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Abstract
The identification of groundwater contamination sources (IGCSs) is an important requirement for the remediation and treat-
ment of groundwater contamination. The data assimilation methods such as ensemble Kalman filter (EnKF) and ensemble 
smoother (ES) have been applied to IGCSs in recent years and obtained good identification results. The unscented kalman 
filter (UKF) is also a data assimilation method with the potential to simultaneously identify hydraulic conductivity and 
GCSs. However, when UKF is applied to identify hydraulic conductivity and GCSs, it is necessary to use the observed data 
at different times separately, which increases the complexity of the update process and this may result in low identification 
accuracy. ES is a variant of EnKF that updates the system parameters with all observed data in all time periods, which makes 
ES faster and easier to implement than EnKF. Therefore, inspired by the ES, an unscented kalman smoother (UKS) based on 
UKF was proposed for simultaneously identifying the hydraulic conductivity and GCSs in this study. The UKS can use the 
data observed in all time periods simultaneously, while it is also simpler to operate and the calculation speed is faster. Present 
studies have shown that ES can solve IGCS problems. Thus, ES was also applied to identify the hydraulic conductivity and 
GCSs in this study, and its identification performance was compared with UKS. In contrast to previous applications of ES 
to IGCSs, both UKS and ES were set up with stop iteration conditions instead of only performing one update process, and 
thus both methods applied multiple update processes. The results showed that compared with ES, the identification results 
obtained by UKS were characterized by greater stability, higher accuracy, and the iterative process required less iteration 
process and computational time.

Keywords Data assimilation · Ensemble smoother · Groundwater contamination · Unscented transformation · Unscented 
Kalman Smoother · Source identification

1 Introduction

It is well known that groundwater exists in complex strata 
below the surface. In addition, the flow of underground water 
is extremely slow, and these characteristics of groundwater 
systems make it difficult to detect and control groundwater 
contamination in a timely manner (Atmadja and Bagtzoglou 
2001; Sun et al. 2006; Zhao et al. 2016; Hou and Lu 2018). 
The contamination of groundwater poses a huge threat to the 
ecological environment, human life, and economic devel-
opment. Therefore, the timely detection and treatment of 
contaminated groundwater is crucial (Chang et al. 2021, 
2022a, b). The treatment of contaminated groundwater 
requires understanding the characteristics of groundwater 
contamination sources (GCSs) (Yeh, et al. 2007; Datta et al. 
2011; Zhang et al. 2016). Therefore, research into IGCSs is 
particularly important.
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In recent years, many studies have investigated the prob-
lem of IGCSs and various methods have been applied, 
including optimization approaches (Mahinthakumar and 
Sayeed 2005; Ayvaz 2010; Zhao et al. 2020, Li et al. 2020), 
probabilistic and geostatistical simulation approaches 
(Michalak and Kitanidis 2004; Butera, et al. 2013; Zanini, 
and Woodbury 2016; Chen et al. 2018), analytical solution 
and regression approaches (Sidauruk et al. 1998), and direct 
approaches (Milnes and Perrochet 2007).

Among the commonly used methods for IGCSs, the ana-
lytical and direct methods are only applicable to scenarios 
with simple hydrogeological conditions, and they are often 
difficult to apply to complex IGCSs problems (Sidauruk 
et al. 1998; Neupauer et al. 2000; Milnes and Perrochet 
2007). The simulation optimization method has been used 
widely but "equivalent effect of different parameters" read-
ily occurs when the dimensions of variables increase (Xing 
et al. 2020; Chang et al. 2022a, b). Despite the effective-
ness of using stochastic theory and geostatistics methods in 
IGCSs, those methods are affected by challenges related to 
their substantial computational cost and slow convergence, 
particularly when applied to high-dimensional problems. 
These limitations may hinder their widespread application 
in such scenarios (Zhang et al. 2016, 2020). Various meth-
ods can be applied to identify GCSs, and each method has 
its own advantages and disadvantages. Therefore, different 
methods often have different identification effects when 
applied to the same case. For example, Wang et al. (2022) 
applied the ensemble Kalman filter (EnKF) and simulation 
optimization method to the same case, and they found that 
the identification accuracy of EnKF was lower compared 
with the simulation optimization method. Therefore, more 
methods for IGCSs need to be investigated to provide deci-
sion makers with greater choice.

The Kalman filter (KF) is a data assimilation method 
that is typically applicable to linear systems (Kalman 1960; 
Huang et al. 2012). Due to the KF only being applicable to 
linear systems, it usually cannot directly identify variables 
(such as the release history of GCSs) that have complex 
nonlinear mapping relationships with contaminant con-
centrations. Therefore, if KF is directly applied to IGCSs 
problem with complex nonlinear characteristics, the identi-
fication results may not be ideal due to the requirement for 
the linear approximation of nonlinear systems. Therefore, 
in recent years, some researchers have combined KF with 
fuzzy set methods and simulation optimization methods 
(Jiang et al. 2013; Gu et al. 2017; Li et al., 2017) to identify 
the information for GCSs. KF is usually suitable for solving 
data assimilation problems in linear systems, but its variant 
EnKF has the ability to solve data assimilation problems in 
nonlinear systems. The EnKF data assimilation method was 
proposed by Evensen (2003). In previous studies, EnKF was 
often combined with other methods (such as normal score 

transformation) to identify non-uniform and non-Gaussian 
hydraulic conductivity or porosity data (Franssen and Kin-
zelbach 2009; Li et al. 2012; Xu et al. 2013a, b; Crestani 
et al. 2013; Xu and Gomez-Hernandez 2015). The applica-
tion areas of EnKF subsequently expanded further to identi-
fying GCSs (Xu and Gomez-Hernandez 2016, 2018; Butera 
et al. 2021). Xu and Gomez-Hernandez (2018) extended 
their work to jointly identifying the information of GCSs 
and the hydraulic conductivity field in a synthetic aquifer 
and in a tank experiment (Chen et al. 2018). Previous studies 
have shown that EnKF can solve nonlinear problems with 
good results. However, Wang et al (2022) noted that when 
the inverse problem has strong nonlinearity, the identifica-
tion accuracy still needs improvement.

The ensemble smoother (ES) first proposed by Van 
Leeuwen and Evensen (1996), is a variant of EnKF (Xu 
and Gomez-Hernandez 2016, 2021). ES updates the model 
parameters and states with all observed data in all time 
steps, which avoids restarting the simulation at each time 
step, thereby making ES faster and easier to implement 
than EnKF (Emerick and Reynolds 2013; Xu et al. 2021). 
However, there is only one update process with conven-
tional ES and it is sometimes ineffective at dealing with 
nonlinear problems (Xu et al. 2021). Subsequently, Emerick 
and Reynolds (2013) proposed ES combined with multiple 
data assimilation (ES-MDA), and Chang et al. (2022a, b) 
proposed a multiple update process for ES to alleviate this 
problem. However, when conducting IGCSs using ES, the 
selection of the initial ensemble parameters and number of 
parameter groups in the ensemble can affect the accuracy 
and stability of the identification results. The application of 
ES based approaches to IGCSs has increased the number 
of methods available for identifying GCSs (Todaro et al. 
2021; Chang et al. 2022a, b; Xia et al. 2023), but given its 
problems and considering that different KF methods are suit-
able under different conditions, more methods based on the 
KF should still be studied, explored, and compared. This 
will make it convenient for researchers to choose the most 
appropriate methods to identify GCSs according to the spe-
cific site conditions, as well as to minimize the calculation 
load and time required, while also ensuring that stable and 
accurate identification results are obtained.

The unscented Kalman filter (UKF) is also a data 
assimilation method developed based on KF. The UKF 
uses the KF framework but unscented transformation is 
introduced to solve the nonlinear transfer problem for the 
variables (Julier and Uhlmann, 2004; Sun et al. 2014). 
Thus, UKF is suitable for estimating some state variables 
for linear systems, but it is also applicable to estimat-
ing some state variables for nonlinear systems (Lu et al. 
2018a, b; Knudsen and Leth 2019). The UKF is widely 
used in the fields of navigation and tracking fields (Park 
and D'Amico 2023), such as missile reentry problems 
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(Ristic et al. 2003), ground vehicle navigation (Julier and 
Uhlmann 2002),  mechanical diagnosis (Lu et al. 2018a, b) 
and predicting the remaining useful life of batteries (Xue 
et al. 2020). The UKF is suitable for nonlinear systems 
but it also has the potential to identify the information for 
GCSs, and the iterative process readily converges (Gian-
nitrapani et al. 2011).

However, in the same manner as EnKF, UKF is a real-
time data assimilation method. When performing IGCSs, 
UKF also requires complex operational steps like EnKF, and 
the accuracy of identification results are poor sometimes. 
Thus, inspired by the development of ES based on EnKF, 
an UKF-based unscented Kalman smoother (UKS) has been 
developed and applied to handle nonlinear problems. The 
UKF-based unscented Kalman smoother (UKS) is currently 
applied in fields such as flight path reconstruction (Teixeira 
et al. 2011), extracting stock prices and options volatility (Li 
2013), kernel nonlinear dynamic system identification (Zhu 
and Príncipe 2022), and tracking subatomic particles in high 
energy physics experiments (Akhtar et al. 2023) with good 
research results. Due to the good performance of UKS in 
handling nonlinear problems, and inspired by the applica-
tion of ES in IGCSs (Emerick and Reynolds 2013; Chang 
et al. 2022a, b), an UKS was developed for the first time in 
the present study to identify the hydraulic conductivity and 
GCSs. In the same manner as ES (Xu et al. 2021), UKS uses 
data observed in all time steps during the update process. ES 
and UKS belong to the same kind of methods and both are 
suitable for handling nonlinear problems. Moreover, ES has 
also achieved good results in IGCSs (Chang et al. 2022a, b). 
Therefore, to analyze the performance of UKS in IGCSs, 
ES was also applied for comparison in this study. In addi-
tion, unlike the previous applications of ES in IGCSs, to 
obtain better assimilation results, a stop iteration condition 
was set for ES and UKS in the present study, thereby allow-
ing UKS and ES to perform multiple iteration calculations 
instead of only performing one update process. UKS with 
multiple update processes and ES with multiple update pro-
cesses were applied to identify the hydraulic conductivity 
and GCSs, and the identification results obtained by the two 
methods were compared. The suitability of the two methods 
for identifying the hydraulic conductivity and GCSs was 
analyzed and compared based on the effectiveness and speed 
of identification.

Numerical simulation models are called repeatedly in 
processes when using ES and UKS to identify the hydraulic 
conductivity and GCSs, which generates a high computa-
tional load and wastes a lot of computational time (Zhao 
et al. 2016). Surrogate models are effective tools for reduc-
ing the computational load and time (Asher et al. 2015). The 
kriging method is widely used in surrogate modeling for 
IGCSs because of its rapid training speed, simple calling, 
and low time consumption when establishing a surrogate 

model for the simulation model (Guo et al. 2019; Jiang et al. 
2021). Therefore, to alleviate computational problems as 
well as ensuring a certain degree of computational accu-
racy, the kriging method was applied to establish surrogate 
models of simulation models for iterative calculations in this 
study.

2  Methodology and applications

A flow diagram illustrating the method for identifying the 
hydraulic conductivity and GCSs based on UKS is shown 
in Fig. 1.

2.1  Groundwater flow and contaminant transport

To identify the hydraulic conductivity and GCSs, it is nec-
essary to establish a numerical simulation model of the 
groundwater flow and contaminant transport (Datta et al. 
2011). The numerical models for the groundwater flow and 
contaminant transport are typically presented in the form 
of governing partial differential equations (Singh and Datta 
2006).

The governing partial differential equation for the ground-
water flow is defined as follows (Sanayei et al. 2021):

where xi and xj are the positional differences in the hori-
zontal and longitudinal directions, respectively, Kij is the 
hydraulic conductivity  [LT−1], H is the hydraulic head [L], Q 
is the volumetric flux per unit volume  [T−1], Ss is the specific 
storage  [L−1], and t is the time [T].

After establishing the numerical simulation model of the 
groundwater flow, it was necessary to establish the numeri-
cal simulation model of contaminant transport. The govern-
ing partial differential equation for contaminant transport is 
defined as follows (Karatzas 2017, Xing et al. 2019):

where � is the effective porosity, dimensionless, c is the 
contaminant concentration  [ML−3], is the hydrodynamic 

(1)
�

�xi
(Kij

�H

�xj
) + Q = Ss

�H

�t
i, j = 1, 2 t ≥ 0.

(2)

�(�c)

�t
=

�

�xi
(�Dij

�c

�xj
) −

�

�xi
(uic) + qscs +

∑
fn i, j = 1, 2 t ≥ 0.

(3)
∑

fn = −𝜌b
𝜕c̃

𝜕t
− 𝜆1𝜃c − 𝜆2𝜌bc̃

(4)c̃ = Kdc

(5)ui =
Kij

�

�H

�xi
i, j = 1, 2.



3504 Stochastic Environmental Research and Risk Assessment (2024) 38:3501–3523

Fig. 1  Flow diagram showing the method for identifying the hydraulic conductivity and GCSs based on UKS
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dispersion tensor  [L2T−1], ui is the average linear velocity 
 [LT−1], qs is the volumetric flow rate per unit volume of 
aquifer representing fluid sources (positive) or sinks (neg-
ative)  [T−1], cs is the concentration of the fluid source or 
sink  [ML−3], fn is the chemical reaction term, �b is the bulk 
density of the groundwater medium  [ML−3], c̃ is the sorbed 
concentration  [MM−1], Kd is the distribution coefficient of 
the linear sorption isotherm  [L3M−1] �1 and �2 are the first 
reaction rate for the dissolved phase  [T−1] and sorbed phases 
 [T−1] respectively.

2.2  Kriging surrogate model

The kriging method is widely used to establish surrogate 
models when performing IGCSs. The function for the krig-
ing method can be described as follows (Sacks et al. 1989; 
Zeng et al. 2016; Wang et al. 2022; Chang et al. 2021):

where �= [�1, �2,⋯ , �m] is the input, y(�) is the output, f (�) 
is the regression function, � is the regression parameter, z(�) 
is the random function, and it satisfies Eq. (7):

where E(⋅) and D(⋅) are operators representing the expecta-
tion and variance, respectively, � is the standard deviation, 
and R(�i, �j) represents the correlation function between �i 
and �j , n is the dimension of �i or �j , �k is the undetermined 
coefficient, and xk

i
 is the k-th dimension’s value of �i.

For any input � , the predicted input of the kriging 
model is as follows:

where �(�) is the correlation vector, � is the correlation 
matrix, and � is the design matrix. According to the prin-
ciples given above, all of the parameter matrices for the 
kriging model can be calculated after �k is calculated, and 
�k can be obtained by solving the following optimization 
problem:

(6)y(�) = f T(�)� + z(�)

(7)
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After establishing surrogate models, the coefficient of 
determination  (R2) and mean relative error (MRE) were used 
to evaluate the accuracy of the kriging surrogate models in 
this study:

where m represents the total number of test samples, n is the 
dimension of the concentrations vector output by the simula-
tion model (surrogate model), yij is the j-th concentration of 
the i-th test sample output by the simulation model, ŷij is the 
j-th concentration of the i-th test sample output by the sur-
rogate model, and y is the mean concentration of the simula-
tion model output. An  R2 value closer to 1 and smaller MRE 
value indicate that a surrogate model has higher accuracy.

2.3  Ensemble smoother

When ES is applied to IGCSs, the main steps comprise the 
initial parameter ensemble generation process, forecast pro-
cess, and update process.

 (1). Initial parameter ensemble generation process. At the 
beginning of the iteration calculation, N parameter 
vectors are randomly generated according to the prior 
information for the parameters (for ease of operation, 
it is assumed that all parameters in this study follow a 
uniform distribution) to form the parameter ensemble 
at the initial time. In this study, the unifrnd function 
(generate uniform random number) in MATLAB was 
used to generate the initial parameter ensemble for 
ES. The sampling command is X0 = unifrnd (ones(N
,1)*lb,ones(N,1)*up,N,d), d is the parameter vector 
dimension, and lb and up are the lower and upper lim-
its of the prior sampling range, respectively:

where xk
0
 is the parameter vector, the superscript 

(k = 1, …, N) denotes the sequence number of the 
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parameter vector in the ensemble and the subscript 
denotes the initial time.

 (2). Forecast process. The prior parameter vector xk
m

 (when 
m = 0 denotes the initial time) is input into the numeri-
cal simulation model to obtain the simulated concen-
trations in the observation wells:

where ck
m

 is the simulated concentrations at all time 
steps in the observation well at iteration m ,  h(⋅) is the 
simulation model, which is replaced by a surrogate 
model during the forecast process and cm is the mean 
simulated concentration.

 (3). Update process. The update process is conducted, 
before using the Kalman filter gain matrix and 
observed data to correct and update the prior param-
eters in the iteration process.

The auto-covariance matrix ��m�m
 and cross-covariance 

matrix ��m�m
 in Eq. (16) are calculated as:

where � is the observation noise, ��m�m
 is the auto-covar-

iance matrix of �m = [c1
m
, c2

m
,⋯ , c2n+1

m
] , and ��m�m

 is the 
cross-covariance matrix of �m = [c1

m
, c2

m
,⋯ , c2n+1

m
] and 

�m = [x1
m
, x2

m
,⋯ , xN

m
].

UKS and ES have the same stop conditions. Processes 2 
to 3 are repeated in a cyclic manner until the stop condition is 
satisfied, and the final identification results are then obtained.

where � equal to 0.0001.

2.4  Unscented Kalman smoother

When the UKS is applied to IGCSs, the main steps com-
prise the unscented transformation process, forecast 
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(19)S(�m + 1) − S(�m) ≤ �

process, and update process for the variables that needed 
to be identified. In this study, the unifrnd function (gen-
erate uniform random number) in MATLAB was used 
to generate the initial parameter of UKS. The sampling 
command is x0 = unifrnd (ones(1,1)*lb,ones(1,1)*up,1,d), 
d is the parameter vector dimension, and lb and up are 
the lower and upper limits of the prior sampling range, 
respectively.

 (1). Unscented transformation process. The prior param-
eter vector x

m
 undergoes unscented transformation to 

generate a prior parameters ensemble. It should be 
noted that when m = 0, x

0
 represents the initial prior 

parameter vector:

where x
m

 is the prior parameter vector at iteration 
m (m > 0) , xi

m
 is the parameter vector after unscented 

transformation at iteration m , i denotes the sequence 
number of the parameter vector in the parameter 
ensemble �m = [x1

m
, x2

m
,⋯ , x2n + 1

m
] , n is the dimen-

sion of xi
m

 , � is the scaling parameter, �m is the prior 
parameter matrix at iteration m , and �m is the prior 
covariance matrix at iteration m . It is difficult to guar-
antee the positive definiteness of �m in the untraced 
transformation process, so the unit matrix was used to 
conduct untraced transformation in this study.

 (2). Forecast process. xi
m

 is entered into the numerical 
simulation model (nonlinear system) to obtain the 
simulated concentrations in the observation wells:

where ci
m

 is the simulated concentrations at all time 
steps in the observation well at iteration m , h(⋅) is the 
simulation model, which is replaced by a surrogate 
model during the forecast process, ωi

m
 is the weight 

used to calculate the mean.
 (3). Update process. The dynamic observed concentrations 

are used to correct and update the prior parameter xi
m

:
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where �m is the Kalman gain matrix at iteration 
m , cobs denotes the observed concentrations at all 
time steps in the observation well, and xm+1 is the 
mean vector of the posterior parameter ensemble 
�m + 1 = [x1

m + 1
, x2

m + 1
,⋯ , x2n + 1

m + 1
] , Eq.  (19) is the 

condition for the stopping calculation.

The auto-covariance matrix ��m�m
 and the cross-covari-

ance matrix ��m�m
 in Eq. (22) are calculated as:

where ωi
c
 is the weight used to calculate the covariance, 

��m�m
 and ��m�m

 have already explained above.
Processes 1 to 3 are repeated in a cyclic manner until the 

stop condition is satisfied, and the final identification results 
are then obtained.

2.5  Overview of case study

The study area considered was a modified version of the 
cases utilized by many well-known researchers (Ayvaz 2010; 
Xing, et al. 2019; Secci et al. 2022; Todaro et al. 2022). 
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The study area was divided into five parameter zones and 
the hydraulic conductivity in each zone was unknown. Fig-
ure 2 shows a plan view for the study area, with two GCSs, 
one pumping well (the pumping volume is shown in Fig. 3) 
and seven observation wells. The total simulation time was 
3,600 days, which was divided into 60 equal simulation peri-
ods. The GCSs were assumed to release contaminant during 
the first four simulation periods. Thus, 13 unknown vari-
ables had to be identified (eight release intensities for two 
sources × four stress periods and five hydraulic conductivi-
ties). The study area is a confined aquifer and had specified 
head boundary conditions on sides AB and CD, with no flow 
on the other sides. The head values for sides AB and CD in 
scenario two were 100.0 m and 80.0 m, respectively. There is 
chemical reaction in the study area, and the type of chemical 
reaction was first-order irreversible kinetic reaction.

Table 1 lists the basic parameters for the aquifer in study 
area. Table 2 lists the parameters for the chemical reac-
tion. The hydraulic conductivities in the five zones and the 
designed values for the source fluxes in different release 
periods are shown in Tables 1 and 3, respectively.

The hypothetical application case was considered to 
verify the effectiveness of IGCSs. As no actual observed 
contaminant concentration was available, therefore, it was 
necessary to enter the information designed for the hydraulic 
conductivity and GCSs into the numerical simulation model 
and run it to obtain the observed contaminant concentration 

Fig. 2  Hypothetical aquifer for 
study area
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(using MODFLOW and MT3DMS in GMS). The simulated 
contaminant concentrations corresponding to the informa-
tion designed for the hydraulic conductivity and GCSs were 
then used as the observed data for the subsequent IGCSs. 
Figure 4 shows the contamination fields (concentration 
plume) in the study area for 1200 days, 2400 days, and 
3600 days. Figure 5 shows the simulated contaminant con-
centrations (regarded as observed data) for each observation 
well in different time periods.

The MODFLOW and MT3DMS modules in GMS (Ver-
sion: GMS 7.1) software were used to solve the ground-
water flow and contaminant transport numerical simulation 
models.

During the inverse process, the prior ranges of the param-
eter value of each parameter to be identified are shown in 
Table 4.

3  Results

3.1  Accuracy analysis of surrogate model

Due to the advantages of the kriging method, a surrogate 
model was established for the simulation models using the 
method described in this study, and the Latin hypercube 
sampling method was used for sampling. Further details of 
the principles of the Latin hypercube sampling method were 
described by Helton and Davis (2003), and Hossain, et al., 
(2006).

First, the Latin hypercube sampling method was used 
to sample 280 sets of parameters within the ranges of the 
required identification variables. The sampling results were 
entered into the simulation model. The simulation model 
was used to obtain the contaminant concentrations corre-
sponding to each sampling group, which were used as the 
training data. The test data were obtained by using the same 
process applied to generate training data, except the test data 
comprised 80 sets of input and output data.

The training data were then used to train the surrogate 
model. After establishing the surrogate model, the training 
data and test data were used to evaluate the accuracy of the 
surrogate model. The  R2 and MRE values for the output 
results for each observation well obtained by the surrogate 
model are shown in Table 4. The fitting degrees for the out-
put results from the surrogate model and simulation model 
are shown in Fig. 6. For the training data, the  R2 value of 
each observation well reached 1. The MRE value of each 
observation well was close to 0 (based on the retention of 
four decimal places). For the test data, the  R2 value of each 
observation well were more than 0.99. The MRE value of 
each observation well less than 2.02%. According to the 
evaluation results based on the training data and test data, 
the accuracy of the surrogate model at approximating the 

Fig. 3  Pumping volume in each time period

Table 1  Basic parameters for the aquifer in the study area

Parameters Value

Effective porosity, θ 0.3
Specific storage  (m−1) 8 ×  10–5

Longitudinal dispersivity, αL (m) 40
Transverse dispersivity, αT (m) 9.6
Saturated thickness, b(m) 30.5
Grid spacing in x,y-direction, Δx,Δy (m) 100
Length of the simulation period, Δt (month) 2
Initial concentration, (mg/L) 1
Hydraulic conductivity (m/d) K1 34.2

K2 7.9
K3 18.4
K4 27.3
K5 46.1

Table 2  Chemical reaction parameters for the case study

Parameters Values

Bulk density (mg/cm3) 1600
1st sorption const  (m3/g) 6 ×  10−12

Rate const. (dissolved) (1/d) 0.0001
Rate const. (sorbed) (1/d) 0.0001

Table 3  Designed source fluxes in different release periods

GCSs Source fluxes (mg/d ×  105) in each release period

SP1 SP2 SP3 SP4

S1 90.42 76.16 49.31 47.73
S2 83.34 62.45 38.26 21.57
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Fig. 4  Contamination plume 
distributions
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simulation model was very high, and it could replace the 
simulation model in the iterative calculation. Invoking the 
surrogate model to participate in iterative calculations could 
reduce the calculation load and time required by about 99%.

3.2  Comparison of identification performance 
between UKS and ES

UKS and ES were applied to identify the hydraulic con-
ductivities and GCSs. It is difficult to ensure the accuracy 
of the results if they are calculated only once, so to test the 
stability of the identification methods and further verify 
their accuracy at identification, UKS and ES were applied 
to identify the hydraulic conductivities and GCSs 20 times 
(20 experiments).

UKS and ES apply different sampling methods for the 
initial parameter ensemble, so in order to comprehensively 
compare the identification effects for the two methods, the 
following four situations were considered in this study. 
(1) UKS sampling according to its own principles by first 
randomly selecting the initial values, and then conducting 
unscented transformation to obtain the initial parameter 
ensemble with 27 parameter groups. (2) ES based on its 
own sampling principle, where the initial parameter ensem-
ble with 27 parameter groups for ES was obtained through 
random sampling (designated as ensemble smoother-27 
(ES-27)). (3) The initial parameter ensembles for ES and 
UKS were exactly the same, and the sampling method fol-
lowed the sampling principle for UKS (designated as ensem-
ble smoother same ensemble (ES-SE)). (4) The param-
eter groups in the initial parameter ensemble for ES were 
adjusted to 270, which was 10 times the original ensemble 
for situation (2) (designated as ensemble smoother-270 
(ES-270)). It should be noted that in 20 experiments to test 
the dependence of the two methods on the initial parameter 
ensemble, the initial parameter ensemble was different for 
each experiment (the sampling details can be found in Sec-
tions 2.3 and 2.4).

The effectiveness at identification was then analyzed for 
UKS, ES-27, ES-SE, and ES-270 in terms of the identifica-
tion performance (accuracy and stability) and time required.

(1) Identification performance

Figure 7 shows boxplots of the identification results 
obtained with UKS, ES-27, ES-SE and ES-270. The iden-
tification results obtained by UKS exhibited almost no 
fluctuations, where the hydraulic conductivities or source 

Fig. 5  Contaminant concentration curves

Table 4  Range of parameter value

Name Parameter Value range

Hydraulic conductivity (m/d) K1 30 ~ 35
K2 5 ~ 10
K3 15 ~ 20
K4 25 ~ 30
K5 45 ~ 45

S1 (mg/d ×  105) SP1 0 ~ 100
SP2 0 ~ 100
SP3 0 ~ 100
SP4 0 ~ 100

S2 (mg/d ×  105) SP1 0 ~ 100
SP2 0 ~ 100
SP3 0 ~ 100
SP4 0 ~ 100
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fluxes of the GCSs were not affected by the initial values 
selected. However, the identification results obtained based 
on ES-27 exhibited dramatic fluctuations, where the fluc-
tuation amplitudes for hydraulic conductivity comprised 
 K1 = 1.87 m/d,  K2 = 0.29 m/d,  K3 = 0.25 m/d,  K4 = 1.45 m/d, 
 K5 = 10.43 m/d. Thus, the maximum fluctuation amplitude 
was for  K5. The fluctuation amplitudes of the source fluxes 
(mg/d ×  105) in the four release periods for  S1 were 52.86, 
79.51, 41.83 and 11.58, respectively. The fluctuation ampli-
tudes of the source fluxes (mg/d ×  105) in the four release 
periods for  S2 were 4.19, 12.50, 6.28 and 6.92, respectively. 
The fluctuation amplitudes of the source fluxes (mg/d ×  105) 
for  S2 were possibly smaller than those for  S1 because  S2 was 
closer to the observation wells and more readily constrained 

by the concentrations in each observation well. Therefore, 
the fluctuation amplitude was still smaller even when the ES 
method with poor effectiveness at identification was used. 
These results indicate that compared with ES-27, the iden-
tification results obtained using UKS were more stable and 
not affected by the initial parameters selected.

The identification results obtained based on ES-SE 
exhibited more drastic fluctuations than those using ES-27. 
The fluctuation amplitudes of the hydraulic conductiv-
ity using ES-SE were 1–8 times those with ES-27. The 
maximum fluctuation amplitude for  K5 was 11.87 m/d. 
The fluctuation amplitudes of the source fluxes in the four 
release periods for  S1 were 1.2 to 2.5 times those with 
ES-27. The fluctuation amplitudes of the source fluxes 

Fig. 6  Fitting degrees between simulation model and surrogate model: (a) training data (b) test data
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in the four release periods for  S2 were 1.1 to 3.1 times 
higher using ES-SE than those with ES-27. These results 
indicate that the identification results based on ES-SE 
tended to exhibit worse variation compared with ES-27 
and the identification results for the hydraulic conductiv-
ity and GCSs depended completely on the selected initial 
parameter ensemble, where the identification results were 
extremely unstable with low reliability.In the fourth situ-
ation, the stability of the identification results obtained 
with ES-270 improved significantly. The fluctuation 
amplitudes of the hydraulic conductivity and fluctuation 
amplitudes of the source fluxes in the four release periods 
were only 0.114–0.46 times those with ES-27. There were 
still fluctuations in the identification results but compared 
with ES-27 and ES-SE, the stability of their identification 

results was significantly improved, although they were not 
as stable as those with UKS.

Figure 8 shows the relative error (RE) values for the iden-
tification results using UKS, ES-27, ES-SE and ES-270. The 
RE ranges for each variable for identification using UKS, 
ES-27, ES-SE and ES-270 were 0.01–19.74%, 0.01–77.94%, 
0.04–98.18% and 0.01–40.33%, respectively. According to 
the results based on 20 experiments, the MRE values for all 
the identification results was 5.05% using UKS, between 
5.23% and 17.94% using ES, between 5.15% and 24.94% 
using ES-SE, and between 5.29% and 7.92% using ES-270. 
The MRE values for the identification results in each experi-
ment were all lower using UKS than ES-27, ES-SE, and 
ES-270. Compared with ES and ES-SE, ES-270 had the 
smallest MRE value, followed by ES and ES-SE.

Fig. 6  (continued)
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Fig. 7  Boxplots of the identifi-
cation results
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Fig. 8  Relative error of hydraulic conductivity and GCSs identification results: (a) UKS compared with ES-27 (b) UKS compared with ES-SE 
(c) UKS compared with ES-270

Fig. 8  (continued)
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These results indicate that the identification results 
obtained with UKS were unaffected by the initial value 
selection but they were the most stable, and the accuracy of 
the identification results was the highest.

After conducting 20 experiments to identify the hydraulic 
conductivity and GCSs based on UKS and ES, we sequen-
tially input the identification results for the hydraulic con-
ductivity and GCSs obtained with UKS and ES into the 
simulation model. The simulation model was used to obtain 
the contaminant concentrations for all observation wells in 
different observation periods. The MREs between the con-
taminant concentrations obtained with UKS and ES in each 
experiment and the observed concentrations were calculated 
separately, and the MREs are shown in Fig. 9. The results 
indicated that the contaminant concentrations correspond-
ing to the identification results obtained using UKS were 
closer to the observed concentrations, with smaller MREs 
below 1%. The MREs with the other methods increased from 
ES-270 to ES-27 and ES-SE. In some cases, the MREs with 
ES-270, ES-27, and ES- SE were similar to those with UKS, 
but the overall experimental results showed that this was a 
random phenomenon that depended entirely on the selection 
of the initial parameter ensemble. This was a serious draw-
back because it was difficult for us to select an appropriate 
initial parameter ensemble before the forecast process and 
update process.

For the case study, the 20 identification results showed 
that compared with various situations using ES, UKS 

obtained the most stable identification results with the 
highest identification accuracy. The fitting effect between 
the contaminant concentrations and observed concentra-
tions was the best with UKS.

 (2). Time required

A computer equipped with an Intel Xeon W-2295 CPU 
@ 3.00 GHz processor, 64 GB RAM, and RTX 3090 GPU 
was used to perform the iterative calculations.

Fig. 8  (continued)

Fig. 9  Comparison of MREs between contaminant concentrations 
corresponding to the identification results and observed concentra-
tions
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Figure 10 shows boxplots of the required iterations and 
computational time. The fluctuation ranges for iterations 
were 6–45 for UKS, 131–1927 for ES-27, 51–2499 for 
ES-SE and 32–392 for ES-270. The fluctuation ranges for 
the computational time were 0.26–1.76 s for UKS, and 
77.47–1099.67 s for ES-27, 26.56–1388.67 s for ES-SE 
and 25.71–312.12 s for ES-270. Overall, a positive cor-
relation was found between the number of iterations and 
the computational time. The fluctuations in the iterations 
and computational time were the smallest with UKS, 
followed by ES-270, and ES-27, but the largest using 
ES-SE, thereby indicating that the number of iterations 
and computational time required by UKS, ES-27, ES-SE 
and ES-270 were all influenced by the initial parameters 
selected, but UKS was less affected compared with ES 
in various sampling situations, and the differences were 
almost negligible.

Figure 10 shows that the mean numbers of iterations 
were 15 for UKS, 726 for ES-27, 1170 for ES-SE and 127 
for ES-270. Table 5 shows the mean computational time 
required using the different methods. The mean compu-
tational time required by ES-27, ES-SE and ES-270 was 
hundreds or even thousands of times that by UKS because 
ES-27, ES-SE and ES-270 required far more iterative cal-
culation than UKS. Although the number of iterations and 
computation time required by ES-270 improved signifi-
cantly compared with ES-27, it still required much more 
computational time and number of iterations than UKS in 
most experiments. Furthermore, it should be noted that the 

iteration calculation time was shorter for ES-270 than ES-27 
because ES-270 required fewer iterations.

Thus, the results showed that UKS was advantageous for 
reducing the computational time and calculation load when 
applied to the identification of hydraulic conductivity and 
GCSs, as well as improving the accuracy and stability of the 
identification results.

In addition, if want to further improve the identification 
accuracy and use the simulation model instead of the sur-
rogate model to participate in the iterative calculations, UKS 
would be highly advantageous in terms of reducing the com-
putational time and calculation load. For this study case, 
UKS would require 1.35 h (27 h would be required for 20 
calculations), ES-27 would require 2.72 d (54.4 d would be 
required for 20 calculations), ES-SE would require 4.38 d 
(87.6 d would be required for 20 calculations), and ES-270 
would require 4.76 d (95.2 d would be required for 20 cal-
culations). However, in terms of the identification accuracy, 
using ES-SE is unnecessary (Table 6)(add q).

Figures 11 show the convergence curve for each param-
eter for the study case (one group of identification results 
were randomly selected from 20 groups of identification 
results). UKS generally started to converge in the fifth itera-
tion step and the rate of convergence was very fast. The fast 
convergence of the iterative process was responsible for the 
rapid computation using UKS. However, some parameters 
of the identification results based on ES-27 and ES-SE still 
did not converge after even hundreds of calculations. Com-
paring with UKS, ES-270 converged in a relatively stable 

Fig. 10  Boxplot of the number of iteration and calculated time

Table 5  R2 and MRE values 
for the surrogate model in each 
observation well

Data source Evaluating 
indicator

O1 O2 O3 O4 O5 O6 O7

Training data R2 0.999 0.999 0.999 0.999 0.999 0.999 0.999
MRE 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Test data R2 0.999 0.999 0.999 0.999 0.999 0.999 0.999
MRE 0.50% 0.75% 2.02% 1.35% 1.27% 2.95% 0.87%
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and rapid manner but it often required more iterations and 
computational time under the same stopping iteration cal-
culation conditions. Therefore, UKS was still comparatively 
more advantageous. Figure 12 shows the final identification 
results for the hydraulic conductivity and GCSs.

In summary, higher identification accuracy, more stable 
identification results, and faster identification speed were 
obtained using UKS in this study case compared with ES.

4  Discussion

 (1). Errors were found between the identification results 
and the values designed for the case study. These 
errors may have been caused by the identification 
process or by errors in the output results from the sur-
rogate model and simulation model. Errors occurred 
between the outputs from the surrogate model and 
the simulation model, and using the output concen-
trations from the surrogate model to identify the 
hydraulic conductivity and GCSs was equivalent to 
using the observed data containing errors for hydrau-
lic conductivity and GCSs identification. The identi-
fication results showed that UKS, ES-27, ES-SE and 
ES-270 were all sensitive to errors. Therefore, future 
research should consider mixing other errors into the 
observed concentrations, and studying how to mitigate 
the effects of errors on UKS and ES.

 (2). When using UKS to identify the hydraulic conductiv-
ity and GCSs, the positive definiteness of the covari-
ance matrix was difficult to fully guarantee in the 
update process for the variables for identification, so 
the unit matrix was used to replace the covariance 
matrix for iterative calculation in this study. However, 
there may be a more suitable matrix (such as an adap-
tive matrix) than the unit matrix for the correct and 
update process for the variables to be identified, which 
could further improve the accuracy of the hydraulic 
conductivity and GCSs, and thus this should also be 
addressed in future research.

 (3). When identifying common solute GCSs, the iden-
tification results obtained in the present study dem-
onstrated the advantages of UKS, where the identi-

fication speed was faster, with greater stability, and 
relatively high identification accuracy. However, for 
more complex contamination situations, such as mul-
tiphase flow contamination, the advantage and disad-
vantage of using UKS and ES need to be studied fur-
ther. Thus, application scenarios for UKS and ES need 
to be explored further to facilitate the selection of the 
most suitable methods for improving the accuracy of 
GCS identification under variable contamination site 
conditions.

 (4). UKS needs relatively fewer iterations compared with 
ES, and thus the computational time would be reduced 
in the identification process. In addition, UKS is more 
advantageous in terms of reducing the computational 
time if the establishment of surrogate models is not 
required and simulation models can be used instead 
to participate in iterative calculations.

 (5). During the research process, we found that the layout 
of the observation wells could greatly affect the accu-
racy of the identification results for different GCSs. 
Therefore, further studies should be conducted in the 
future by combining the optimized layout of the moni-
toring wells with the IGCSs to improve the accuracy 
of the identification results.

 (6). In this study, the variables that needed to be identified 
were the hydraulic conductivity of different zones and 
the release intensity of GCSs at different time peri-
ods, and the dimensions of the variables that needed 
to be identified were not considered high. Therefore, 
further research should investigate the differences, 
advantages, and disadvantages of the application of 
UKS and ES methods in IGGCs with high-dimen-
sional mapping relationships (such as the need to 
simultaneously identify hydraulic conductivity field 
and information of GCSs, where the number of vari-
ables that need to be identified may exceed hundreds). 
In addition, when solving the problem of IGCSs with 
high-dimensional mapping relationships, more than a 
hundred variables often need to be identified. Under 
these conditions, if the kriging method is still used to 
establish a surrogate model for the simulation model, 
the accuracy of the surrogate model may not be ideal. 
Therefore, when applying UKS and ES to solve the 
problem of IGCSs with high-dimensional mapping 
relationships, it is still necessary to explore other sur-
rogate modeling methods to establish surrogate mod-
els for simulation models for iterative calculations. 
For example, the current impressive deep learning 
methods aim to improve the approximation accuracy 
of surrogate models compared with simulation models 
with high-dimensional mapping relationships, thereby 
improving the accuracy of data assimilation and iden-
tification.

Table 6  The average computational time required using different 
methods

Model Category Count times Method

UKS ES ES-SE ES-270

Surrogate model 1 0.67 s 411.65 s 638.53 s 101.57 s
Simulation 

model
1 1.35 h 2.72 d 4.38 d 4.76 d
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Fig. 11  Convergence curve for each parameter of the study case: (a) UKS (b) ES-27 (c) ES-ES (d) ES-270
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5  Conclusion

In this study, UKS, ES-27, ES-SE and ES-270 were used 
to simultaneously identify the hydraulic conductivity and 

GCSs. The following conclusions can be made based on the 
results obtained in this study.

Based on the analysis of 20 groups of identification 
results, regardless of the initial values selected, compared 

Fig. 11  (continued)
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with ES-27, ES-SE, and ES-270, UKS achieved almost no 
fluctuations in the identification results for the hydraulic 
conductivity and GCSs, with greater stability and identi-
fication accuracy (MRE = 5.05%), and it was more likely 
to converge during the iteration process. The accuracy 
and stability of the identification results obtained with 
ES-27, ES-SE, and ES-270 all depended on the selection 
of the initial parameter ensemble. If the selection of the 
initial parameter ensemble was unreasonable, significant 
decreases occurred in the identification accuracy and sig-
nificant increases in the time consumption, especially with 
ES-27 and ES-SE. The identification results obtained by 
ES-SE had the largest fluctuation range, lowest stabil-
ity, and worst accuracy, followed by those using ES-27 
and ES-270. Compared with ES-27, ES-SE and ES-270, 
the accuracies of the identifications results were 4.08%, 
5.14%, and 1.54% higher, respectively, using UKS.

In 20 experiments, compared with  S2, the fluctuation 
amplitude of the source fluxes was greater for  S1, possibly 
because  S1 was further away from the observation wells and 
less constrained, so it was more susceptible to the effects of 
the initial parameter ensemble selection.

The number of iterations and computational times 
required using UKS, ES-27, ES- SE, and ES-270 were all 
affected by the initial values selected. However, compared 
with ES-27, ES-SE, and ES-270, the number of iterations 
and computational time were affected less by the initial val-
ues selected when using UKS, which had a smaller fluc-
tuation range. Compared with ES-27, ES-SE, and ES-270, 
UKS greatly reduced the computational time because UKS 
required far less iterations.

Increasing the parameter groups in the initial parameter 
ensemble for ES increased the stability and accuracy of the 
identification results to some extent, but its performance 
was still lower than that of UKS in terms of the number of 

iterations required, time consumption, and the accuracy 
and stability of the identification results.

The results obtained in this study demonstrated that 
compared with ES-27, ES-SE and ES-270, the hydraulic 
conductivity and GCSs identification results obtained with 
UKS exhibited greater stability and higher accuracy, while 
this method also greatly reduced the computational time 
required and computational load.
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