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Abstract
Accurate and efficient identification of pollution sources is a key process that assists in the treatment of water pollution 
incidents. The ensemble Kalman filter (EnKF) has been proven to be an effective approach for identifying pollution source 
parameters (e.g., source location, release time, and mass released). In this paper, a method involving multiple observations 
of reconstruction (MOR) is proposed for reconstructing multidimensional state vectors for assimilation based on pollutant 
concentration monitoring techniques. The newly reconstructed state variables have dimensionless characteristics that decouple 
the source mass from the parameter group to be identified before assimilation is performed. This approach can mitigate the 
interference of assimilation caused by nonmain source parameters. As a result, the pollution sources and material dispersion 
coefficients can be simultaneously identified at limited observation sites. Then, a set of synthetic numerical examples with 
7 scenarios is assembled to investigate and compare the unique characteristics of the derived state variables during assimi-
lation. A laboratory experiment for unknown parameter identification based on monitoring the chemical oxygen demand 
(COD) concentration is carried out in an annular flume to verify the applicability of the method in real events. The results 
show that the EnKF combined with the MOR method based on the decoupling pattern performs well in identifying pollu-
tion sources and dispersion coefficients simultaneously. The method can still perform excellently in identifying parameters 
in practice when some data in the observation sequences are lost, with relative errors of pollution source parameters being 
controlled within 4%. The relative errors of the identified transverse and longitudinal dispersion coefficients are 39% and 12%, 
respectively. Overall, by evaluating the original data, reconstructing the dataset, and combining it with the EnKF method, it 
is proven that the MOR–EnKF method is an effective measure for identifying high-dimensional unknown parameter groups.

Keywords Surface water pollution · Inversion problem · Parameter identification · Data assimilation · Data reconstruction

1 Introduction

Source identification during water pollution accidents is an 
important part of surface water environmental management 
(Cheng and Jia 2010; Jerez et al. 2021; Gong et al. 2023). 

The identification of water contaminant sources is an inverse 
problem (Maryam et al. 2022). Specifically, based on existing 
monitoring conditions and information, reverse optimization 
is performed to identify the unknown parameters of con-
taminant sources. In general, for sudden water pollution acci-
dents, the unknown parameters of contaminant sources are the 
source location, release time, and total mass released (Yang 
et al. 2016; Ghane et al. 2016). In reality, water pollution acci-
dents are generally contingent and urgent; thus, quickly and 
accurately identifying the parameters of pollution sources is 
crucial for understanding the causes of pollution accidents 
and determining subsequent measures for pollution treatment.

Regarding the inverse problem, many optimization meth-
ods have been developed to solve this problem (Michalak 
and Kitanidis 2004; Barati Moghaddam et al. 2021; Gómez-
Hernández and Xu 2022). In the past, unknown parameters 

 * Jun Kong 
 kongjun999@126.com

1 Key Laboratory of Coastal Disaster and Protection (Hohai 
University), Ministry of Education, Nanjing, China

2 Jiangsu Provincial Academy of Environmental Science, 
Nanjing, China

3 State Key Laboratory of Hydrology, Water Resources 
and Hydraulic Engineering, Hohai University, Nanjing, 
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-024-02767-3&domain=pdf


3566 Stochastic Environmental Research and Risk Assessment (2024) 38:3565–3585

were identified by optimizing the objective function accord-
ing to the relationships between the observation variables 
and the simulation variables. For example, Neupauer et al. 
(2000) inverted the release history of groundwater pollu-
tion sources in one-dimensional scenarios based on Tik-
honov regularization (TR) and minimum relative entropy 
(MRE). The TR method was determined to be more robust 
when the magnitudes of the data measurement errors are 
unknown. Alapati and Kabala (2000) adopted the nonlin-
ear least squares method to identify the release history of a 
groundwater contaminant plume from the currently meas-
ured spatial distribution. However, the method was found to 
be extremely sensitive to the observation noise and pollutant 
dissipation degree and only suitable for catastrophic pollu-
tion release events. Michalak and Kitanidis (2004) adopted 
the inverse model to recover the historical contaminant dis-
tribution based on combining the geostatistical method with 
the adjoint state method, which might improve the efficiency 
of solving underdetermined problems. However, observa-
tion data with sufficient quantity and quality are needed. Li 
et al. (2016) inverted the convection–dispersion governing 
equation based on the spatiotemporal radial basis function 
collocation method and adopted the least squares method 
to solve the overdetermined system of equations. The con-
taminant source parameters were identified by optimizing 
the constructed target cost function. However, global spatial 
observation data were needed for calculations. The param-
eter search mode was simple and only suitable for solving 
constant current problems. These studies were mainly based 
on analytical solutions of fluid dynamics and pollution dif-
fusion, resulting in many limitations in their application. 
Moreover, these scholars relied heavily on large amounts 
of unbiased or less biased observation data to recover the 
release history of the pollution source or plume. However, 
in practice, it is quite difficult to obtain these observation 
data. Moreover, the recovery of the release history cannot 
comprehensively describe the pollution source, and some 
source information needs to be assumed.

Some scholars have combined intelligence algorithms 
when solving these inverse problems. For instance, Zhang 
et al. (2016) combined Gaussian process (GP) and Markov 
chain Monte Carlo (MCMC) methods to construct an adap-
tive surrogate model for identifying groundwater pollution 
sources based on location and time-varying strength. In their 
numerical case, the porosity and longitudinal and transverse 
dispersion coefficients were assumed. Pan et al. (2021a) pro-
posed a simulation optimization method based on the Bayes-
ian regularization deep neural network surrogate model, in 
which Bayesian regularization was applied to the training 
of a neural network to solve the overfitting problem. This 
method could identify the location and release intensity 
parameters of two pollution sources and the hydraulic con-
ductivity values of two zones. Pan et al. (2021b) developed 

a hybrid heuristic algorithm that combined the local search 
capabilities of particle swarm optimization (PSO) with the 
global search capabilities of differential evolution Markov 
chain (DEMC) method to prevent local optimization in 
parameter identification. Secci et al. (2022) developed a 
data-driven model based on an artificial neural network 
(ANN) to solve forwards and backwards mass transport 
problems in a system with strong nonlinearity, which has 
a low computational burden and little uncertainty in iden-
tifying the release history of pollution. In these studies, the 
information on the pollution sources to be identified was not 
confined to the release history, and additional parameters 
that could describe the sources were recognized. However, 
the prior ranges of unknown variables were narrow, and the 
methods were highly dependent on dense observation points 
and high-quality data.

In addition to the two methods mentioned above, proba-
bilistic methods have received additional attention, and they 
have been further developed by researchers worldwide in 
recent years (Hendricks Franssen and Kinzelbach 2009; 
Zhang et al. 2015; Gómez-Hernández and Xu 2022). The 
ensemble Kalman filter (EnKF) algorithm, which was origi-
nally proposed by Evensen (2003) and has been widely used 
to solve parameter assimilation problems in various fields, 
such as meteorology, oceanography, hydrology, environmen-
tal ecology, petroleum engineering, and navigation technol-
ogy (Gao et al. 2022; Shah et al. 2020; Zhou et al. 2011; Li 
et al. 2012; Chen et al. 2023; Nejadi et al. 2015; Xu and Guo 
2022), has been proven to be highly effective for parameter 
assimilation. Due to the high assimilation efficiency, the 
convenience of embedding the EnKF algorithm into pre-
diction models, the comprehensive consideration of model 
prediction error and observation error, and the uncertainty of 
parameters to be assimilated, this algorithm has become one 
of the most popular methods for solving the inverse prob-
lem (Chen et al. 2018; Xu and Gómez-Hernández 2015; Li 
et al. 2012). For the inverse problem of pollution source 
identification, some scholars have applied the EnKF algo-
rithm to solve this problem and have made some progress. 
Xu and Gómez-Hernández (2016) successfully applied the 
normal score EnKF (NS-EnKF) to identify contaminant 
source locations, release times and release concentrations 
and evaluated the uncertainty of identification. On this 
basis, Xu and Gómez-Hernández (2018) proposed the restart 
NS-EnKF to simultaneously identify contaminant sources 
and spatially variable hydraulic conductivity in aquifers 
by assimilating pressure head and concentration data from 
observation wells and compared the results of three different 
scenarios. However, since the mass transport parameters, 
the external sources and sinks, and the initial and bound-
ary conditions in the system are difficult to determine pre-
cisely and because the number of observation sites might not 
be sufficient in practice, this approach is difficult to apply 
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widely. Zhang and Huang (2017) proposed a fully sequential 
inverse estimation method for reconstructing the temporal 
release of river pollution accidents. This method was based 
on the one-dimensional advection‒dispersion model com-
bined with the augmented EnKF method. Compared with 
the Tikhonov method, this method could reduce the relative 
errors of the total release estimation by approximately 12.4% 
on average. However, in this research, the location of the 
source was assumed. Wang et al. (2019) combined the EnKF 
and backwards position probability (BLP) to identify the 
river contaminant source. This method could support online 
identification and reduce the influences of observation con-
ditions. However, since the method was only applicable to 
simple one-dimensional conditions, it could not be used to 
solve source identification problems under complex hydrau-
lic conditions. Jing et al. (2023) introduced the relationship 
coefficient as the object assimilated in the EnKF to identify 
contaminant source information. The performance of the 
proposed method was compared with that of the traditional 
EnKF in terms of different observation errors, observation 
site quantities, ensemble realizations and model grid sizes. 
This method was proven to be a highly effective and robust 
method for estimating pollution sources. In their studies, the 
dispersion coefficients were assumed, but in practice, these 
parameters could not be determined in advance. The miscal-
culated coefficients were bound to cause great deviations in 
simulations of the spatial distributions of pollutants and in 
estimates of the pollution source information (Liang et al. 
2010; Kong et al. 2013). Thus, it is crucial to provide a rea-
sonable estimation of dispersion coefficients simultaneously 
while identifying pollution source information. Similar to 
other research methods, the assimilation effect of the EnKF 
algorithm depends heavily on the quantity and location of 
observation points. However, it is very difficult to ensure suf-
ficient observation points in reality since monitoring sensors 
may be unreliable due to various factors, including weather 
and humans (Shang et al. 2023; Wen et al. 2024). When 
such a situation is encountered, considering the uncertainty 
of the model and parameters (Dai et al. 2024), insufficient 

observation data may lead to great deviations in the assimila-
tion results from the true values.

The purpose of this paper is to avoid the problems men-
tioned above and make full use of limited observation data 
to simultaneously identify unknown pollution source param-
eters (i.e., source location, release time, and mass released) 
and hydraulic parameters (i.e., transverse and longitudinal 
coefficients) as accurately as possible, which is highly valu-
able and significant. A new method is proposed to exploit the 
maximum amount of information from limited observation 
data. We introduce dataset reconstruction technology and 
decoupling methods, which increase the efficiency and accu-
racy of the EnKF method for solving traceability problems.

The paper is organized as follows. In Section 2, the mass 
transport model used for prediction is introduced, in addi-
tion to a combination of the EnKF and MOR methods. In 
Section 3, a synthetic example for analysis and a laboratory 
experiment carried out in an annular flume for application 
are described. Then, the performance and verification of 
EnKF–MOR method for identifying the source information 
and a discussion of the results are presented in Section 4. In 
Section 5, some conclusions are provided.

2  Methodology

2.1  Two‑dimensional convection dispersion model

A plane two-dimensional model can be used to calculate 
fluid dynamics and material transport/dispersion to ensure 
calculation efficiency. The substance is assumed to be com-
pletely dissolved in water. The lack of conservation of pol-
lution, which may be caused by pollutant decomposition, 
chemical and biological transformations or a combination 
of these processes, is neglected when the transmission time 
is short and when the substance is alone in the system. Then, 
the depth-averaged two-dimensional convection–dispersion 
governing equation is as follows (Chen and Wang 2013):
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where H is the water depth, and if the water depth is con-
stant, H can be removed from Eq. (1); t is the time; C is 
the depth-average solute concentration; u and v are the 
velocity components in the x and y directions (Cartesian 
coordinate system), respectively; and Dxx , Dxy , Dyx , and Dyy 
are the components of the 2-D dispersion coefficient tensor 
of depth-averaged mixing, in which the principal direction 
coincides with the flow direction. Through tensor rotation, 
the mixing coefficients can be calculated by Preston (1985):

where � is the angle of the flow direction to the x-axis and DL 
and DT are the dispersion coefficients along the longitudinal 

(2a)Dxx = DLcos
2(�) + DTsin

2(�)

(2b)Dxy = Dyx = (DL − DT )cos(�)sin(�)

(2c)Dyy = DLsin
2(�) + DTcos
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and transverse directions, respectively, which are related to 
the velocity (Elder 1959).

The values of u and v in Eq. (1), which denote the flow 
field, are calculated by the Elcirc model (Zhang et al. 2004). 
The values of concentration C in Eq. (1) are calculated by a 
high-accuracy finite volume method, which is based on an 
alternating operator splitting technique. The operator split-
ting technique is used to separate advective and diffusive 
transport into two stages based on a physical definition, 
and appropriate numerical methods have been proposed to 
solve this problem (Valocchi and Malmstead 1992; Rubio 
et al. 2008; Liang et al. 2010; Kong et al. 2013). To provide 
the concentration fields of the synthetic example and flume 
experiment in Sect. 3, the method from Kong et al. (2013) is 
adopted to solve the advection diffusion equation, in which 
the initial global concentrations are all 0 and the diffusion 
flux at the boundary is 0.

2.2  Traditional EnKF for source identification

There are two kinds of variables involved in the EnKF 
algorithm: system parameters and system states. When the 
EnKF algorithm is used to identify pollution sources, system 
parameters are usually identified. The system state refers to 
the observed variables. In contrast to the forwards assimila-
tion problem, in traceability assimilation, only the pollution 
source information is updated, while the state variables (i.e., 
concentration) do not need to be updated (Xu and Gómez-
Hernández 2018). The steps of the traditional EnKF algo-
rithm for source identification are as follows:

(1) The ensemble of the system parameter group to be 
identified is constructed. An ensemble of Nr realiza-
tions of the parameter group that contains X, Y, T, M 
DL, and DT to be identified is generated.

(2) The state variables are predicted. The vector of the 
parameter group updated at time step t-1 is substituted 
into the convection dispersion model to calculate the 
concentrated state at time step t. Then, the concentra-
tion prediction is given by the following equation:

where Δ is the convection dispersion operator; C0 is the 
initial distribution of contaminant concentration; and 
Cs
t
 is the vector of forecasted concentration at observa-

tion sites.
(3) The system parameters are updated. The unknown 

parameters are identified by assimilating the observed 
concentrations, given by the following expression:

(3)S = [X,Y ,T ,M,DL,DT ]
T

(4)Cs
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where superscripts a and f are the parameters after 
updating and before updating, respectively; e is the 
observation error vector, which is ignored and set to 
0 (Jing et al. 2023); and K is the Kalman gain matrix:

where PS,C is the cross-covariance matrix between the 
source parameters and the state variable; PC,C is the 
autocovariance of the state variable; and rt is the covari-
ance matrix of the error vector e . PS,C and PC,C are as 
follows:

Finally, the calculation steps 2 and 3 are repeated until the 
assimilation process is complete. There are two finishing cri-
teria. One criterion is the difference in the ensemble means 
at two adjacent assimilation steps. The critical value of the 
difference is set to 10% of the mean of the previous step. 
The condition is met if the difference is less than the critical 
value. The other criterion is the variances in the ensembles 
of parameters. When the sum of the variances in ensembles 
decreases to 1e-5, the centralizations of the ensembles of 
all the parameters are high. When both criteria are met, the 
assimilation process is finished.

To address the ensemble collapse during assimila-
tion (Bauser et al. 2018; Chen et al. 2021), we consider the 
covariance damping in the calculation of the EnKF (Hen-
dricks Franssen and Kinzelbach 2008) and add a damping 
factor α with the range (0,1) in the assimilation step of the 
updating process:

2.3  Multiple observations of reconstruction (MOR) 
method

In the traditional source identification algorithm, only the 
values of the observed variables at the t observation step are 
used in the t assimilation step. Considering the continuity 
of the propagation after the contaminants are released, it is 
obvious that the observation data at steps 0 ~ t-1 are available 
for updating the simulated state variables at assimilation step 
t. Jing et al. (2023) proposed introducing the concept of the 
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relationship coefficient into the EnKF to identify the group 
of source parameters by replacing concentrations with the 
relationship coefficient of contaminant concentrations as the 
observation variables for assimilation. This method considers 
the temporal process of contaminant concentration in every 
assimilation step, which increases the stability of source 
identification.

In this paper, in addition to the contaminant source param-
eters, the dispersion coefficients in the convection-dispersion 
model need to be identified, i.e., the DL and DT in Eq. (2). 
When the dimension of the parameter group to be identified 
is increased (e.g., the dispersion coefficients need to be iden-
tified simultaneously in the present paper), the calculation 
efficiency and accuracy are greatly reduced. To efficiently 
and precisely identify unknown parameters with insufficient 
and incomplete observation data, additional hidden informa-
tion must be obtained from limited observation sequences; 
thus, a new method based on multiple observations of recon-
struction (MOR) of raw data is established. Multiple vari-
ables are derived from the temporal process of contaminant 
concentrations to replace the observed concentration as the 
state variables to be assimilated. Moreover, the decoupling 
mode is used in assimilation to reduce the dimensionality of 
the unknown parameter group. Normally, information about 
the contaminant released, such as the release location, release 
time and mass, is considered necessary for describing a pol-
lution source. The relative concentration is designed to recon-
struct dimensionless variables that have nothing to do with 
the mass released. Thus, the mass released can be separated 
from the unknown source parameter group.

A specific feature of the new variables is that their values 
have no direct relationship to the contaminant source mass. 
The reconstructed variables are the relationship coefficient 
(RC), the relative deviation of the relative concentration 
(RDRC) and the mean relative concentration (MRC). The 
RDRC and MRC are designed based on the relative concen-
tration, which can be described by the following formula:

where subscript i is the time step; C′
i
 is the relative concen-

tration at time step i; and Ct is the observed concentration 
at time step t.

The three reconstructed variables are expressed as the 
following equations:
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where C is the contaminant concentration; superscripts s and 
ob are the simulated and observed concentrations, respec-
tively; superscript ′ is the relative concentration; Cob

i
 is the 

observed concentration at step i; Cob,t is the mean value of 
the observed concentration from steps 1 to t; Cs

i
 is the simu-

lated concentration at step i; Cs,t  is the mean value of the 
simulated concentration from steps 1 to t; C′ob

i
 and C′s

i
 are 

the relative concentrations observed and simulated at step i, 
respectively; Rt is the relationship coefficient; Vt is the rela-
tive variance of relative concentrations; and At is the mean 
value of relative concentrations.

The three reconstructed variables are all dimensionless 
and not related to the mass released from the pollution 
source. Another common feature of these reconstructed 
variables is that the values of three variables at step t are 
related to the concentration sequences from observation 
steps 1 to t. Rt represents the overall fit of the observed and 
simulated concentration trends. The closer the value of Rt 
is to 1.0, the more similar the overall trends of the observed 
and simulated results. This variable is useful for obtain-
ing a relatively appropriate combination of all parameters. 
Vt represents the fit of the relative concentration observed 
and simulated at every step. Compared with Rt , Vt reflects 
the role of every relative concentration equally regardless 
of the size of the relative concentration. The closer the 
value of Vt is to 0, the smaller the deviation of relative 
concentrations observed and simulated from step 1 to t. 
At is a simple representation of the state of the relative 
concentration process from step 1 to t. This parameter is 
not as detailed as Vt and Rt , which describe the fit of the 
concentration process observed and simulated. At can be 
considered a supplementary description, and it is important 
when the observation error is unstable and uncontrollable 
at each step. The effects of Vt and At result in increasingly 
meticulous optimization of all parameters, especially the 
dispersion coefficients.

By reconstructing the multiple variables mentioned 
above, there are only 5 unknown parameters to be identified 
in total, i.e., the source location (X, Y), the source release 
time (T), and the dispersion coefficients (DL, DT).
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2.4  EnKF combined with the MOR method 
for source identification

Based on the MOR method, the calculation steps of the 
modified EnKF algorithm are as follows:

(1) The ensemble of the parameter group decoupled from 
M is constructed.

(2) A prediction is made.

where � is the composition operator, which can be 
written as Γ ⋅ Δ ; Δ is the convection dispersion opera-
tor; Γ is the derived variable transformation operator; 
and �s

t
 is the vector of derived variables, which can be 

written as �t = [Rt,Vt,At]
T . In contrast to Cs

t
 in Eq. (4), 

�t is related to the concentration process from time step 
0 to t, which is calculated by substituting the param-
eters updated at time step t–1 into the convection dis-
persion model.

(3) The equation is updated.

where e is the derived observation error vector, which 
is set to 0. K is rewritten as follows:

where PS,� is the cross-covariance matrix between the 
source parameters and the derived variables; P�,� is the 
autocovariance of the derived variables; and rt is the 
covariance matrix of the error vector e . PS,� and P�,� 
are rewritten as follows:

The last step of the modified EnKF is as follows, and it is 
rewritten as Eq. (9):
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3  Synthetic example and flume experiment

Two investigations are considered in this paper. One inves-
tigation is a synthetic numerical example to test the ration-
ality and feasibility of the method proposed above and to 
compare the effects of different derived observation vari-
ables on assimilation. The other investigation is an annular 
flume experiment in the laboratory to test the reliability of 
the method in practical applications.

3.1  Synthetic numerical example

A single point source identification example is performed 
in which a certain amount of pollutant is released from 
the source at a certain time, and the unknown parameter 
group containing the source parameters and hydrological 
parameters needs to be identified. The numerical exam-
ple is carried out in a two-dimensional square area of 
500 m×500 m. In this system, a constant flow field is 
provided in advance, and all domain boundaries are open 
boundaries. Both the initial concentrations and diffusion 
fluxes of the boundaries are 0 (Jin et al. 2010). Pollutants 
are released at the source site and are ultimately trans-
ported from the domain through boundaries. No other 
pollutant enters this area. The initial concentration of 
released pollutants is calculated based on the pollutant 

Table 1  Values of known hydrological parameters

Domain 500 m × 500 m

h – Water depth 1 m
Ux - Flow velocity in the coordinate X 0.5 m/s
Uy - Flow velocity in the coordinate Y 0.05 m/s

Fig. 1  Spatial distributions of the pollution sources and observation 
points
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mass and grid volume corresponding to the release loca-
tion at the mesh. The mass of the outflow occurs through 
boundary meshes and is no longer related to the system. 
The known hydrological parameters are listed in Table 1. 
The three observation sites are arranged in the region 
with coordinates of (290, 260) m, (300, 255) m, and (330, 
270) m. The locations of the observation sites and the 
pollutant release sites are shown in Fig. 1.

3.2  Laboratory flume experiment

To verify the reliability of the method proposed for prac-
tical applications, a laboratory flume experiment for 
contaminant source identification is performed in the 
Hydraulics Laboratory at Hohai University. The water 
flow in the annular flume can be regulated online by the 
control system. By adjusting the inlet flow rate and the 
outlet gate angle, the water flow regime can be adjusted 
until our requirements are met. After performing multiple 
regulations, the water flow regime in the flume gradu-
ally stabilizes to a constant value. In this experiment, the 
inlet flow rate is 11 L/s, and the water depth is 0.295 m 
when the flow regime is steady. The flume has a constant 
width of 1 m. Therefore, the velocity is 0.037 m/s, which 
is identical to the result measured by the current meter. 
We dump the contaminant into the inlet of the annular 
flume instantaneously after the water flow regime stabi-
lizes, and two monitoring points are arranged upstream 
of the outlet to monitor the concentration process. Con-
sidering the maturity of the monitoring technology and 
the decreased level of harm in the experimental process, 
we select chemical oxygen demand (COD) as the con-
taminant monitoring index. COD is a comprehensive 
indicator. In the flume, there is a stable background con-
centration of COD due to some organic pollutants. We 
consider this indicator and provide an initial concentra-
tion field in the model. Potassium hydrogen phthalate is 
a conventional COD reference substance (Andre et al. 
2017; Kolb et al. 2017). The increase in COD is attributed 
to the release of potassium hydrogen phthalate, which 
is the real pollutant in this study. The transformational 
relationship between potassium hydrogen phthalate and 
COD is simple because 1500  mg/L of COD solution 
can be prepared from 1.2754 g of potassium hydrogen 
phthalate mixed in 1000 mL of pure water. Therefore, we 
can determine the concentration of potassium hydrogen 
phthalate by directly measuring the COD. In this study, 
51 g of potassium hydrogen phthalate, which is used as a 
pollution source, is dissolved in water, and all the solu-
tion is released. Due to the narrow width of the flume, we 
choose a small digital COD sensor to reduce the impact of 
COD monitoring equipment on the characteristics of the 
water flow. The UV–COD sensor is placed in the centre 

of the cross section, and the vertical position of the sen-
sor light source is 15 cm from the bottom of the flume, as 
shown in Fig. 2. The observation interval of the sensor is 
5 s. The size of the annular flume and the spatial distri-
butions of the contaminant release points and monitoring 
points are shown in Fig. 3.

4  Results and discussion

4.1  Synthetic numerical example

In this example, the real values and the initial ranges of 
the unknown parameter groups to be identified, including 
X, Y, T, DL, and DT, are listed in Table 2. The observation 
sequence of pollutant concentrations (from t = 130  s to 
t = 430 s) are shown in Fig. 4. To represent the observation 
errors of the anti-interference performance, random errors 
of 0–10% are added to the observation data. The observation 

Fig. 2  Image of the UV–COD sensor fixed in the flume for collecting 
COD concentration data

Fig. 3  Picture of the annular flume in the laboratory and the locations 
where pollutants are pumped into and observed
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interval is 1 s, which is equal to the interval of the assimila-
tion step.

The example consists of 7 scenarios to compare the effects 
of different reconstructed observations on assimilation for 
the purpose of identifying parameters, as detailed in Table 3. 
These 7 scenarios are all the same, except for the different 
derivatives involved in assimilation. The space of parameter 
realizations is set to 200, and the initial ensembles of the 
parameter group in the 7 scenarios are all consistent to elimi-
nate the influence of the initial sampling on the assimilation 
results. The observed time-series concentration data need to be 
converted to Rt , Vt and At at each assimilation step, and the ini-
tial assimilation also needs to be based on the data sequences. 
Therefore, the 150th observation step (i.e., t = 280 s) is set as 
the initial assimilation step in this example.

Jing et al. (2023) compared the effect of parameter rec-
ognition by assimilating the correlation coefficient based on 
the observation sequence and by assimilating the absolute 
observed concentration; the scholars confirmed the superiority 
of the former process. When the parameter group to be identi-
fied contains only pollution source parameters (no hydrologi-
cal parameters), the EnKF method, which is based on directly 
assimilating the observed concentration, has a very poor effect 
on source parameter identification. In the present paper, two 
hydrological parameters (DL, DT) are added to the parameter 
group for identification. It was more difficult to identify the 
parameter group by the traditional EnKF method proposed in 
Jing et al. (2023) than by the method proposed herein; there-
fore, the scenario of assimilating the traditional state variable 
(the observed concentrations) does not need to be considered 
in the synthetic comparison. For the 7 scenarios of the syn-
thetic numerical example, the contaminant source parameters 
and hydrological parameters are identified by assimilating 
different derived observation variables. The boxplots clearly 
indicate the changes in the parameter group ensembles in each 
scenario, and we use these plots to compare the results and 
analyse the influences of the derived variables on assimilation. 
The assimilation step of each scenario starts from the 150th 
observation step and ends with the 230th observation step.

Figures 5, 6 and 7 show the changes in the parameter group 
ensembles of scenarios V1, V2, and V3 in the assimilation pro-
cess, respectively. The top and bottom of the blue boxes in the 
boxplot represent the upper and lower quartiles of the ensem-
bles, respectively, while the red horizontal line represents the 
median value of the ensembles. By comparing the results of 
V1, V2 and V3, we find that the identification performance of 
At is better than those of Rt and Vt in terms of a single derived 
observation variable during assimilation. Although the iden-
tification results of V3 are highly accurate, the ensembles of 
parameters are still prone to collapse even if the damping coef-
ficient is added in the assimilation process. This phenomenon 
may be related to the characteristics of the derived variable. 
By taking the mean values of the parameter ensembles of V1, 
V2 and V3 at the 230th observation step as the inputs of the 
convection–dispersion model, the relative concentration series 
of the three observation sites during the observation period are 
calculated, as shown in Fig. 13. The results show that the rela-
tive concentration process of V2 exhibits the largest deviation 
from the observation. There is a time phase difference at the 
peak between V2 and the observation, although the overall 
trends are similar. The relative concentration of V1 is the sec-
ond highest behind that of V2. Similar to scenario V2, there 
is still a time-phase difference at the peak between the relative 
concentration and the observation of V1. Moreover, the con-
centrations during the increasing concentration stage at the 
three observation sites are generally higher than the overall 
observed values. Undoubtedly, the results of scenario V3 are 
closest to the observation process, but due to the identification 

Table 2  Real values and initial ranges of the parameters to be identified

Parameter Real value Initial range

X - x coordinate of source 250 m (0, 300) m
Y - y coordinate of source 250 m (0, 300) m
T - initial release time 100 s (0, 120) s
DL– transverse dispersion coefficient 1.0  m2/s (0, 5)  m2/s
DT– longitudinal dispersion coefficient 0.5  m2/s (0, 5)  m2/s

Fig. 4  Time-series concentration data at the observation sites (with 
0–10% random error)

Table 3  Comparison scenarios 
used in the example

Scenario Derived vari-
ables in assimi-
lation

V1 Rt

V2 Vt

V3 At

V4 Rt,Vt

V5 Rt,At

V6 Vt,At

V7 Rt , Vt,At
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error of the transverse dispersion coefficient DT, the concentra-
tion values at observation sites 1 and 2 are significantly lower 
than those observed during the increasing concentration stage. 

Therefore, if the parameter ensembles after assimilation is 
complete are used to predict the concentration characteristics 
at a point far downstream from the pollution source, then the 

Fig. 5  Changes in the ensemble realizations of the parameter group to be identified from the 150th observation time step to the 230th observa-
tion time step in scenario V1

Fig. 6  Changes in the ensemble realizations of the parameter group to be identified from the 150th observation time step to the 230th observa-
tion time step in scenario V2
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deviation between the predicted concentration and the actual 
concentration will be more obvious, thereby interfering with 
the pollution treatment that we select.

Given the unsatisfactory results of parameter identifi-
cation when only a single derived variable is involved in 
assimilation, we utilize two derived observation variables 

Fig. 7  Changes in the ensemble realizations of the parameter group to be identified from the 150th observation time step to the 230th observa-
tion time step in scenario V3

Fig. 8  Changes in the ensemble realizations of the parameter group to be identified from the 150th observation time step to the 230th observa-
tion time step in scenario V4
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for assimilation to strengthen the constraints on the assimila-
tion process and evaluate the identification effect. Figures 8, 
9 and 10 show the identification results of the parameter 

groups in scenarios V4, V5 and V6, respectively. Overall, 
the identification results in these three scenarios are better 
than those in scenarios with a single derived observation 

Fig. 9  Changes in the ensemble realizations of the parameter group to be identified from the 150th observation time step to the 230th observa-
tion time step in scenario V5

Fig. 10  Changes in the ensemble realizations of the parameter group to be identified from the 150th observation time step to the 230th observa-
tion time step in scenario V6
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variable involved in assimilation (i.e., V1, V2, and V3). 
Comparing V4, V5 and V6 in terms of the mean values of 
the parameter ensembles, the assimilation effect of V4 is the 
poorest, that of V6 is moderate, and that of V5 is the best. 
Among these scenarios, the identification of parameter T 
of V5 is more accurate than that of V6, but the DT of V5 is 
slightly less accurate than that of V6. Compared with sce-
nario V3, in which the ensembles of the parameter group are 
prone to premature collapse during assimilation, the condi-
tions of premature collapse of the ensembles in scenarios 
V5 and V6 are improved after involving other variables in 
assimilation. Based on Fig. 13, in scenario V4 with low-
precision identification, the simulated relative concentration 
at observation point 3 fits well with the observation, while 
the simulated series at observation points 1 and 2 both devi-
ate from the observed series, which is similar to the results 
in scenario V5. Notably, although the results in V5 are 
slightly better than those in V6 in terms of the accuracy of 
identifying parameters, the simulated series of V6 are more 
consistent with the observed series at the three observation 
sites. Thus, can both be achieved? While the identification of 
parameters is ensured to be accurate, the simulated relative 
concentration series are closer to the observed series. In fact, 
this requirement can be satisfied if the identification accu-
racy of the transverse dispersion coefficient DT is improved 
on the results of V5.

Considering that the accuracies of identifying param-
eter groups and subsequently simulating concentration 

series in cases involving the assimilation of two derived 
state variables are generally better than those involving 
the assimilation of a single derived state variable, we test 
the parameter identification performance by simultane-
ously assimilating three derived variables (i.e., scenario 
V7). Figure 11 shows the changes in the ensembles of the 
parameter group in V7. The mean values of the ensembles 
of the parameter group to be identified are very close to the 
true values. At the 230th observation time step, the relative 
error of the transverse dispersion coefficient DT is slightly 
larger than that of the other parameters, and the change in 
the ensemble of this parameter is slower than that of the 
other parameters. This phenomenon may result from the 
system itself changing its DT. This parameter has little 
influence on the values of the state variables involved in 
assimilation. Compared with the results of V5, the identi-
fication accuracy of the parameter DT is improved in V7. 
The identification accuracy of the parameter T in V7 is 
more accurate than that in V6. According to the results in 
Fig. 13, the simulated relative concentration series of V6 
and V7 coincide with the observed concentration series at 
the three observation points. Therefore, the effects of iden-
tifying parameters involving two derived state variables in 
assimilation are similar to those involving three derived 
state variables. To further explore the differences between 
the two scenarios, we perform a separate comparison 
between V6 and V7. We select the 50th observation step 
as the initial assimilation step for the two scenarios, and 

Fig. 11  Changes in the ensemble realizations of the parameter group to be identified from the 150th observation time step to the 230th observa-
tion time step in scenario V7
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the other conditions are the same as before. The changes 
in the ensembles of V6 and V7 are presented in Figs. 15 
and 16, respectively. When the concentration sequence of 
the initial calculation step is shortened, the assimilation of 
parameters is affected to a certain extent. In the new V6, 
the identification of the pollution source location Y and the 
transverse dispersion coefficient DT largely deviate from 
the real values compared with those in the previous V6. In 
contrast, the results of identifying parameters in the new 
V7 are even more accurate than those in the previous V7, 
especially for the parameter DT. However, the stabilities 
of ensembles in the assimilation process are poorer than 
those in the previous V7, and there is a large fluctuation in 
the mean values of ensembles in assimilation. This fluctua-
tion is related to the length of the concentration sequence 
involved in assimilation. This comparison between V6 and 
V7 shows that the accuracy and stability of identifying 

the parameter group are improved when the three derived 
state variables are involved in assimilation simultaneously.

Figure 12 shows the changes in the derived state vari-
ables involved in the three observation points and the cal-
culation steps in scenarios V1–V7. It is evident that when 
Rt is involved in assimilation, there is a bias in the results 
of parameter identification (e.g., V1 and V4). However, 
the final assimilated values of Rt are very close to the real 
value of 1.0, indicating that satisfactory results of parameter 
identification cannot be obtained only through assimilating 
the derived variable Rt . The same is true for Vt and At , but 
the result of identifying parameters by assimilating At is 
slightly better than that by assimilating Rt or Vt . In the latter 
cases, the identification process cannot accurately determine 
the transverse dispersion coefficient. Based on the results 
shown in Figs. 12 and 13, the characteristics of these three 
derived state variables are analysed. The derivation of Rt is 
based on assimilating the overall trend of the concentration 

Fig. 12  Changes in the values of the derived variables in scenarios V1–V7 from the 150th observation time step to the 230th observation time step
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sequences at the observation points. Even if there is a phase 
deviation between the simulated concentration sequence and 
the observed sequence, the value of Rt might still be very 
close to 1. This value contributes to the identification of 
the overall combination of parameter groups in assimilation, 
but it cannot accurately identify all parameters. Only when 
the number of observation points is increased, the num-
ber of identification parameters is reduced, or the system 
is increasingly nonlinear (such as unsteady flow) may the 
effect of parameter identification be improved. The deriva-
tion of At is based on consideration of the overall assimila-
tion of the relative concentration sequence. Compared with 
Rt , At can more accurately capture the characteristics of the 
entry and departure of the contaminant plume. Specifically, 
the changes in the contaminant concentration values at the 
observation points from absence to existence and from exist-
ence to absence are observed. Although the derived vari-
able can play the role of the anchoring dispersion coefficient 
to a certain extent, when the assimilation deviation of the 
state variable is small, the corresponding simulated con-
centration sequence may greatly deviate from the observa-
tion sequence. This phenomenon is well reflected in V3 in 
Fig. 13. Like Rt and At , Vt carries out overall assimilation for 
the relative concentration sequence; compared with At , it is 
more focused on the deviation of each concentration value in 
the concentration sequence. Regardless of the concentration 
magnitude, all concentrations are considered equally, which 
can compensate for the problems existing in the assimila-
tion of At to some extent. However, when there is an error 
in the observed concentration sequence, only assimilating 
this derived state variable can easily cause distortion in the 
identification of the parameter group. As shown in the mid-
dle row of Fig. 12, a comparison of the assimilation results 
of the scenarios involving Vt indicates that there is a sig-
nificant gap between the identification results of assimilat-
ing the derived variable in scenario V2 and the combined 
derived variables determined in other scenarios. Therefore, 
it is obvious that when assimilating these derivatives alone, 
it is impossible to avoid their own shortcomings, but these 
derivatives contribute to parameter identification during the 

assimilation process. In the present paper, the three derived 
variables are used for combined assimilation. This combina-
tion can compensate for the deficiencies of other derivatives 
while taking advantage of the characteristics of each; thus, 
the assimilation process tends to be relatively stable, and 
the identification accuracy of each parameter increases, as 
shown in Figs. 14 and 15.

In general, this experiment proves that the assimilation 
of multidimensional derived observation variables proposed 
in this paper has high stability and accuracy in identifying 
pollution source parameters, and it can contribute to the 
identification of unknown hydrological parameters; in par-
ticular, the identification of dispersion coefficients in the 
mainstream direction is relatively reliable.

4.2  Laboratory flume experiment

Based on the comparison results of the above synthetic 
numerical example, we combine the assimilation of derived 
observation variables with the simultaneous identification of 
the source and hydrological parameters in the flume experi-
ment and test the performance of this method in practice. 
In this example, except for the advection diffusion model, 
which always follows the principle of conservation of mass, 
the mass in the flume experiment is always conserved. The 
increase in COD in the flume is attributed to potassium 
hydrogen phthalate. The stable chemical characteristics of 
the flume make it a very suitable reference material for analy-
sis. In the flume experiment, the time of the first observa-
tion record is 12 min after pollutant release. The continuous 
observation time is 9 min. Therefore, the duration of this 
experiment is very short, at only 21 min. The degradation rate 
of COD is assumed to be 0.18  d−1 (Huang et al. 2017). Even 
if potassium hydrogen phthalate is degraded in this experi-
ment, the mass loss can be ignored during this period.

The parameter group to be identified includes two parts: 
contaminant source parameters and dispersion coefficients. 
The real values and initial ranges of the parameters to be 
identified are listed in Table 4 (for the coordinates, refer to 
Fig. 17). The contaminant release time is set to t = 540 s 

Fig. 13  Relative concentration sequences of scenarios V1–V7 simulated by the parameters identified at the 230th observation time step
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since the first record of the contaminant in the observation 
sequence occurs 9 min after the contaminant is removed. The 
time difference between the real contaminant release time and 

the first observation in the observed concentration sequence 
is 540 s. The temporal processes of concentration observation 
at the two observation points are shown in Fig. 16.

Fig. 14  Changes in the ensemble realizations of the parameter group to be identified from the 150th observation time step to the 230th observa-
tion time step in scenario V6

Fig. 15  Changes in the ensemble realizations of the parameter group to be identified from the 50th observation time step to the 230th observa-
tion time step in scenario V7
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The pollution source parameters in this experiment are 
the pollution source locations X and Y and the release time 
T. However, unlike in the previous synthetic example, the 
parameter Y does not need to be analysed. Considering 
that the flume is equal in width and that the width is much 
smaller than the length of the flume, the impact of the dump-
ing causes the pollutants to quickly and uniformly disperse 
in the transverse direction when transported in the flume. 
Therefore, the pollution source parameter Y has a negligible 
influence on the concentrations at the observation points. For 
the hydrological dispersion coefficients DL and DT related to 
the flow rate, if the water flow is not uniform or constant, the 
hydrological dispersion coefficients in different areas are not 

the same. In this annular flume, the water flow in the long 
straight section on each side of the flume can be considered 
uniform and constant, and the length of the bending section 
is short. Therefore, the dispersion coefficients DL and DT are 
considered constants. The reference values of DL and DT are 
0.005 and 0.002, respectively, in Eq. (2) according to a cali-
bration. The real values and initial ranges of the parameters 
to be identified for this experimental example are listed in 
Table 4. The number of realizations is set to 30.

The initial assimilation step is set at the 85th observa-
tion step in the observation sequence. Figure 17 clearly 
shows the distributions of the source location ensembles at 
observation steps 85, 90, 100, and 110. Although only 30 
simulations are contained in the ensemble, the efficiency and 
accuracy of identifying the pollution source location are still 
very high. After the 5th assimilation step, the distribution of 
the realizations of the source position is concentrated near 
the true location. At the 25th assimilation step, all ensem-
ble realizations of the source location are very close to the 
position where the pollutants are input. The changes in the 
mean and variance of the pollution source (XS, TS) and the 
dispersion coefficients (DL, DT) in the assimilation process 
are shown in Fig. 18. The ensembles of the pollution source 
location Xs and the release time Ts are roughly stable when 
assimilation is carried out to the 100th observation step. 
Furthermore, the means of the ensembles are close to the 
true value, and the variances are very close to 0. However, 
the assimilation of the dispersion coefficients is not stable 
because the ensemble variances decrease gradually during 
this process. The mean values of the ensemble fluctuate 
greatly. Moreover, the variance of the ensemble of DT is 
much greater than that of DL, indicating that the range of the 
ensemble of DT is large and that the values of the realiza-
tions are not yet centralized. According to the anisotropy of 
pollution dispersion, the value of the longitudinal dispersion 
coefficient DL should be greater than that of the transverse 
dispersion coefficient DT. However, as shown in Fig. 18, the 
mean value of the ensemble of DL at the 110th observation 
step is almost equal to that of DT, demonstrating that the 

Fig. 16  Time-series concentration data at the observation sites

Table 4  Real values and initial ranges of the parameter groups to be 
identified

Parameter Real value Initial range

X - x coordinate of source 12.85 (0, 14) m
Y - y coordinate of source 7.5 (7.0, 8.0) m
T - initial release time 540 s (100,1200) s
DL–longitudinal dispersion coef-

ficient
0.005  m2/s (0.001, 0.01)  m2/s

DT–transverse dispersion coefficient 0.002  m2/s (0.001, 0.01)  m2/s

Fig. 17  Distribution of ensem-
ble realizations of the source at 
the 85th, 90th, 100th, and 110th 
observation time steps
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identified transverse dispersion coefficients exhibit certain 
deviations. This issue is reflected to some extent in Fig. 19. 
The relative concentration sequence simulated by the identi-
fied parameter group has a high overall fitting degree; spe-
cifically, the trend of the sequence and the peak time are 
consistent with the observations. However, due to the large 
deviation of the identified transverse dispersion coefficient, 
there are certain differences in the increase in the COD con-
centration sequence at observation point 1 and the decrease 
in the sequence at observation point 2 compared with the 
observations. The peak value of the observation is larger 
than that of the simulation, indicating that the fitting degree 
of the concentration sequence is not very high. The reasons 
for the differences in parameter identification in this example 
may have arisen due to the following three reasons. First, 
the material convection–dispersion model we adopted is 
based on the depth-integrated theory. The vertical-averaged 
effect may not be achieved in a short period after pouring the 
pollutant. The vertical positions of the monitoring sensors 
affect the concentration sequences of the observation points. 
Second, due to the small width of the flume, soluble pollut-
ants easily mix in the transverse direction during transport, 
which allows for the identification of the transverse position 
of the pollution source and the distortion of the transverse 
dispersion coefficient. Third, when using a plastic bucket to 
remove pollutants, it is impossible to ensure that all pollut-
ants enter the flume at the same coordinates simultaneously 
and that the actual pollution source is a pollution plume near 

the ideal source location. These characteristics affect the 
simulation of contaminant concentrations.

Furthermore, an extra comparative test is used to verify 
the performance of the method in this paper (V7) and the 
method proposed in Jing et al. 2023 (V1) to identify param-
eters synthetically for incomplete observation sequences. 
The observation data from the 41st to 80th time steps of the 
two observation points, as shown in Fig. 19, are removed 
artificially to construct the scenario with data loss, and the 
remaining data sequences are used as incomplete assimila-
tion data. In the test, the initial calculation step is set as the 
81st observation time step.

Fig. 18  Changes in the mean 
and variance values of the 
parameter ensembles to be 
identified via assimilation

Fig. 19  Comparison of relative concentration sequences simulated 
and observed at the two observation sites (the simulated sequences 
are calculated by the parameters identified)
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From Fig. 20, the results of the MOR method recom-
mended by this paper are obviously better than those of the 
correlation coefficient assimilation method proposed by 
Jing et al. (2023). Although the recognition accuracy of the 
DL parameter is not ideal, that of the other parameters is 
satisfactory in scenario V7. Combined with the results of 
Fig. 18, the recognition of dispersion coefficients seems to 
be influenced more than the pollution source according to 
the observation data. According to the prediction results of 
the relative concentration in Fig. 21, although the recogni-
tion accuracies of parameters in V1 are poor, the predicted 

trends for the relative concentration sequences of the two 
observation points are similar to those of the observation 
sequences, and the correlation coefficients at these two 
observation points reach 0.91 and 0.95. This finding indi-
cates that with few observation points, it is very difficult to 
identify the parameter group accurately without effective 
reconstruction of the original observation data because the 
optimal combined solution is not unique when only the cor-
relation coefficient is involved in assimilation. The MOR 
method presented in this paper can solve this problem when 
there are few and incomplete observation data for identify-
ing high-dimensional parameter groups. Notably, in certain 
cases, the analytical solution of pollutant transport (Liang 
et al. 2010; Liao et al. 2021) can be integrated with the MOR 
method to replace the complex difference calculation for 
Eq. (1), which can greatly improve the efficiency of source 
identification and treat pollution from sources relatively 
early.

5  Conclusions

In this paper, the MOR method based on assimilating 
multidimensional variables derived from observations is 
proposed to identify pollution sources and hydrological 
parameters simultaneously. This method is an extension 
of the ensemble Kalman filter algorithm, which adopts the 
variables reconstructed from the observation data as the 

Fig. 20  Changes in the mean 
and variance values of the 
parameter ensembles to be 
identified via assimilation by 
V1 and V7

Fig. 21  Comparison of relative concentration sequences simulated 
by V1 and V7 and the observed incomplete consequences at the 
two observation sites (the simulated sequences are calculated by the 
parameters identified)
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state variables to participate in assimilation instead of the 
original observation data. The following conclusions can be 
drawn from the results:

(1) Due to the characteristics of the reconstructed obser-
vation variables, the pollution mass released can be 
effectively decoupled from the parameter group to 
be identified, which reduces the dimension of the 
unknown parameter group and improves the efficiency 
and stability of assimilation. This method can be used 
to comprehensively identify pollution sources and 2D 
dispersion coefficients.

(2) The reliability and accuracy of the method in identi-
fying parameters are confirmed by a numerical syn-
thesis example including 7 comparison scenarios, and 
the characteristics of these derived variables are ana-
lysed and evaluated. The multidimensional state vari-
ables involved in assimilation can compensate for the 
pseudoidentification of the single state variable in the 
unknown parameter group. Specifically, the error of 
the assimilated state is already small, but the param-
eter group in this system still deviates greatly from the 
real values. Therefore, the multidimensional variables 
derived from observations in assimilation can balance 
the defects of each derivative and improve the perfor-
mance of the algorithm.

(3) Based on the results of the numerical synthesis example, 
a laboratory experiment is performed to identify param-
eters that use COD as the pollutant by monitoring these 
characteristics in an annular flume. Through the data 
observed at the two observation sites, it is successfully 
proven that the method can be fully applied to simul-
taneously identify the pollution source and dispersion 
coefficients in real-world scenarios, even when there 
are uncontrollable deviations in the experiment. Nota-
bly, a test is designed to verify the performance of this 
method for identifying parameters when the observation 
sequences are incomplete. This finding proves that this 
method can still work excellently despite partial data loss.

In the present paper, the flow patterns of the two exam-
ples applied by this method are constant, and the nonlin-
earity levels of the two systems are not high. These phe-
nomena increase the difficulty of parameter identification 
to a certain extent. In future studies, we will continue to 
develop the EnKF method by integrating other methods 
(e.g., artificial neural networks and differential evolu-
tion) to further improve the accuracy of identification and 
increase the number of assimilation applications.
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