearly, the BME map is much more accurate and informative than the SK map;
e.g., the BME map identifies small zones and the contours of the soil units are well
reproduced (SK, on the other hand, seems to offer a poor representation of the
same contours).

To confirm these visual impressions numerically, the rate of classification error
was calculated. This rate is defined as the percentage of estimation points for
which the estimated soil class was different from the reference class. SK was found
to have a classification error rate of 43.25%, while BME attributes a false texture
class to only 30.08% of the estimation points. The benefit of using BME is sig-
nificant, but could have been further improved if a greater number of texture
classes had been considered in this study. Not surprisingly, the MSEs for the three
textural fractions are smaller for BME than for the SK (Table 2), thus indicating
that BME reduces the range of the estimation error distribution. As in the uni-
variate case, BME increases the probability of an error close to zero (see, Fig. 7).
The smaller difference observed between BME and SK in the case of clay content
is a result of the data configuration on the textural triangle. Indeed, for the clay
fraction, both the soft and the hard data are covering the entire range of possible
values, and as a consequence soft data do not bring so much new information (in
addition to the hard data). For the loam and sand fractions, on the other hand,
each of the hard and the soft data sets cover only a part of the range of values.
Therefore, using only hard data, SK introduces a bias in the estimation. At the
same time, by using the additional soft (interval) data, BME is able to moderate
the bias. This fact demonstrates that, depending on the kind of information

Table 2. Mean error (ME) and mean squared error (MSE) for the sand, silt and clay
fractions. Errors for three textural fractions are expressed as a proportion of the total soil
composition in %

Textural fraction BME SK
Sand ME 1.28 0.33
MSE 53.66 80.42
Silt ME —-1.33 -0.74
MSE 63.09 98.77
Clay ME 0.05 0.41

MSE 17.89 23.89
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Fig. 7. Estimation error distributions for a sand, b silt, and ¢ clay fractions using
BME (plain line) and SK (dashed line)

contained in the soft data, the way BME incorporates soft data can have a sig-
nificant impact on the accuracy of the estimation results. It should be noted that
the use of the specific transformation for compositional data - as recommended
by Aitchinson (1986, 1997) — does not change significantly the results of the
analysis.

5

Conclusions

The two case studies presented here demonstrated that BME is a powerful method
for incorporating uncertain physical knowledge bases in the mapping process. In
both cases, the maps produced by BME offered much better representations of the
actual (simulated) maps than the maps obtained by a kriging method (e.g., the
contours were defined with greater precision by BME, and small zones were better
identified by BME than by SK). These visual assertions were corroborated in
terms of numerical comparisons involving MSE and ME statistics. While none of
the methods was found to be biased, BME produced smaller estimation errors
than SK. The estimation error distributions clearly showed that BME leads to a
higher probability of having an estimation error close to zero than SK. BME is an
efficient estimator in cases where hard data are scarce or expensive to collect. This
situation is often encountered in environmental sciences, where the lack of hard
data can be compensated for by the use of soft data. Soft data are usually available
in great quantities using cheaper methods, from existing databases or maps, or
from experts who have dealt with similar situations. Moreover, unlike kriging
methods, BME does not make any restrictive assumptions about the normality of
the underlying distribution, and provides the complete pdf at each estimation
point. This allows the efficient computation of the estimation variances, quantiles
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and confidence intervals, which are useful indicators in risk assessment studies.
In soil sciences, where the texture information obtained from the soil map is
frequently used, BME could be of great help in estimating the sand, silt and clay
contents. The accurate estimation of these three variables can have a significant
influence on the accuracy of the results produced by soil process models
(pollutant leaching, irrigation or erosion models, etc.).

Future work should focus on a number of areas. While in this work we con-
sidered single-point BME analysis of soil data, one should also evaluate the
advantages of using multi-point BME (i.e., simultaneous estimation at several
points). BME can easily incorporate multiple-point statistics, which in certain
cases reveal important features of the soil variable. In the case of pollutant
leaching problems, e.g., one should evaluate the benefits of using BME instead of
SK to estimate the textural fractions, thus increasing the accuracy of estimates of
the amount of pollutant reaching the water table. Furthermore, BME could be
helpful to environmental scientists seeking to optimize a sampling design, or to
determine the nest ratio of hard to soft data (especially in cases of limited
sampling budgets). Also, BME can be a valuable tool in automatic soil mapping,
as it provides a sound theoretical and operational way to combine, integrate and
interpret data from various sources (e.g., data from an existing soil map, land
cover data from satellite pictures, and digital elevation models). It is hoped that
the promising results obtained in this work will stimulate further research on the
application of BME analysis in the fields of soil science and engineering.
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