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this region is inhabited by over 70% of small farmhold-
ers, who are notably susceptible to the effects of extreme 
weather events (Harvey 2018). Furthermore, the impacts of 
climate change on crop yield demonstrate spatiotemporal 
variations, intensifying concerns regarding food security 
(Praveen and Palanivelu 2017). Overall, the IPCC report 
highlights the paramount importance of mitigation and 
adaptation strategies in addressing the influence of climate 
change on crop yields and sustainable agriculture. This 
necessitates comprehensive understanding of the interac-
tion between climatic variables/weather extremes and crop 
yields (Webber et al. 2018).

While long-term climatic variables determine the 
regional crop growth potential, their impact on crop yields 
varies significantly by the influence of weather extremes. 
Weather extremes can result in yield reduction below 
region-specific potential, persisting even when crops are 
exposed to optimal weather conditions (Tigchelaar et al. 
2018). In general, process-based and statistical approaches 

1 Introduction

The Intergovernmental Panel on Climate Change’s (IPCC) 
Sixth Assessment Report (2021) emphasizes persistent 
challenges in climatic variables, including rising tempera-
tures, erratic rainfall patterns, and an increasing frequency 
of extreme weather events across South Asia. Significantly, 
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Abstract
The escalating climate instability and extreme weather events significantly jeopardize food security. The study assessed 
the impact of long-term climatic variables and extreme weather events on soybean and wheat yields in rainfed central 
India. To address inherent spatial variability, the study area was divided into homogeneous zones based on rainfall and 
soil parameters. Crop yields were correlated with a comprehensive set of driving variables at seasonal and monthly scales 
within each zone. Machine learning algorithms, including Random Forest Regression (RFR) and Neural Networks (NN), 
were employed to analyze crop yield anomalies caused by climate and weather extremes. The Sobol’ index was utilized 
for global sensitivity analysis to identify key parameters. Results showed significant negative correlations between thermo-
meteorological parameters and yields of both monsoon soybean and winter wheat across multiple districts. Soybean yield 
exhibited a notable positive correlation with hydro-meteorological parameters, while wheat yield displayed a significant 
positive correlation with cold temperature extremes. RFR and NN demonstrated similar performance, with Root Mean 
Square Error (RMSE) values ranging from 0.27 to 0.39 t/ha for soybean and 0.4 to 0.6 t/ha for wheat. The Sobol’ index 
highlighted the high sensitivity of soybean yield to rainfall and rainy days during July and August, corresponding to the 
crop development and flowering stages. In contrast, wheat yield was primarily influenced by temperature extremes, par-
ticularly cold nights and hot days during the reproductive-maturity stage. These crop- and growth-stage-specific analyses 
of meteorological parameters are essential for devising effective strategies to adapt and mitigate climate emergencies.
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are being employed to assess and quantify climate change-
induced crop yield losses. Several studies have described 
the efficacy of both approaches in discerning the criticality 
of climate and weather extremes influencing crop yields and 
decision-making (Lobell and Asseng 2017). Process-based 
crop models (De Wit 1965) simulate crop growth and devel-
opment but are incapable of generating historical crop yield 
anomalies. Additionally, these models necessitate extensive 
and often hard-to-obtain input parameters (Van Oort et al. 
2011; Lu et al. 2017), which are frequently omitted from the 
modeling process, thus compromising accuracy (Robert et 
al. 2017). In contrast, statistical modeling encompasses the 
effects of climate and weather extremes on crop yield by 
utilizing historical data (Moore et al. 2017; Kukal and Irmak 
2018) through two approaches: linear/non-linear paramet-
ric and non-linear non-parametric (or machine learning) 
statistical models. These models can predict crop yield 
under varying weather conditions, including rainfall, tem-
perature, drought indices, etc. Recently, machine learning 
(ML) techniques such as random forest and neural networks 
have been employed for impact assessment and yield esti-
mation (Crane-Droesch 2018; Vogel et al. 2019; Konduri et 
al. 2020; Schierhorn et al. 2021). Lu et al. (2017) suggested 
that statistical models require fewer resources compared to 
process-based models. Furthermore, these can account for 
spatial heterogeneities in yield, climate, and soil conditions, 
making ML models the preferred choice for performance.

Wheat, a dominant cereal crop, and soybean, a legume-
oilseed crop, play crucial roles in ensuring food and nutri-
tional security, but are significantly affected by recent 
climatic fluctuations. Wheat constitutes 36% of global food 
grain production, with Central India being a major con-
tributor as per CIMMYT, Mexico (Braun et al. 1997). It is 
highly sensitive to temperature increase, with yield declin-
ing significantly above 34 °C due to accelerated senescence 
(Lobell et al. 2012). Temperature requirements vary across 
growth stages, such as 22 °C for the vegetative stage, 21 °C 
for the reproductive stage, and 35 °C as the maximum limit 
for the grain-filling stage (Porter and Gawith 1999), making 
the effects of extreme weather events time-specific (Powell 
and Reinhard 2016). Soybean contributes to 25% of global 
edible oil production and is crucial for livestock feed. Yield 
declines of soybean occurs outside the optimal temperature 
range of 26 °C to 30 °C, with adverse effects on flowering 
and pod setting. Insufficient precipitation negatively impacts 
soybean yield, with an ideal rainfall range of 500–1000 mm 
(MacCarthy et al. 2022). Though soybean can grow with 
as little as 180 mm of rain in a season, it results in a 40 to 
60% yield reduction compared to optimal conditions. Con-
sidering the sensitivity of crop growth stages to temperature 
and rainfall, the inclusion of monthly mean climatic data, 

in conjunction with seasonal data, is a valuable addition to 
the analysis.

The influence of climatic variables and weather extremes 
on crop productivity is intricate, influenced by various fac-
tors such as geographical location, crop type, and prevail-
ing agricultural practices. For instance, Kang et al. (2009) 
noted that regions characterized by high soil water holding 
capacity exhibit resilience to climate variability impacts 
while sustaining crop yields. Recent research has endeav-
ored to assess the influence of weather and climate on crop 
yield; however, much of it has relied on regression models 
to establish relationships between climatic variables such 
as temperature and rainfall and crop yield (Novikova et al. 
2020; Paymard et al. 2018; Zampieri et al. 2017; Matiu et 
al. 2017; Yu et al. 2013). However, there is a growing rec-
ognition of the need to explore further into this relationship 
by considering additional factors such as weather extremes 
during crop-specific developmental phases in different agro-
ecological conditions. While a few studies have employed 
machine learning (ML) techniques to capture the complex 
nonlinear associations between yield and climatic vari-
ables, the incorporation of weather extremes remains lim-
ited. For instance, Peichl et al. (2018) and Hofman et al. 
(2020) explored crop-yield dependencies on crop-specific 
development phases using ML models but did not include 
extreme weather events or conduct agro-ecological area-
specific evaluations. Beillouin et al. (2020) examined the 
impact of diverse extreme weather and climatic conditions 
on historical yield anomalies in European crop production 
using ML techniques but did not consider crop development 
phases. Similarly, Schierhorn et al. (2021) investigated the 
contribution of climate and weather extremes to wheat yield 
across various growth stages but did not account for agro-
ecological conditions.

In the Indian context, studies analyzing the impact of cli-
mate and weather extremes on crop yield using ML tech-
niques and considering different development phases are 
scarce. While some research, such as that by Mohanty et al. 
(2017) and Birthal et al. (2014), has explored the impact of 
climatic scenarios on soybean and other crop yields, these 
studies often focus on temperature and rainfall, neglect-
ing the influence of extreme weather events. Mohapatra 
et al. (2022) found that increasing temperatures signifi-
cantly affected grain yield in eastern India, while Gupta et 
al. (2022) and Madhukar et al. (2021) highlighted adverse 
effects of temperature and rainfall anomalies on crop yields, 
with limited attention to extreme weather events. Few inves-
tigations have focused on explaining the impact of heat 
waves on wheat yield, often confined to single-year analy-
ses (Chakraborty et al. 2019) or employing linear regres-
sion approaches (Rao et al. 2015). None of these studies 
have comprehensively addressed the full range of climatic 
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factors and their associated extremes. Furthermore, the 
Sobol’ index, a widely utilized global sensitivity analysis 
method, is employed in the present study to identify sensi-
tive parameters by simultaneously varying them across the 
entire parameter space (Sobol 1993). Therefore, understand-
ing the sensitivity of soybean and wheat yields to climatic 
variability and identifying the critical climate variables 
affecting these crop yields in India is imperative for effec-
tive agricultural management strategies. This study utilized 
ML models to discern vital climatic factors (monthly and 
seasonal) linked to yield anomalies in soybean and wheat 
in homogenous zones. Our findings contribute to existing 
knowledge by identifying the climatic variables specific to 
each growth stage that had the most significant impact on 
soybean and wheat yield losses in India, based on long-term 
historical data.

2 Study area

Two predominantly rainfed states in India, Maharashtra and 
Madhya Pradesh, both of which have experienced several 
drought events in recent past and are known for cultivating 
soybean and wheat, were chosen as the study areas (Fig. 2). 

Maharashtra, situated in western India, extends from lati-
tudes 15°35′ N to 22°02′ N and longitudes 72°36′ E to 
80°54′ E, covering an area of 3.08 lakh square kilometers, 
and divided into 36 districts. In contrast, Madhya Pradesh, 
the second-largest state in India, encompasses 50 districts 
which spans from latitudes 17°48′ N to 26°52′ N and longi-
tudes 74°2′ E to 84°24′ E. Both states experience a monsoon 
season from June to September, with higher rainfall in the 
south and southeast compared to the northwest. Approxi-
mately 55% of Maharashtra and 50% of Madhya Pradesh’s 
total land area is utilized for cultivation. Soybean and Wheat 
are the major kharif (monsoon) season and rabi (winter) 
season crop in Maharashtra and Madhya Pradesh, respec-
tively. The crop calendar of Soybean and Wheat crops, in 
respective study area, is given in Table 1.

3 Data used and methodology

The schematic diagram of methodology is presented in 
Fig. 1.

Fig. 1 Schematic diagram of 
methodology
 

Table 1 Crop calendar of Soybean and Wheat grown in kharif and rabi season, respectively
State Crops Initial Crop development Reproductive Maturity Harvest
Maharashtra Soybean Jun-Jul Jul-Aug Aug-Sep Sep-Oct Oct
Madhya Pradesh Wheat Nov-Dec Dec-Jan Jan-Feb Feb-Mar Mar
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into homogeneous zones (Fig. 2). This division was based 
on rainfall patterns and Profile Available Water Capacity 
(PAWC) of soil using a rule-based approach. PAWC refers 
to the capacity of the soil to store water in the soil profile as 
available soil moisture. It comprises water retained between 
field capacity and permanent wilting point of soil. Factors 
influencing PAWC include soil texture, organic matter con-
tent and depth. Both rainfall and PAWC are critical factors 
in crop production, as the former affects water supply while 
the latter determines water availability for crop growth. 

3.1 Clustering of the study area into homogeneous 
zones

Both Maharashtra and Madhya Pradesh exhibit significant 
spatial variability in terms of climate and soil types. Conse-
quently, agricultural practices in these states vary consider-
ably across different regions, which is evident in the spatial 
distribution of crop types and crop calendars. In this study, 
the impact of climatic and weather extremes on wheat and 
soybean yields was studied by delineating the study states 

Fig. 2 Homogenous zones delineation in study area using rainfall and PAWC

 

1 3

3464



Stochastic Environmental Research and Risk Assessment (2024) 38:3461–3479

Annual mean rainfall data of CHIRPS (5 km × 5 km) and 
PAWC derived from soil map of National Bureau of Soil 
Survey & Land Use Planning (NBSS&LUP) at 1:50,000 
scales was employed to divide Maharashtra and Madhya 
Pradesh into homogeneous zones.

Initially, rainfall and PAWC were categorized into three 
classes for each parameter across the study area, as men-
tioned in Fig. 2. Subsequently, by combining the classes 
from each parameter, a total of nine classes were generated, 
forming a 3 × 3 matrix. Majority rule was applied to assign 
a single class to each district (Fig. 2). As a result, each state 
was delineated into three homogeneous zones, grouping 
together districts with almost similar characteristics. Salient 
characteristics of the homogenous zones of Maharashtra 
and Madhya Pradesh were taken from the respective agro-
ecological zones and are presented in Table 2 (Subrama-
niam 1983).

3.2 Predictor variables employed in the analysis

In this study, a range of predictor variables were obtained, 
systematically organized, and used to compute climatic 
parameters and weather extremes spanning the period from 
1999 to 2019, as outlined in Table 3. During the kharif sea-
son, predictor variables for four consecutive months (June, 
July, August, and September) were employed to conduct 
an impact analysis of soybean cultivation in Maharashtra. 
Similarly, during the rabi season, predictor variables span-
ning five months (November, December, January, Febru-
ary, and March) were utilized to evaluate their impact on 

Table 2 Characteristics of various delineated zones in study area
State Zones % 

Area
Climate Soil LGP 

(days)
Maharash-
tra
(Soybean)

Zone-1: Rainfall 
(≤ 100 cm)/ 
PAWC 
(≤ 150 cm): both 
are limiting

48.87 Hot 
semi-arid

Shallow/
medium/
deep 
black 
soil

90–
150

Zone-2: 
Either rain-
fall < 100 cm or 
PAWC < 150 cm: 
One of these is 
limiting

20.5 Hot 
humid/
Per-humid

Red-
lateritic 
and 
alluvium 
soil

> 210

Zone-3: Rainfall 
(> 100 cm)/ 
PAWC 
(> 150 cm): both 
are sufficient

38.05 Hot 
sub-humid

Red and 
black 
soil

150–
180

Madhya 
Pradesh
(Wheat)

Zone-1: Rainfall 
(≤ 100 cm)/ 
PAWC 
(≤ 150 cm): both 
are limiting

22.6 Hot 
semi-arid

Allu-
vium-
derived 
soils

90–
150

Zone-2: 
Either rain-
fall < 100 cm or 
PAWC < 150 cm: 
One of these is 
limiting

23.3 Hot 
semi-arid

medium/
deep 
black 
soil

90–
150

Zone-3: Rainfall 
(> 100 cm)/ 
PAWC 
(> 150 cm): both 
are sufficient

55.1 Hot 
sub-humid

Red and 
black 
soil

150–
180

Table 3 Predictor variables used (1999–2019) for studying the impact of mean and extreme weather on crop yield 
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climatic, weather extreme variables are predictor variables 
in this analysis, while the crop yields (soybean and wheat) 
as response variable in each zone.

3.4.1 Random forest regression (RFR) model

Random Forest Regression is an ensemble machine learn-
ing algorithm (Breiman 2001) used for regression (or clas-
sification) tasks, able to handle a large volume of input data 
and simultaneously can reduce overfit. RFR is composed 
of multiple decision trees (DT), and the final prediction is 
an aggregation of the predictions made by these individual 
trees. The accuracy of the random forest algorithm relies 
mainly on the strength of the individual tree classifiers and 
the dependency between the classifiers (Amit and Geman 
1997). The inclusion of several trees increases the probabil-
ity of deriving an effective prediction model (Breiman 2001; 
Strobl et al. 2008). The key components and steps involved 
in RFR with input features (x) and corresponding target val-
ues (y) are given below:

 ● RFR consists of an ensemble of DT. Each tree is trained 
independently on a subset of the data using a process 
called bootstrapped sampling (randomly selecting sam-
ples with replacement) as per Liaw and Wiener (2002).

 ● Consider a dataset of size P×Q, where P is the number 
of data points and Q is the number of features.

Let P1 data points be present at some node d. RFR selects K 
random features out of Q (K < Q); and for each feature net 
reduction in variance is computed. The feature for which net 
reduction in variance is maximum is selected for decision 
making.

The criteria for nodal feature selection can be expressed 
as follows:

fselected feature = argmaxi

(
∆V fi

d

)
 (2)

∆V fi
d = Vd − (α1V

fi
S1 + α2V

fi
S2) (3)

α1 =
Number of data points in S1

P1
 (4)

α2 = P1− α1 (5)

Where:
Vd is the variance at node d,
∆V fi

d represents the reduction in the variance at node d 
when fi  is selected for decision making,
V fi
S1

is the variance present in S1 subset when feature fi  is 
selected for decision making (i∈ (1, K)), and

wheat cultivation in Madhya Pradesh. In total, 43 variables 
were computed using daily data for soybean crop analysis, 
while 53 variables were computed for wheat crop analysis. 
Soybean and wheat crop yield data were obtained from the 
Ministry of Agriculture website (https://data.desagri.gov.
in/website/crops-apy-report-web) for the Maharashtra and 
Madhya Pradesh regions, respectively. To remove inherent 
trends in the data, a linear regression detrending approach 
was applied for crop yield data preprocessing.

3.3 Correlation between yield and climatic 
parameters/ extremes

A Pearson’s correlation coefficient was calculated to exam-
ine the relationship between crop yields and the various 
weather and climatic variables. This provides insight into 
how climatic and weather extremes affect crop yields. The 
correlation study was carried out on seasonal and monthly 
basis to understand the specific impact of weather extremes 
on crop yield during different growth stages. It is impor-
tant to note that correlation does not imply causation, so the 
study was followed by more detailed analysis of the data. 
The formula to compute the correlation coefficient (r) is 
given below:

r =
∑N

i=1 (xi − x̄) (yi − ȳ)√∑N
i=1(xi − x̄)

2
√∑N

I=1(yi − ȳ)
2 (1)

Where, xi is the crop yield in time-series data in a point i 
for a particular district, yi is the weather/climatic variables 
in time-series data in a point i for a particular district, x̄ 
and ȳ is district mean yield and weather/climatic variables 
in time-series, respectively, and N is total number of data 
points.

3.4 Development of models

For the present study, two ML models viz., Random Forest 
regression (RFR) and Neural network (NN) are developed 
for each zone and each crop. Approximately, 70% of data 
were used for model training and remaining 30% were used 
for model testing. For each model, a grid-search and 10-fold 
cross validation technique was used to select the optimum 
hyperparameters to tune the machine learning models. 
Then, for each grid location, performance of each model 
was evaluated using statistical measures of error between 
the predicted and observed values i.e., Root Mean Squared 
Error (RMSE). A well-trained statistical model generates 
small RMSE values. The optimum values of hyper-param-
eters producing maximum accuracy for each ML model are 
given in Table 4. District-level seasonal and month-wise 
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3.4.2 Neural network (NN) model

A neural network model with 2 hidden layers (input-8-4-1) 
was constructed to predict the zone-wise yield of soybean 
and wheat using Python programming language and PyTorch 
library (Paszke et al. 2019). Several hyperparameters (num-
ber of hidden layers, number of neurons per layer, learning 
rate, and batch size) which affect the performance of an ANN 
are tuned using grid-search optimization and 10-fold cross 
validation technique (Table 4). Here, data was used in a 70:30 
ratios to train and test the model. The leaky Rectified Lin-
ear Unit (ReLU) activation function was used in each layer 
with decay coefficient of 0.01. The model was optimized 
using momentum-based Stochastic Gradient Descent (SGD) 
optimizer algorithm. Momentum-based SGD is a variation of 
the traditional SGD optimization algorithm that incorporates 
momentum to accelerate convergence. The momentum term 
allows the optimizer to build up velocity in directions where 
gradients consistently point, which accelerates convergence 
and escape local minima. The Mean Square Error (MSE) 

V fi
S2

is the variance present in S2 subset when feature fi  is 
selected for decision making (i∈ (1, K)).

 ● Each of the trees is grown till maximum depth to reduce 
bias. Finally, the RFR aggregates the predictions from 
all the individual decision trees by averaging, which re-
duces the overall variance of model (Breiman 2001).

Mathematically, the prediction made by a RFR for regres-
sion can be represented as follows:

Given a new data point with feature values xnew, and a 
RFR with N decision trees, the prediction (ypred) is:

ypred =

∑N
n=1 (treei (xnew))

N
 (6)

Where, treei(xnew) represents the prediction of the ith deci-
sion tree for the new data point xnew.

Table 4 Hyperparameters range 
and the optimal values for each 
ML model for yield modeling
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Where, yi is the actual crop yield in time-series data in a 
point i for a particular district, ŷ is estimated yield using 
model in same district, N is total number of data points, ȳ is 
district mean yield in time-series.

3.6 Impact analysis of predictive variables in crop 
yield estimation

Impact of various predictor variables on crop yield estima-
tion was analyzed through sensitivity analysis under dif-
ferent presumed scenarios. We assumed the accuracy to 
be highest with least RMSE, with all predictor variables. 
Therefore, we systematically removed individual predictor 
variables to evaluate their influence on crop yield estimation 
using different machine learning approaches. This analysis 
aims to quantify the significance of predictor variables in 
predicting crop yield based on historical data. Combina-
tions of predictor variables under different scenarios were 
analyzed for soybean and wheat crops during their respec-
tive growing seasons. The following is a summary of the 
scenarios:

 ● Scenario 1 (S1): All predictor variables were retained 
in each machine learning model for both soybean and 
wheat crops.

 ● Scenario 2 (S2): Monthly temperature extremes are ex-
cluded from the input data.

 ● Scenario 3 (S3): Monthly minimum temperatures, max-
imum temperatures, and temperature extremes are ex-
cluded from the input data.

 ● Scenario 4 (S4): Both monthly and seasonal Growing 
Degree Days (GDD), as well as minimum temperatures, 
maximum temperatures, and temperature extremes are 
excluded from the input data.

 ● Scenario 5 (S5): Monthly and seasonal rainfall, rainy 
days, GDD, minimum temperatures, maximum tem-
peratures, and temperature extremes are excluded from 
the input data.

 ● Scenario 6 (S6): Monthly SPEI, GDD, minimum tem-
peratures, maximum temperatures, and temperature 
extremes are excluded from the input data; retaining 
monthly and seasonal rainfall and rainy days.

3.7 Global sensitivity analysis

In the current study, a global sensitivity index, often referred 
to as the first-order Sobol’ index is used (Sobol 2001). It 
measures the first-order effect of an input variable on the 
output of a model and quantifies the portion of the total out-
put variance that can be attributed to the variation in a single 
input variable while keeping all other input variables fixed. 

was used as loss function to evaluate the model. The steps 
involved in NN training are as follows:

1. Initialize model parameters (weights and biases) with 
Xavier initialization (Glorot and Bengio 2010)

2. Define Leaky ReLU as activation function as follows

Leaky ReLU(x) = {x, if x > 0

{α∗ x, if x ≥ 0
 (7)

3. Define a list of learning rate, batch size and momentum 
parameters to be tested for model performance.

4. For each combination in step 3, train the NN model and 
update model parameters via SGD with momentum 
(Eqs. 8 and 9) and evaluate model performance on vali-
dation dataset.

Wt+1 = Wt + Vt+1 (8)

Vt+1 = µ× Vt − α×∇Lt (9)

Where Wt is weight at tth epoch,
Vt is velocity at tth epoch,
µ is decaying factor accounts the number of iterations of 
previous gradients into the current update; µ∈ (0,1).
α is learning rate,
∇Lt is gradient of loss function at tth epoch.

5. Compute loss for each of the model-parameter combi-
nation in step 3 and select the model parameter with 
corresponding to minimum MSE.

3.5 Evaluation of modeling performance

Three statistical criteria, including coefficient of determi-
nation (R2), root mean square error (RMSE), and normal-
ized root mean square error (nRMSE), are used to evaluate 
the performance of the ML models. Equations to compute 
RMSE and nRMSE are given below:

RMSE =

√∑N
i=1 (yi − ŷ)2

N
 (10)

nRMSE =

√∑N
i=1 (yi−ŷ)2

N

ȳ
 (11)

R2 = 1−
∑N

i=1(yi − ŷ)2

∑N
i=1(yi − ȳ)2

 (12)
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first-order Sobol’ index suggests that the variable has a sig-
nificant influence on the output, while a low index suggests 
that the variable’s effect is relatively small.

4 Results

4.1 Correlation between crop yield and different 
predictor variables

Different hydro-meteorological (rainfall, rainy days, SPEI) 
and thermo-meteorological (Tmax, Tmin, GDD) parameters 
over monthly/ seasonal scale along with the temperature 
extremes (hot days, hot nights, cold days, cold nights) are 
linearly correlated with the district level crop yield over the 
time period of 1999–2019. Zone-wise correlation matrix 
for soybean and wheat yield is presented in Tables 5 and 6 
respectively. As detailed in Table 2, in zone 1, both rainfall 
and Plant Available Water Capacity (PAWC) are limiting 

Mathematically, the first-order Sobol’ index for an input 
variable xi is defined as follows:

Let y be the output of the model, and let xi be the ith input 
variable. Then, the first-order Sobol’ index Si is calculated 
as:

Si =
V [E (y|xi)]

V (y)  (13)

Where, Si is the first-order Sobol’ index for input variable xi, 
E(y∣xi) is the expected value (mean) of the output, y con-
ditioned on the value of input variable xi.  In other words, 
it’s the average value of the output when xi varies while all 
other inputs are fixed. V represents the variance of a random 
variable. V(y) is the variance of the total output y, consider-
ing all input variables.

The first-order Sobol’ index provides insight into how 
much the variation in an individual input variable contrib-
utes to the overall variability of the model output. A high 

Table 5 Correlation coefficient between Soybean yield and climate/weather extremes over different zones of Maharashtra 

* Statistically significant at p < 0.1
Hydro-meteorological variables: (1: RF_Jun, 2:RF_Jul, 3: RF_Aug, 4: RF_Sep, 5: RF Seasonal, 6: RD_Jun, 7: RD_Jul, 8: RD_Aug, 9: RD_Sep, 
10: RD Seasonal, 11: SPEI_Jun, 12:SPEI_Jul, 13: SPEI_Aug, 14: SPEI_Sep)
Thermo-meteorological variables: (15: Tmax_Jun ,16: Tmax_Jul, 17: Tmax_Aug, 18: Tmax_Sep, 19: Tmin_Jun, 20: Tmin_Jul, 21: Tmin_Aug, 
22: Tmin_Sep, 23: GDD_Jun, 24:GDD_Jul, 25:GDD_Aug, 26: GDD_Sep, 27: Cold days, 28: Cold nights, 29: Hot days, 30: Hot nights)
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soybean yield across the majority of districts. A similar trend 
was also observed for the GDD of July month. However, there 
was no consistent statistically significant result found for the 
Tmin across the months of the soybean crop season. Addition-
ally, temperature extremes showed no significant correlation 
with soybean yield, except for hot nights, which exhibited a 
positive correlation. In contrast, across zone 3, both the Tmax 
and Tmin of July were found to be significantly negatively 
correlated with soybean yield across the majority of districts. 

factors. In zone 2, either rainfall or PAWC is limiting, while 
in zone 3, neither rainfall nor PAWC imposes limitations.

In general, across the zones, thermo-meteorological param-
eters were found to be negatively correlated with soybean 
yield, whereas, positive correlation was observed with hydro-
meteorological parameters (Table 5). The area under soybean 
cultivation in zone 2 is very small; therefore, it is not discussed 
further. In zone 1, there was a significant negative correlation 
observed between the Tmax of July and August months and 

Table 6 Correlation coefficient between Wheat yield and climate /weather extremes over different zones in Madhya Pradesh 

* Statistically significant at p < 0.1.
Hydro-meteorological variables: (1: RF_Nov, 2: RF_Dec, 3: RF_Jan, 4: RF_Feb, 5: RF_Mar, 6: RF_Seasonal, 7: RD_Dec ,8: RD_Jan, 9: 
RD_Feb, 10: RD_Seasonal, 11: SPEI_Nov, 12: SPEI_Dec, 13: SPEI_Jan, 14: SPEI_Feb, 15: SPEI_Mar)
Thermo-meteorological variables: (16: Tmax_Nov, 17: Tmax_Dec, 18: Tmax_Feb, 19: Tmax_Mar, 20: Tmin_Nov, 21: Tmin_Dec, 22: Tmin_
Jan, 23: Tmin_Mar, 24: GDD_Nov, 25: GDD_Dec, 26: GDD_Jan, 27: GDD_Feb, 28: GDD_Mar, 29: GDD_Seasonal, 30: Coldday_Nov, 31: 
Coldday_Dec, 32: Coldday_Jan, 33: Coldday_Feb, 34: Coldday_Mar, 35: Coldnight_Nov, 36: Coldnight_Dec, 37: Coldnight_Jan, 38: Cold-
night_Feb, 39: Coldnight_Mar, 40: Hotday_Feb, 41: Hotday_Mar, 42: Hotnight_Nov, 43: Hotnight_Mar)
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wheat yield as it is grown under limited irrigation condition in 
Madhya Pradesh.

Effect of thermo-meteorological parameters over the 
wheat yield was significant. Tmin of November, Decem-
ber, March; GDD of November, December, March and 
the whole season were found to have significant negative 
correlation with wheat yield over wide spread districts of 
Zone (1) Similarly, Tmin of November, December, Janu-
ary, March; GDD of November, December, March and the 
whole season showed significant negative correlation with 
wheat yield over majority of the districts of Zone (2) Tmin 
of December, January, March; GDD of November, Decem-
ber, January, March and the whole season showed signifi-
cant negative correlation with wheat yield over Zone (3) 
Tmax did not show any consistent result across the zones. 
Important to note that Tmin and its coupled parameter GDD 
during the latter part of the wheat season (ripening stage) 
plays a significant role in the wheat yield. Any increase 
in the thermal environment particularly in the later part of 
the wheat crop season has significant negative effect on 
the yield. It is apt to mention here that such scenarios of 
terminal heat stress on wheat crop are frequent over India 
in climate change scenarios. Hence, result of the present 
study could further assist in avoiding/ mitigating such stress 
towards sustainable wheat yield.

Overall, a region facing water scarcity such as Zone-01, 
wheat yield exhibits significant positive correlation with 
both seasonal and November month rainy days. The SPEI at 
a 3-month time scale, which captures the integrated response 
of rainfall and temperature, displays a significant positive 
correlation across all zones, especially during reproductive 
growth stage. Additionally, temperature-related parameters, 
including climatic extremes, show significant correlations. 
Specifically, an increase in minimum temperature adversely 
affects wheat yield in all zones. GDD, whether calculated 
seasonally or monthly, are inversely related to wheat yield.

Moreover, the study identifies weather extremes such as a 
rise in the frequency of cold days and cold nights (indicating 
a decrease in maximum and minimum temperatures, respec-
tively), positively affecting yield. Conversely, an increase 
in the occurrence of hot days and hot nights during the rip-
ening phase negatively impacts wheat yield, aligning with 
previous studies (Rao et al. 2015; Dubey et al. 2020; Farhad 
et al. 2023). The observed yield reduction due to an increase 
in temperature may be related to increased crop water 
demand in heat-induced limited water conditions (Zhao et 
al. 2017; Zaveri and Lobell 2019). Furthermore, the study 
reveals a distinct effect of climate and its extremes vary-
ing with crop growth stages. In wheat, crown root initiation, 
which usually occurs after 21 days of sowing, is one of the 
most critical stages for water stress. Therefore, an increase 

Similarly, the GDD of July, August, and September exhibited a 
significant negative correlation with soybean yield. However, 
temperature extremes did not show any significant correlation. 
It is apt to mention that soybean is cultivated in the warm and 
humid climate of the kharif season in central India. Chakraborty 
et al. (2017) reported a significant increase in temperature, par-
ticularly Tmin, in these areas due to climate change. This rise in 
temperature has a cascading effect on the kharif season GDD, 
making it significantly higher, and consequently, negatively 
impacting soybean yield. The present study also revealed a sig-
nificant negative correlation between temperature (particularly 
Tmax, Tmin, and GDD) during the crop establishment phase 
and soybean yield.

As the majority of soybean crops are rainfed, hydro-
meteorological parameters generally exhibit a positive cor-
relation with soybean yield. Specifically, rainfall in July and 
August, rainy days in July, and the SPEI in July and August 
were significantly positively correlated with soybean yield 
across most districts in zone 1. In zone 3, seasonal rainfall, 
rainfall in September, seasonal rainy days, rainy days in 
August and September, and SPEI in August and September 
showed significant positive correlations with soybean yield.

In zone 1, low rainfall during the crop establishment and 
development phases may negatively affect yield, especially 
if the soil’s water-holding capacity is insufficient to meet the 
crop’s requirements. However, in zone 3, significant yield 
reductions were observed only during critical growth stages, 
such as flowering and pod filling, when water demand is 
high and rainfall is scarce. Therefore, rainfall and its distri-
bution have a positive effect on soybean yield. Additionally, 
SPEI, which reflects the overall moisture surplus or deficit 
condition of the ecosystem, also exhibits a positive correla-
tion with soybean yield.

In India, wheat (a long-day plant) is cultivated during the 
winter season to cope with rising temperatures during its 
crucial ripening and reproductive growth phases. Table 5 
represents the correlations between climatic variables and 
their extremes with district-level wheat yield in three zones. 
As nearly half of the crop’s water requirements are typically 
met by rainfall, a significant correlation was not observed in 
most districts in Madhya Pradesh, indicating the complex-
ity of the relationship between rainfall patterns and wheat 
yield.

The SPEI of November, January, March, Rainy days over 
the season and November month showed significant positive 
correlation with wheat yield over Zone (1) Similarly, SPEI of 
February and March were found to have significant positive 
correlation with wheat yield over zone (2) Monthly SPEI of 
December to March and Rainfall of December showed similar 
result over zone (3) In nutshell, rainfall and moisture surplus 
condition as depicted by SPEI has significant positive effect on 
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4.2 Influence of predictive variables in crop yield 
estimation

4.2.1 Sensitivity analysis based on RMSE

Towards developing the impact of climate parameters on 
crop yield, sensitivity of causative parameters was assessed 
by systematically removing individual predictor variables 
in machine learning models. Six sets of scenarios were 
created as mentioned in Sect. 3.6. In the case of soybean, 
Scenario 1 (where all parameters were employed for pre-
diction) exhibited the lowest RMSE in both RFR and NN 
models (0.3 t/ha and 0.34 t/ha in Zone-01; 0.35 t/ha and 0.39 
t/ha in Zone-02; and 0.27 t/ha and 0.29 t/ha in Zone-03), 
as given in Fig. 3. To account for zone-wise variations in 
absolute yield, nRMSE was calculated, reflecting the resid-
ual variance in models and relating RMSE to the observed 
range of variables. Models employing all parameters also 

in temperature (Tmax) or a decrease in water availability 
(RD or SPEI) in November shows a negative association 
with crop yield. Other critical growth stages such as flower-
ing, jointing, and milking stages corresponding to January, 
February, and March, respectively, also exhibit sensitivity 
towards temperature-related parameters (Tmax, frequency 
of hot days, cold days, and cold nights). Wheat yields in 
Madhya Pradesh exhibited a weak correlation with rainfall 
parameters across all zones. However, the Standardized 
Precipitation Evapotranspiration Index (SPEI) displayed a 
reasonable positive relationship with wheat yields. This sug-
gests that SPEI serves as a better indicator of water avail-
ability for crops compared to rainfall, as it captures water 
stress effectively (Tirivarombo et al. 2018; Ortiz-Bobea et 
al. 2019).

Fig. 3 Error (RMSE) estimation and explained variance (R2) using various combinations of predictor variables for Soybean yield across different 
zones. S1: Scenario 1, S2: Scenario 2, S3: Scenario 3, S4: Scenario, S5: Scenario 5, S6: Scenario 6
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segregating the effect of temperature and its extremes on 
crop yield is challenging as these are often collinear. The 
maximum reduction (6–7%) in the explanatory power of the 
model was observed after the exclusion of hydro-meteoro-
logical parameters in Zone-01, whereas a decrease of 2–4% 
in explanatory power occurred after removing thermo-
meteorological parameters in Zone-03. Notably, using only 
the rainfall parameter or SPEI parameter in RFR and NN 
models (RMSE 0.36 t/ha and 0.45 t/ha) increased the soy-
bean yield estimation error by 18% and 32%, respectively, 
compared to when all parameters were utilized.

Similarly, all predictor variables (Scenario 1) could able 
to estimate wheat yield and explain the variability with 
RMSE (and R2) values of 0.54 t/ha (0.67) and 0.58 t/ha 
(0.65) in Zone-01; 0.57 t/ha (0.60) and 0.42 t/ha (0.64) in 
Zone-02; and 0.59 t/ha (0.59) and 0.51 t/ha (0.57) in Zone-
03 using RFR and NN, respectively (Fig. 4). RFR and NN 
models utilizing all parameters exhibited nRMSE values of 
21.7% and 23.5% (Zone-01); 25.5% and 18.8% (Zone-02); 
and 20% and 17% (Zone-03), respectively. The stepwise 

yielded lowest normalized RMSE (nRMSE) values of 19% 
and 21% in Zone-01; 22.2% and 24.32% in Zone-02; and 
15.2% and 16.2% in Zone-03 for RFR and NN models, 
respectively. Subsequent removal of individual parameters 
led to increases in both RMSE and nRMSE. Similarly, the 
R2 for both models in Scenario 1, encompassing all climatic 
variables and temperature extremes, could explain the vari-
ability in soybean yield to the extent of 65–66% in Zone-01, 
56–59% in Zone-02, and 53–55% in Zone-03 (Fig. 3). Inter-
estingly, the step-wise removals of thermal parameters such 
as temperature extremes, Tmax, Tmin, and GDD as men-
tioned in Scenarios 2, 3, and 4 did not significantly impact 
the uncertainty estimates, suggesting that these parameters 
are intertwined in affecting the crop yield. A considerable 
portion of the influence of other temperature parameters on 
yields had already been captured by temperature extremes. 
For instance, an increase in the frequency of hot days inher-
ently raises the monthly average Tmax, Tmin, and heat 
accumulation (via GDD) during grain formation stages 
(Vogel et al. 2019). This intricate relationship indicates that 

Fig. 4 Error (RMSE) estimation and explained variance (R2) using various combinations of predictor variables for Wheat yield across different 
zones. S1: Scenario 1, S2: Scenario 2, S3: Scenario 3, S4: Scenario, S5: Scenario 5, S6: Scenario 6
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4.2.2 Sensitivity analysis of different predictor variables 
using Sobol’ index

Sobol sensitivity analysis is commonly employed for 
complex system models to quantitatively decompose out-
put variance concerning input parameters. In this study, a 
first-order Sobol’ index was utilized to assess the individual 
impact of input parameters on the model while keeping all 
other parameters fixed. The first-order Sobol’ index always 
yields positive values (direction-less), and the sum of all 
individual parameters should be equal to 1. Parameters with 
sensitivity indices greater than 5% are deemed significant 
(Zhang et al. 2015).

For soybean yield, the study revealed sensitivity to sea-
sonal RD (> 20%), followed by RD in July and August in 
Zone-01 (Fig. 5). This underscores water stress as a limiting 
factor for yield during the crop development stages (from 
leaf and stem development to flowering) in regions facing 
water scarcity. In Zone-02, characterized by high rainfall 
but poor soil water retention, Tmax plays a major role in 

removal of predictor variables increased both RMSE and 
nRMSE. In Zone-01, models incorporating only hydro-
meteorological parameters and excluding thermal param-
eters (Scenario 4) resulted in a 20% increase in RMSE and 
10% reduction in model explanatory capability. Conversely, 
models working with either RF/RD or SPEI (Scenarios 5 or 
6) showed increased RMSE (and decreased R2) and there-
fore, accounted the less variability in crop yield, underscor-
ing their significant role in wheat yield in Zone-01 with low 
rainfall. While increases in RMSE were observed in Zone-
03, the extent was not as high as water limited Zone-01 and 
Zone-02, indicating that thermal parameters explained most 
of the variability. It is worth to note that both state-of-the-
art ML models captured the similar pattern in all scenarios 
despite of different extent of RMSE values.

Fig. 5 Sobols’ sensitivity index 
of different predictor variables 
of Soybean yield over different 
zones
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hot days. In Zone-03, temperature extremes like spells of 
hot days and cold nights in March emerged as crucial factors 
affecting wheat yield (Fig. 6). It is a well-known fact that 
exposure of wheat to extreme heat events during the repro-
ductive phase leads to sterile flowers, damaged pollen tube 
growth, and fertilization issues, resulting in reduced wheat 
yield (Shenoda et al. 2001; Ullah et al. 2022). Wheat yields 
in the central part of India appear unresponsive to hydro-
meteorological parameters (< 5% Sobol’ index) across all 
growth stages in all zones, aligning with findings from simi-
lar studies conducted elsewhere (Birthal et al. 2014; Petersen 
2019; Schierhorn et al. 2021). Notably, an agreement exists 

soybean yield variability in both Random Forest (RFR) and 
Neural Network (NN) models. Tmax accelerates leaf senes-
cence and restricts photosynthetic activity, consequently 
affecting soybean pod filling. In Zone-03, both temperature 
and rainfall during soybean’s reproductive growth stages 
(flowering to pod filling) are critical factors influencing 
yield.

In the case of wheat crops, the study found sensitivity to 
spells of cold nights (i.e., frequency of Tmin lower than the 
10th percentile) during the reproductive phase in both Zone-
01 and Zone-02. Other parameters influencing wheat yield 
include thermal factors such as GDD, Tmax, cold days, and 

Fig. 6 Sobols’ sensitivity index 
of different predictor variables of 
Wheat yield over different zones
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nights during February negatively affected wheat yields 
during the anthesis phase, reducing photosynthesis and 
increasing respiration, leading to yield loss (Sadok and Jag-
adish 2020). Rao et al. (2015) found a significant negative 
relation between wheat yield and increased Tmax and Tmin 
in January and February in India, with Tmin exhibiting a 
more pronounced impact. Various studies have reported dif-
ferent degrees of yield decline under temperature effects, 
depending on the location of the study. For instance, Rao 
et al. (2015) documented a 7% yield loss with a 1 °C rise in 
Tmin in India, while You et al. (2009) reported a range of 
3–10% in China. Additionally, Lobell et al. (2005) observed 
a 10% decline in Mexico, among others. It was observed 
that Tmin exceeding 12 °C and Tmax exceeding 34 °C were 
identified as critical during the post-anthesis period (Rao 
et al. 2015). Our study indicates that in zones with limited 
moisture and soil water-holding capacity, Tmin extremes 
and seasonal GDD are determining factors for wheat yield. 
However, in Zone-03 (without limitations), extreme Tmax 
in March, representing the grain filling and ripening period, 
emerges as a sensitive parameter for wheat yield. Addition-
ally, cold nights (Tmin extremes) during the reproductive 
phase of wheat were identified as one of the most sensitive 
parameters, along with seasonal GDD, using global sensi-
tivity analysis.

The outcome of present study may align to several adap-
tation strategies useful to mitigate the impact of climate and 
weather extremes on wheat and soybean crop yield, includ-
ing altering cropping patterns, practicing minimum tillage 
(Biswas et al. 2008), adjusting sowing dates, cultivating 
heat-tolerant varieties, and implementing additional fertil-
izer and irrigation (Dubey et al. 2020).

6 Limitations and future scope

Our study emphasizes that utilizing intra-seasonal climatic 
variables for distinct crop developmental stages enhances 
the understanding of the relationship between weather and 
yield during these critical periods, aligning with previous 
research findings (Schierhorn et al. 2021). A deeper compre-
hension of intra-seasonal climate effects on yields can pro-
vide valuable insights for decision-making processes among 
farmers and policymakers. However, it is noteworthy that 
the current study has not utilized the explicit consideration 
of phenology. Instead, it employs monthly weather and cli-
matic parameters as representatives of the dominant growth 
stage occurring in that respective month. As a future scope 
of work, we propose for a more distinct approach by inte-
grating satellite-derived crop growth stages, encompassing 
key phases like the start of the season, peak growth stage, 
reproductive stage, and senescence, which will enhance the 

between RFR and NN models in terms of the relative impor-
tance of climatic factors affecting soybean and wheat crop 
yield, despite differences in Sobol’ index magnitude.

5 Discussion

While previous studies have examined the influence of 
in-season climatic variables on crop yield (Harkness et al. 
2020), there has been relatively little research linking these 
variables to specific crop development phases and their con-
tribution to understanding the relationship between weather 
and crop yield using machine learning (ML) techniques 
(Hofman et al. 2020; Beillouin et al. 2020; Schierhorn et 
al. 2021). Assuming zone-wise consistent soil conditions, 
we focus on climate variability as the primary determinant 
of soybean and wheat crop yield in each zone. Our results 
indicate that climatic variables can explain a significant 
proportion of yield variability, ranging from 66 to 42% in 
zone-01 and 59–37% in zone-03, regardless of crop type. 
Additionally, weather extremes play a crucial role during 
specific crop growth stages, although their impact is less 
pronounced compared to climatic variables, as observed by 
Schierhorn et al. (2021). These climate-driven impacts vary 
not only with crop types such as soybean or wheat but also 
with the prevailing climate and soil characteristics of the 
region (Kukal and Irmak 2018). In our study, we found that 
the effects of heat and water stress vary significantly among 
different crop types and regions. Vicente-Serrano et al. 
(2013) noted reduced vegetation sensitivity to water stress 
in regions with climatological water excess, consistent with 
our findings. For instance, hydro-meteorological parameters 
were not found to be sensitive in Zone-03, which does not 
lack rainfall. Moreover, wheat, even as an irrigated crop, did 
not exhibit sensitivity to hydro-meteorological parameters 
leading to yield decline.

Murari et al. (2018) emphasized the significance of tem-
perature extremes on crop yield, particularly in the southern 
part of India. Hofman et al. (2020) also found a positive 
response of soybean to increases in cool minimum tempera-
tures using random forest (RF) models. In our study, we did 
not find a significant association between cold nights (mini-
mum temperature extremes) and soybean yield in Indian 
conditions. However, a decrease in soybean yield was 
observed with high maximum temperatures (Tmax) during 
the pod filling stage, consistent with findings for soybean 
yield sensitivity to August Tmax in Zone-03. Sharma et al. 
(2022) reported a 25.6% decline in soybean yield with a 
1 °C rise in Tmax. In wheat crops, extreme heat during the 
grain-filling phase, particularly in Zone-03, reduced yield, 
as heat stress accelerates grain filling, reducing both dura-
tion and ultimately grain yield (Barlow et al. 2015). Hot 
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relationship between climate and yield variability is imper-
ative. This knowledge will pave the way for enhanced 
adaptation strategies, mitigating potential yield losses and 
ensuring sustainable agricultural practices.
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