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1 Introduction

Rainfall-induced landslides often cause enormous dam-
age and property losses worldwide (e.g., Zhang et al. 2011; 
Wei et al. 2019; Lu et al. 2023; Mondini et al. 2023). As 
these landslides are often distributed over large regions, 
developing landslide susceptibility maps (LSMs) has been 
considered a useful tool for the risk management of these 
landslides (e.g., Long et al. 2021; Gong et al. 2022; Su et 
al. 2023). At present, two types of models have been widely 
used for developing the LSMs, i.e., the data-driven mod-
els rely on the statistical analysis of previous landslide 
events, and physically-based models through regional sta-
bility analysis of the slopes (e.g., Merghadi et al. 2020; Ji 
et al. 2022). The data-driven methods consider the evolu-
tion of landslides to predict slope failure (Cascini et al. 
2022), while also assuming that conditions resembling 
those of historical landslide areas may evolve into future 
slope instability (e.g., Yalcin., 2008; Gong et al. 2022), and 
various techniques have been used for learning it, such as 
logistic regression (e.g., Zhao et al. 2019), random forest 
(e.g., Sun et al. 2021; Fu et al. 2023), convolutional neural 
network (e.g., Fang et al. 2020; Wang et al. 2021a; Wei et 
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Landslide susceptibility maps can provide important information for managing regional landslide risks. Traditionally, 
data-driven and physically-based models are widely used for rainfall-induced landslide susceptibility mapping, but each 
method has limitations. In this study, a hybrid method that integrates a data-driven model and a physically-based model 
is proposed for rainfall-induced landslide susceptibility mapping, where the uncertainty in the soil properties can be 
explicitly considered. The proposed method is illustrated with landslide susceptibility mapping in Shengzhou County, 
Zhejiang Province, China. Logistic regression is used as the data-driven model, and the regional assessment of rainfall-
induced landslides model (RARIL) is used as the physically-based model. Three hybrid models are developed. Hybrid 
model I, which considers soil parameters uncertainty, is compared with hybrid models II and III, which do not consider 
it. Results indicate that all the three hybrid models outperform the conventional logistic regression and RARIL models. 
Notably, hybrid model I, which considers the soil parameters uncertainty, outperforms hybrid models II and III, which 
do not consider it.
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al. 2024). However, the applicability of data-driven mod-
els may be limited by the quality and quantity of available 
historical landslide data. Unlike the data-driven models, 
the physically-based model typically consists of a hydro-
logical and a slope stability model (e.g., Vieira et al. 2018), 
which allows realistic modeling of the physical mechanism 
of slope failure. Several physically-based models have been 
developed for rainfall-induced regional LSMs, such as shal-
low slope stability model (e.g., Montgomery and Dietrich 
1994; Abraham et al. 2023), transient rainfall infiltration 
and grid-based regional slope-stability model (e.g., Baum et 
al., 2002; Ma et al. 2021; Wei et al. 2021) and the regional 
assessment of rainfall-induced landslides model (RARIL) 
(Yang et al. 2022). Nevertheless, physically-based models 
mostly are created by simplifying the real physical process 
and giving assumptions (Medina et al. 2021). Additionally, 
the soil parameters necessary for physically-based models 
on a regional scale could be difficult to obtain (e.g., Sun et 
al. 2024) and are often treated as fixed values during the 
application of such models (e.g., Pradhan and Kim 2016).

To overcome the limitations of the two types of mod-
els, the hybrid model, which intends to take advantage of 
the two types of models, has also been explored recently 
as a promising tool to achieve more interpretable and accu-
rate LSMs (e.g., Nguyen et al. 2022; Wei et al. 2023). For 
instance, Nguyen et al. (2022) adopted a matrix-based 
approach to combine the outcomes of data-driven and phys-
ically-based models. Wei et al. (2023) integrated the fac-
tor of safety (FOS) value derived from the physically-based 
model into the data-driven model, serving as a new condi-
tioning factor to replace the initial geological conditioning 
factor. These hybrid models improved the interpretability of 
landslide susceptibility analysis and produced more accu-
rate LSMs. Nevertheless, in these hybrid models, the soil 
parameters uncertainty is not considered. The soil proper-
ties in a region, are indeed hard to determine accurately and 
could be associated with a significant amount of uncertainty 
(e.g., Jelínek and Wagner 2007; Cao et al. 2016).

The object of this study is to propose a novel hybrid model 
for landslide susceptibility analysis with explicit consider-
ation of the uncertainty in the soil properties. This paper first 
introduces the framework for constructing hybrid models. 
Then, the data-driven model and physically-based model is 
introduced, followed by the three hybrid models, i.e., one 
model considering the soil parameter uncertainty, another 
model using the same data-driven framework but does not 
consider soil parameter uncertainty, and a matrix-based 
model also does not consider soil parameter uncertainty. 
Finally, the conventional data-driven, physically-based 
model and the three hybrid models are illustrated and com-
pared with a case. We believe that the proposed method 
offers a new way to combine the advantages of data-driven 

and physically-based models for more accurate rainfall-
induced landslide susceptibility assessment.

2 Methodology

Model hybridizing provides a novel method for improv-
ing landslide susceptibility assessment. As the data-driven 
model is trained to find the relationship between condition-
ing factors and landslide occurrence, one possible way to 
develop the hybrid model is to train the data-driven model 
by considering the prediction from the physically-based 
model as an additional conditioning factor. As such, the 
information provided by the physically-based model can 
naturally be integrated into the hybrid model. To consider 
the soil parameters uncertainty in the physically-based 
model, the uncertain soil parameters can be treated as ran-
dom variables, and the stability of the slopes can be thus 
measured through the failure probability. In such a case, 
the failure probability of the landslide calculated through a 
physically-based model can be considered as the additional 
conditioning factor to be incorporated in the conventional 
data-driven model.

To implement the above idea, a data-driven model and a 
physically-based model should be first selected. As an illus-
tration, the logistic regression (e.g., Yilmaz 2009; Zhan et al. 
2023) will be used in this study to develop the data-driven 
model as it is simple and be widely used, and RARIL (Yang 
et al. 2022) will be used as the physically-based model for 
its ability to explicitly consider uncertainty in the soil prop-
erties through reliability analysis. Figure 1 shows the pro-
cess of the proposed hybrid models, which consists of three 
steps, i.e., construction of a data-driven module, establish-
ment of a physically-based model, and development of the 
hybrid model through the combination of the two types of 
models. In the following, each of the above steps will be 
introduced.

2.1 Data-driven model

To develop the hybrid model, a data-driven technique should 
be first selected. As an illustration, the logistic regression 
will be used in this study as the data-driven model. In the 
logistic regression, the relationship between the probability 
of landslide occurrence and the conditioning factors (e.g., 
Zhao et al. 2019) can be expressed as follows:

p =
1

1 + e−Z
=

eZ

1 + eZ
 (1)
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where p is the estimated landslide occurrence probability, 
and Z is the linear combination of conditioning factors as 
follows:

Z = w0 +
n∑

i=1

wixi  (2)

where xi is the ith conditioning factor, wi is the regression 
coefficient of the ith conditioning factor, and n is the number 
of conditioning factors.

To calibrate Eq. (1), a landslide inventory should be first 
compiled. Then, the parameters in Eq. (2) can be calibrated 
through the method like maximum likelihood estimation 
(e.g., Chen et al. 2016). To standardize the raw data in 
regression model, the Min-Max normalization method can 
be adopted (e.g., Zhang et al. 2021) as shown below:

x∗ =
x− xmin

xmax − xmin
 (3)

where x is the raw data, x* is the normalized data, and xmax 
and xmin are the maximum and minimum values of the con-
ditioning factor x.

2.2 Physically-based model

As an illustration, RARIL, as suggested by Yang et al. 
(2022), is used as the physically-based model in this study. 

In RARIL model, the digital terrain is first partitioned into 
square grids with 30 m resolution, and the stability of each 
grid is assessed through slope stability analysis during 
the rainfall infiltration process. In particular, the modified 
Green-Ampt model (Zhang et al. 2014) is used for rainfall 
infiltration analysis, and the infinite slope stability model 
(Fig. 2a) (e.g., Zhang et al. 2014; Lu et al. 2023) is used 
to calculate the FOS of each cell. Figure 2b shows the 
water content profile of Green-Ampt model. In the modi-
fied Green-Ampt model, the calculation of the infiltration 
rate after ponding occurs, i, is performed (Chen and Young 
2006) as follows:

i = ks[
sf (Qs −Qi)

I
+ cosα] (4)

where ks is the soil saturated permeability, sf is the suction 
head at the wetting front, Qs is the water content of the soil 
in the wetted zone, Qi is the initial water content of the soil, 
and α is the slope angle. Based on Eq. (4), the cumulative 
infiltration, I, can be solved through a two-step procedure 
(Zhang et al. 2014). As presented in Fig. 2b, the depth of the 
wetting front, Zw, can then be calculated as follows:

Zw =
I

(Qs −Qi) cosα
 (5)

Fig. 1 Illustration of the development process of hybrid models
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2.3 Hybrid model

The purpose of the hybrid model is to take advantage of 
both the data-driven and physically-based models (e.g., 
Oliveira et al. 2017; Strauch et al. 2019). In this study, the 
prediction from the physically-based model is first consid-
ered as an additional conditioning factor for constructing the 
data-driven model, through which the information obtained 
through the physically-based model can be taken into 
account in the hybrid model. When using logistic regres-
sion to develop the hybrid model, Eq. (2) can be revised as 
follows:

Z = w0 +
n∑

i

wixi+wn+1xn+1 (10)

where xn+1 represents the additional conditioning factor in 
the hybrid model. Two hybrid methods are first considered 
to develop the hybrid model, i.e., hybrid model I, where the 
failure probability calculated based on Eq. (9) is considered 
as the additional conditioning factor xn+1, and hybrid model 
II, where the FOS calculated based on Eq. (6) is considered 
as an additional conditioning factor xn+1. To develop the two 
hybrid models, one can first evaluate the failure probabil-
ity or FOS of the slopes using the physically-based model. 
Then, the hybrid model can be developed based on logistic 
regression as given by Eq. (10) through taking failure prob-
ability or FOS as the additional conditioning factor.

Furthermore, to provide another comparison, this paper 
also adopts a matrix-based hybrid method (Hybrid method 
III) by integrating the data-driven and physically-based 
classification results. This method has been frequently 
used in previous studies by constructing a matrix where 
rows represent landslide susceptibility classes derived from 
the physically-based model, and columns represent land-
slide susceptibility classes obtained from the data-driven 
models (e.g., Chowdhury and Flentje 2003; Nguyen et al. 
2022; Xue et al. 2024). As shown in Fig. 3, each landslide 

Assuming that rainfall-induced landslides occur along the 
wetting front (e.g., Cho and Lee 2002; Vanacker et al. 2003; 
Zhang et al. 2014; Zhang et al. 2020; Chen et al. 2021), the 
FOS of the slope, Fs, can then be generated using the fol-
lowing equation (Fredlund et al. 1978):

Fs =
c+γsZwcos

2α tanϕ + sfγw tanϕ

γsZw sinα cosα
 (6)

where c and φ are the effective cohesion and effective fric-
tion angle of the soil, γs is the unit weight of soil, and γw is 
the unit weight of water.

One challenge for applying the physically-based model 
in a region is that the soil parameters are difficult to deter-
mine accurately (e.g., Wang et al. 2015). Let θ denote uncer-
tain soil parameters in the RARIL model, and f (θ) denote 
the probability density function (PDF) of θ. Let Fs (θ, t) 
denote the FOS of the slope at time t evaluated based on 
Eq. (6). The failure probability at time t, i.e., pf (t), can then 
be expressed below (e.g., Tobutt 1982; Zhang et al. 2014):

pf (t) =
�

[Fs(θ, t)] f (θ)dθ  (7)

where J [Fs (θ, t)] is an indicator function that measures the 
stability of slope defined as follows:

J [Fs(θ, t)] =

{
0, Fs(θ, t) > 1

1, Fs(θ, t) � 1
 (8)

Let θk denote the kth sample of θ. The failure probability in 
Eq. (7) can then be estimated based on Monte Carlo simula-
tion as follows:

pf (t) ≈
1

N

N∑

k=1

J [Fs(θ
k, t)] (9)

where N is the number of samples.

Fig. 2 (a) The infinite slope 
stability model under rainfall 
infiltration. Modified from Zhang 
et al. 2014, (b) The water content 
profile of the modified Green-
Ampt model. Modified from Kim 
et al. 2014
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incorrectly classifies as landslide locations (e.g., Cantarino 
et al., 2019). In this study, the predictions from the landslide 
susceptibility analysis models are in terms of probabilities 
of landslides. To assess the prediction capacity of different 
models, a probability threshold should be first specified, i.e., 
a landslide is predicted to occur if the probability is greater 
than the probability threshold and vice versa. As the prob-
ability threshold changes, the values of TP, FP, TN, and FN 
also change, and hence the values of overall accuracy, TPR, 
and FPR value change. The relationship between TPR and 
FPR is often known as ROC. From the ROC curve, the area 
under the curve (AUC) can be calculated (e.g., Cantarino et 
al., 2019), which is between 0 and 1. The value of AUC is 
often used to access the prediction capacity of a model (e.g., 
Bradley 1997) and is classified as average (0.6–0.7), good 
(0.7–0.8), very good (0.8–0.9), and excellent (0.9-1) (e.g., 
Woodard et al. 2023).

The R-index, which measures the relative landslide den-
sity, is often used to validate the quality of LSMs (Baeza 
and Corominas 2001), as defined below:

R = (ni/Ni)/
∑

(ni/Ni)× 100 (14)

where ni and Ni are the number of landslide samples and 
total cells in the susceptibility class i. Based on Eq. (14), 
the R-index can be calculated for each susceptibility class. 
It is expected that, when the susceptibility class is low, the 
chance of occurrence of landslides in the low susceptibility 
region is also low, and hence the R-index should be small. 
On the other hand, when the susceptibility class is high, 
the R-index should also be large. Therefore, the value of 
R-index is expected to increase as the susceptibility class 
changes from low to high, so it can be used to measure the 
classification capacity of a LSM (Shahabi et al. 2014). In the 
following, the conventional data-driven, physically-based 
model and the three hybrid models for developing the land-
slide susceptibility assessment work will be illustrated with 
a case and validated with the above evaluation methods.

susceptibility results are further divided into five classes: 
Very High, High, Middle, Low, and Very Low. In this study, 
the matrix-based hybrid method results are considered as 
the lower-class value between the landslide susceptibility 
class from data-driven and physically-based models.

2.4 Model evaluation

In this study, the overall accuracy, the receiver operat-
ing characteristic curve (ROC), and the relative landslide 
density index (R-index) will be used as quantitative mea-
sures to compare the prediction capacity of the different 
landslide susceptibility analysis models (e.g., Shahabi et al. 
2014; Wei et al. 2021; Miao et al. 2023). When comparing 
the model predictions with the observations, it is consid-
ered a true positive (TP) case if the landslide does occur at 
the predicted landslide location. If the landslide does not 
occur at the predicted landslide location, it is considered a 
false positive (FP) case. If the landslide does not occur at 
the predicted non-landslide location, it is considered a true 
negative (TN) case. If the landslide occurs at the predicted 
non-landslide location, it is considered a false negative (FN) 
case. Using these definitions, the overall accuracy, true posi-
tive rate (TPR), and false positive rate (FPR) can be deter-
mined below:

Overall Accuracy =
TP+TN

TP+TN+FP+FN
 (11)

TPR =
TP

TP+FN
 (12)

FPR =
FP

FP+TN
 (13)

As can be seen from the above definition, the overall accu-
racy is a measure of model correctness. It represents the 
proportion of correct predicted values made by the model 
(e.g., Liu et al. 2023). The TPR describes the proportion 
of landslide locations that are classified correctly as land-
slide locations by the model, while the FPR represents 
the proportion of non-landslide locations that the model 

Fig. 3 Landslide prediction matrix integrating data-driven and physically-based models
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3.2 Rainfall data

Shengzhou Meteorological Bureau set up a monitoring net-
work consisting of 43 rainfall stations in the study area. Fig-
ure 5 shows the distribution of 43 rainfall stations in this 
region. Figure 6 shows the regional maximum hourly pre-
cipitation in all rainfall stations and maximum cumulative 
precipitation collected by rainfall station in this region. As 
presented in Fig. 6, the rainfall in this region lasts nearly 
29 h and brings a maximum cumulative precipitation 
exceeding 150 mm.

Based on rainfall data collected from 43 rainfall monitor-
ing stations, as shown in Fig. 5, the distribution of rainfall 
over the region can be derived through the Kriging interpo-
lation method (e.g., Cressie 1990; Olea,1999; Chen et al., 
2014; Zhao et al. 2019; Wang et al. 2023). Let R(ui) denote 
the cumulative rainfall at the location of the ith rainfall sta-
tion ui, and let R(u0) represent the rainfall data at a location 
u0 where the cumulative rainfall needs to be interpolated. 

3 Case study

3.1 Engineering background

Covering a total area of 1789.6 km2, Shengzhou County is 
located in the east of Zhejiang province, China. Figure 4a 
shows the elevation of the terrain in Shengzhou County. As 
shown in Fig. 4a, its terrain tilts from northwest to southeast 
with altitude varying from 1074 m to 2 m. Rainfall serves as 
the major triggering factor for landslides in this region. On 
August 2nd, 2018, the typhoon “Jongdari”, which brought 
extremely heavy precipitation (e.g., Zhan and Xie 2022), 
attacked Shengzhou County, leading to many landslides. 
Landslide inventory is an essential component of LSMs 
(e.g., Harp et al. 2011; Wang et al. 2021b). Based on Google 
Earth and GF-1 remote sensing data, 240 landslide polygons 
were detected by comparing the satellite figures before and 
after the typhoon-related rainfall events. For further anal-
ysis, all landslide polygons were converted into landslide 
grids (30 m resolution). These 318 resulting grids are then 
serves as representative landslide samples, as illustrated in 
Fig. 4a. To build a dataset for model analysis, an equal num-
ber of non-landslide samples are also needed (e.g., Liu et al. 
2022; Chang et al. 2023). Considering that there are large 
flat terrains in Shengzhou County with almost no observed 
landslides, we first employed the r.geomorphon module to 
exclude these areas (Jasiewicz and Stepinski 2013). Fur-
thermore, we create a 100 m buffer zone around landslide 
points (Süzen and Doyuran 2004), thus ensuring most of the 
non-landslide sample area exclusion from regions of land-
slide occurrences (Fig. 4b). The combined landslide/non-
landslide dataset is further randomly split into two parts, 
with 70% for training and the remaining 30% for validation. 
(e.g., Razavi-Termeh et al. 2023; Saha et al. 2023).

Fig. 5 Distribution of the rainfall stations and 29-hours cumulative 
rainfall data

 

Fig. 4 (a) Elevation and landslide samples distribution in the Shengzhou County, (b) Non-landslide samples distribution
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event (Lee et al. 2008), such as NDVI and TWI values, the 
NDVI is derived from a Landsat 8 satellite image captured 
shortly before the typhoon event. Similarly, the digital ter-
rain model with a 30 m resolution, which is used to extract 
the TWI, is obtained before the date of the typhoon event. 
The elevation, slope angle, slope aspect, and distance to riv-
ers are also extracted from the same digital elevation model. 
Furthermore, a land use map provided by Globeland30 is 
used to get the land use layer (available at http://www.glo-
ballandcover.com/) and a road map provided by Bigemap 
(available at http://www.bigemap.com/) is used to generate 
the value of distance to roads and Zhejiang province geo-
logical map at a scale of 1:500,000 (available at http://www.
ngac.org.cn) is used to extract the value of distance to faults. 
Consistent with the resolution of the conditioning factors, 
all the models in this study have a 30 m resolution.

In the following, different models will be used to assess 
the landslide susceptibility for Shengzhou County.

4 Results

4.1 Logistic regression model for landslide 
susceptibility mapping

To build a logistic regression model, the created dataset is 
adopted. Using nine basic conditioning factors as the fea-
tures, a logistic regression model is developed based on 
Eqs. (1) and (2) through the training dataset. Then, the pre-
diction capacity of the logistic regression model is checked 
with the validation dataset. Table 2 shows the regression 
coefficients of the logistic regression model. Generally, after 
Min-Max normalization of the raw data, a greater absolute 
value of the regression coefficient indicates that the condi-
tioning factor has a greater impact on the landslide probabil-
ity (e.g., Shahabi et al. 2014). Table 2 shows that the slope 
angle has the greatest regression coefficient (i.e., 7.908), 

Based on the kriging method, R(u0) can then be expressed 
by a linear combination of R(ui) as follows (e.g., Chen et 
al., 2014):

R(u0) =

i=1∑

nr

λiR(ui) (15)

where nr is the number of rainfall stations in the region, and 
λi is the optimal weight with the sum weights for all nr sta-
tions equal to 1. With the rainfall data collected from the 
43 rainfall stations, the 29 h cumulative rainfall data at the 
regional scale can then be interpolated, as shown in Fig. 5. 
In RARIL, the simulation period spans the entire duration 
of the rainfall event.

3.3 Conditioning factors

While many studies have been carried out to identify condi-
tioning factors for developing LSMs (e.g., Reichenbach et 
al. 2018), consensus on the selection of which conditioning 
factors remains elusive (e.g., Kavzoglu et al. 2015). In gen-
eral, the conditioning factors used should both consider the 
characteristics of landslides and the availability of the data 
(e.g., Kavzoglu et al. 2015; Zhao et al. 2019). In this study, 
nine conditioning factors are considered to build the basic 
data-driven model through logistic regression, including 
elevation, slope angle, slope aspect, distance to rivers, dis-
tance to faults, distance to roads, topographic wetness index 
(TWI), normalized difference vegetation index (NDVI), 
and land use, which are shown in Fig. 7a-i, respectively. In 
addition to the above nine conditioning factors, the soil type 
layer (available at https://www.fao.org/) is also obtained, as 
shown in Fig. 7j, which will be used to derive soil param-
eters as input for RARIL. Details of the selected condi-
tioning factors are presented in Table 1. Considering that 
some environmental conditioning factors have time-variant 
characteristics, especially when applying during a typhoon 

Fig. 6 Records of the maximum 
hourly precipitation in this 
region and maximum cumulative 
precipitation in the rainfall station
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number of landslides (ni) and number of cells (Ni) in each 
susceptibility class i, which can then be used to calculate the 
R-index using Eq. (14). The R-index values corresponding 
to susceptibility classes of very low, low, middle, high, and 
very high in the logistic regression model are 0.59, 4.01, 
9.29, 25.58, and 60.53, respectively. It seems that as the 
susceptibility class increases from very low to very high, 
the R-index value which measures the landslide density also 
increases rapidly, indicating that the landslide susceptibility 
class is consistent with the observed landslide phenomenon.

indicating that it has the greatest impact on the landslide 
probability.

When the data-driven method is used for developing 
LSM, the susceptibility can be divided into five classes 
through the landslide probability using the equal interval 
method, i.e., very low (0-0.2), low (0.2–0.4), middle (0.4–
0.6), high (0.6–0.8), and very high (0.8-1), respectively 
(e.g., Baeza et al. 2016). Figure 8a shows the LSM derived 
based on the logistic regression model using the above 
susceptibility classification method. Table 3 presents the 

Fig. 7 Landslide conditioning factors: (a) elevation, (b) slope angle, (c) slope aspect, (d) distance to rivers, (e) distance to faults, (f) distance to 
roads, (g) TWI, (h) NDVI, (i) land use, (j) soil type
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sample represents a possible combination of soil property 
values. These samples are further used to calculate the fail-
ure probability of each grid under the rainfall infiltration 
process. In particular, the cohesion and the friction angle of 
the soils are determined based on the Geotechdata Database 
(available at https://www.geotechdata.info/). The values of 
Qi and Qs variables are derived from Zhang et al. (2018), 
and the values of ks and sf are derived from Mays (2011).

Based on the Geotechdata Database, the unit weights 
used for different soils are as follows: 18 kN/m3 for clay, 
20 kN/m3 for loam, 19.5 kN/m3 for silt loam and 21 kN/m3 
for sandy clay loam. This study also adopts a unit weight 
of water (γw) of 9.81 kN/m3. With the above soil param-
eters, the failure probability of each cell in the study area 
during the rainfall event can be calculated through Monte 
Carlo simulation based on Eq. (9). For a physically-based 
model, Yang et al. (2022) suggested that the susceptibility 
of a cell can be considered as low, middle, and high when 
the failure probability is less than 0.05, between 0.05 and 
0.1, and above 0.1, respectively. Based on the above land-
slide susceptibility classification method, a LSM can also 
be generated for the study area, as shown in Fig. 8b. Table 3 
also presents the R-index for each susceptibility class cor-
responding to the RARIL model. As shown in Table 3, a 
notable high R-index (71.71) is observed in the high suscep-
tibility class, indicating a reasonable classification capacity 
of the RARIL model.

4.3 Hybrid model I for landslide susceptibility 
mapping

By employing the nine basic conditioning factors and incor-
porating the failure probability value obtained in Sect. 4.2 as 
an additional conditioning factor, a logistic regression model 
can be trained and the coefficients are shown in Table 2. It is 
interesting to see that while in the logistic regression model 
and hybrid model II, the slope angle has the greatest coeffi-
cient, in the hybrid model I, the failure probability estimated 
based on RARIL has the greatest coefficient. The LSM gen-
erated by hybrid model I is subsequently reclassified using 
the equal interval method, as shown in Fig. 8c. Table 3 pres-
ents the R-index for each susceptibility class corresponding 
to hybrid model I. It is interesting that for the hybrid model 
I, its R-index value in the very high landslide susceptibility 
class is 80.46, which is greater than all other models, indi-
cating that it can classify landslides more accurately.

4.4 Hybrid model II for landslide susceptibility 
mapping

The hybrid model II is created by treating the FOS value 
calculated through RARIL as the additional conditioning 

4.2 RARIL model for landslide susceptibility 
mapping

To implement the RARIL model, equal weight is initially 
assigned to all analysis grids and soil property samples 
(Horton et al. 2013), ensuring that each component contrib-
utes equally to the overall representation of terrain and slope 
stability analysis. Then the soil parameters in the region is 
determined. In this study, the soil parameters are determined 
based on its soil type, and further be divided into four types, 
i.e., clay, loam, silt loam, and sandy clay loam, as shown in 
Fig. 7j. The statistics and distributions of c, φ, Qi, Qs, ks, and 
sf for different types of soil used in this study are summa-
rized in Table 4. As shown in Table 4, the initial parameter 
space for soil properties is provided, specifying that c and 
φ follow a normal distribution, Qi and Qs follow a uniform 
distribution, and ks and sf follow a lognormal distribution. 
Then, the Monte Carlo simulation generates a set of ran-
dom samples from these probability distributions, and each 

Table 1 Information on landslide conditioning factors
Conditioning factors Description
Elevation (m), Fig. 7a Vertical height of a location on the 

earth’s surface
Slope angle (°), Fig. 7b The inclination of the slope surface 

to the horizontal plane
Slope aspect, Fig. 7c The direction of the slope projected 

onto a horizontal plane
Distance to rivers (m), 
Fig. 7d

Distance to the nearest river

Distance to faults (m), Fig. 7e Distance to the nearest fault
Distance to roads (m), Fig. 7f Distance to the nearest road
TWI, Fig. 7g An index to qualify the potential of 

water accumulation
NDVI, Fig. 7h An index to qualify the vegetation 

cover
Land use, Fig. 7i Type of land utilized
Soil type, Fig. 7j Soil classification and categorization

Table 2 Coefficients of the logistic regression, hybrid models I and II
Conditioning factors Coefficient Logistic 

regression
Hybrid 
model I

Hybrid 
model 
II

Intercept w0 -0.681 0.133 2.160
Elevation w1 1.032 0.632 0.600
Slope angle w2 7.908 5.142 4.827
Slope aspect w3 -0.618 -0.735 -0.736
Distance to rivers w4 -1.218 -2.110 -1.295
Distance to faults w5 -0.601 -1.663 -0.905
Distance to roads w6 -3.025 -2.366 -2.705
TWI w7 -0.184 -0.634 -0.022
NDVI w8 -0.818 -0.461 -0.766
Land use w9 -0.992 -0.920 -0.963
Failure probability 
(pf)/
Factor of safety (FOS)

w10 44.763 -2.689
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study area under the typhoon-related rainfall event, as illus-
trated in Fig. 9.

Using nine basic conditioning factors and incorporating 
the FOS value as an additional conditioning factor, hybrid 
model II is built through logistic regression. Table 2 also 
presents the coefficient of the ten conditioning factors of 

factor for logistic regression. To implement hybrid model 
II, the FOS value generated by RARIL without consider-
ing soil parameters uncertainty is needed. Hence, the FOS is 
calculated by RARIL using the mean values of the random 
variables as listed in Table 4. Subsequently, using Eq. (6), 
RARIL is adopted to calculate the FOS distribution of the 

Fig. 8 Landslide susceptibility maps derived using five models: (a) Logistic regression, (b) RARIL, (c) Hybrid model I, (d) Hybrid model II, (e) 
Hybrid model III

 

1 3



Stochastic Environmental Research and Risk Assessment

new LSM, as shown in Fig. 8e. The corresponding R-index 
values for each susceptibility class are also presented in 
Table 3. This hybrid model also demonstrates an accurate 
trend of increasing relative landslide intensity index with 
increasing susceptibility class: very low (0.25), low (1.65), 
middle (3.36), high (21.13), and very high (73.61).

5 Discussion

5.1 Comparison of the conventional and hybrid 
models

In this section, the five landslide susceptibility models are 
compared in terms of overall accuracy and the ROC curve 
with the validation dataset. To calculate the overall accuracy 
of the five models based on Eq. (11), the landslide prob-
ability threshold beyond which a landslide is considered to 
occur needs to be determined. For the conventional logistic 
regression model, hybrid models I and II, which are con-
structed based on logistic regression, and hybrid model III, 
which is constructed based on a matrix approach, the prob-
ability threshold is set to 0.5 (e.g., Nefeslioglu et al. 2008). 
For RARIL, the probability threshold is selected as 0.05 
(Yang et al. 2022). Table 5 shows the overall accuracy of 
the five models. As shown in Table 5, hybrid model I gets 
the highest overall accuracy with a value of 0.80, followed 

hybrid model II. As can be seen from Table 2, the slope angle 
exhibits the highest significance in hybrid model II which 
shows that the FOS still not surpass the influence of slope 
angle with this hybrid method. Based on the equal interval 
method, a new LSM is created, as shown in Fig. 8d, and 
the R-indexes for different landslide susceptibility classes 
are calculated and shown in Table 3. As can be seen from 
Table 3, the R-index values corresponding to susceptibil-
ity classes of very low, low, middle, high, and very high in 
the hybrid model II are 0.59, 3.71, 6.36, 18.48, and 70.85, 
respectively, exhibiting an accurate trend of increasing land-
slide intensity with the landslide susceptibility class.

4.5 Hybrid model III for landslide susceptibility 
mapping

As mentioned in Sect. 2.3, hybrid model III which employed 
a matrix-based approach, is also included for comparison. 
This method integrates the data-driven landslide suscepti-
bility classes derived by logistic regression (Sect. 4.1) with 
FOS values obtained from the RARIL model without con-
sidering the soil parameters uncertainty (Sect. 4.4). As can 
be seen from Fig. 9, FOS values are divided into five classes: 
FOS < 1 (Very High), 1 < FOS < 1.2 (High), 1.2 < FOS < 1.5 
(Middle), 1.5 < FOS < 2 (Low), and FOS > 2 (Very Low) 
(e.g., Wei et al. 2023). Following the matrix-based approach 
illustrated in Fig. 3, these inputs are combined to generate a 

Method Probability of 
landslide

Susceptibility
class

Number of landslide 
samples in susceptibil-
ity class i (ni)

Number of cells 
in susceptibility 
class i (Ni)

R-index

Logistic 
regression

0-0.2 Very Low 14 1,009,497 0.59
0.2–0.4 Low 41 433,533 4.01
0.4–0.6 Middle 64 291,854 9.29
0.6–0.8 High 110 182,137 25.58
0.8-1 Very High 89 62,271 60.53

RARIL 0-0.05 Low 114 1,937,308 0.49
0.05–0.1 Middle 98 29,579 27.80
0.1-1 High 106 12,405 71.71

Hybrid model I 0-0.2 Very Low 12 948,930 0.32
0.2–0.4 Low 49 582,987 2.10
0.4–0.6 Middle 58 289,709 4.99
0.6–0.8 High 55 113,033 12.13
0.8-1 Very High 144 44,633 80.46

Hybrid model II 0-0.2 Very Low 18 1,138,824 0.59
0.2–0.4 Low 33 334,286 3.71
0.4–0.6 Middle 42 248,381 6.36
0.6–0.8 High 92 187,202 18.48
0.8-1 Very High 133 70,599 70.85

Hybrid model 
III

0-0.2 Very Low 47 1,419,613 0.25
0.2–0.4 Low 77 348,319 1.65
0.4–0.6 Middle 80 177,224 3.36
0.6–0.8 High 90 31,708 21.13
0.8-1 Very High 24 2428 73.61

Table 3 R-index comparison for 
the logistic regression, RARIL, 
and three hybrid models
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by hybrid model II (0.77), hybrid model III (0.75), logistic 
regression (0.74), and RARIL (0.70). It is obvious that all 
the three hybrid models outperform the conventional logis-
tic regression and RARIL model. Moreover, after consider-
ing the soil parameters uncertainty, hybrid model I achieved 
the highest overall accuracy.

Figure 10 presents the ROC curves of the five models. 
As shown in Fig. 10, the AUC values of the conventional 
logistic regression model, RARIL model, hybrid model I, 
hybrid model II and hybrid model III are 0.82, 0.79, 0.89, 
0.85, and 0.85, respectively. Also can be seen that all the 
hybrid models outperform the conventional data-driven and 
physically-based models. Among the three hybrid models, 
the hybrid model I has the greatest AUC compared to the 
other models, indicating that considering the soil parameters 
uncertainty can improve the prediction capacity of landslide 
susceptibility analysis in this study.

5.2 Improvement of prediction capacity through 
model hybridization

The comparison of five models reveals the potential of inte-
grating data-driven and physically-based approaches for the 
improvement of model prediction capacity. In this study, we 
proposed a hybrid method that can considers soil parameter 
uncertainty and compared it with two other models that does 
not consider it. Hybrid models II and III, which integrate the 
RARIL model with fixed soil parameters to generate FOS 
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Table 5 The overall accuracy of the five models
Model Overall Accuracy
Logistic regression 0.74
RARIL 0.70
Hybrid model I 0.80
Hybrid model II 0.77
Hybrid model III 0.75

Fig. 9 Factor of safety (FOS) calculated by the RARIL
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factors have been commonly used, but their triggering 
factors have seldom been emphasized. Due to the lack of 
temporal information in multi-source historical landslide 
inventories, rainfall factors are typically treated similarly 
to other environmental or geological conditioning factors 
by using annual average rainfall data. Therefore, we aimed 
to address this issue by considering rainfall-related results 
calculated by the physically-based model as an additional 
conditioning factor to assess the influence of typhoon-
related rainfall events on a regional scale. This can also be 
seen as the event-induced landslide susceptibility mapping. 
Further, there is published research about that. Dai and Lee 
(2003) proposed a method using real rainfall data as an 
independent variable in typhoon-induced shallow landslide 
susceptibility assessment which provides new insight into 
rainfall-induced regional landslide susceptibility mapping. 
Subsequently, Lee et al. (2008) conducted study with four 
typhoon rainfall-induced landslide inventories, confirming 
the effectiveness of the method in predicting subsequent 
typhoon-induced regional landslide events in nearby areas. 
In this study, we select Shengzhou County as an illustra-
tion, as it was significantly affected by typhoon “Jongdari”. 
The proposed hybrid method incorporates a data-driven 
model and a physically-based model. Initially, the data-
driven model adopted a typhoon event-related landslide 
inventory to establish a basic framework. Subsequently, the 
physically-based model, which does not consider the actual 
typhoon-related landslide inventory data, relies solely on 
the regional terrain data, slope angle, soil type, and the trig-
gering factor - rainfall, to predict the landslide-prone area 
through reliability analysis.

While the data-driven model uses the landslide inven-
tory caused by a typhoon event, which can also be seen as 
historical landslide data in the subsequent typhoon events 
in this region, the physically-based model’s results are pri-
marily influenced by the rainfall event, showing no need for 
actual typhoon-related landslide inventory data. This also 
gives this study the potential for application. It may further 
be applied to the study area experiencing subsequent rain-
fall events by updating the rainfall event inputs in the physi-
cally-based model to generate new failure probability value. 
With the data-driven model establishing a basic framework, 
coupled with the inputs from the updated failure probability 
value, thus a new landslide susceptibility maps can be cre-
ated with the new rainfall event.

6 Summary and conclusions

Traditionally, data-driven model and physically-based mod-
els are widely used for landslide susceptibility mapping, 
but each method has limitations. This paper introduces 

values/classes, exhibited similar AUC values. This suggests 
that combining the two types of model results using either 
a logistic regression framework or a matrix-based approach 
does not significantly impact predictions in this study. Fur-
thermore, hybrid model I, which considers soil parameter 
uncertainty with the RARIL model to generate failure prob-
ability values, shows a notable improvement in prediction 
capacity compared to the other hybrid models that do not 
consider it. This can be explained that after consider the 
inherent uncertainty in soil properties at a regional scale, 
hybrid model I provides a more realistic reflection of actual 
soil conditions in its physically-based model inputs. More-
over, through considering the soil parameters uncertainty 
and simulating more soil samples to calculate failure prob-
ability values, the proposed hybrid model can further reduce 
the randomness of calculation than using FOS as inputs, thus 
reaching a better prediction capacity in the hybrid results.

5.3 Event-induced landslide susceptibility mapping

In many regions affected by typhoons, typhoon-related heavy 
rainfall event can lead to landslides on a large regional scale. 
Sometimes, as one typhoon-related heavy rainfall event just 
passes, another follows, and rainfall-induced regional land-
slides in this region may occur again. This phenomenon is 
quite common. However, fewer typhoon-related rainfall-
induced regional landslide susceptibility assessments have 
been carried out. Previously, in most rainfall-induced land-
slide susceptibility assessment studies, data-driven models 
based on historical landslide inventories and conditioning 

Fig. 10 ROC curves for the logistic regression, RARIL, and three 
hybrid models
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erties. The proposed method is implemented with a case 
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which consider soil parameter uncertainty, exhibits greater 
prediction capacity compared to hybrid model II and hybrid 
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accurate landslide susceptibility mapping.

Appendix

For our case study in Shengzhou County, Zhejiang Prov-
ince, China, the digital terrain is partitioned into 1979292 
grid cells with 30 m resolution, the computation time on a 
Windows 11 computer is as follows:

Data-driven model (logistic regression): within 1 min.
Physically-based model (RARIL): within 2 h.
Hybrid model I: within 1 min.
Hybrid model II: within 1 min.
Hybrid model III: within 1 min.
The computations were performed on a computer with 

the following specifications:
CPU: Intel Core i9-13900 K @ 3.00 GHz.
RAM: 64GB.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s00477-
024-02753-9.

Acknowledgements This research was supported by The 
National Key Research and Development Program of China (No. 
2021YFB2600500), The National Natural Science Foundation of 
China (42072302, 52025094), and Fundamental Research Funds for 
the Central Universities.

Author contributions All authors contributed to the study conception 
and design. Shuangyi Wu designed and conducted the experiments, 
analyzed the results, and wrote the initial draft of the paper. Huaan 
Wang participated in data analysis. Jie Zhang conducted the final re-
view and revision of the paper. Haijun Qin contributed to editing and 
visualization. All authors read and approved the final manuscript.

Data availability Data will be made available on reasonable request.

1 3

https://doi.org/10.1016/j.catena.2023.106948
https://doi.org/10.1002/esp.263
https://doi.org/10.1007/s12665-016-6124-1
https://doi.org/10.1007/s12665-016-6124-1
https://pubs.usgs.gov/of/2008/1159/
https://pubs.usgs.gov/of/2008/1159/
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1007/s10346-018-1063-4
https://doi.org/10.1007/s10346-018-1063-4
https://doi.org/10.1016/j.enggeo.2016.06.021
https://doi.org/10.1016/j.enggeo.2016.06.021
https://doi.org/10.1007/s10346-022-01934-3
https://doi.org/10.1016/j.gsf.2023.101619
https://doi.org/10.1029/2005WR004468
https://doi.org/10.1029/2005WR004468
https://doi.org/10.1016/j.enggeo.2014.04.011
https://doi.org/10.1007/s12665-016-5317-y
https://doi.org/10.1007/s12665-016-5317-y
https://doi.org/10.1016/j.compgeo.2020.103877
https://doi.org/10.1016/j.compgeo.2020.103877
https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(756)
https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(756)
https://doi.org/10.1007/s10064-002-0166-1
https://doi.org/10.1007/BF00889887
https://doi.org/10.1007/s00477-024-02753-9
https://doi.org/10.1007/s00477-024-02753-9


Stochastic Environmental Research and Risk Assessment

time. Acta Geotech 18(3):1255–1267. https://doi.org/10.1007/
s11440-022-01655-w

Ma S, Shao X, Xu C, He X, Zhang P (2021) MAT.TRIGRS (v1.0): a 
new open-source tool for predicting spatiotemporal distribution 
of rainfall-induced landslides. Nat Hazards Res 1(4):161–170. 
https://doi.org/10.1016/j.nhres.2021.11.001

Mays LW (2011) Water resources Engineering. Wiley, New York
Medina V, Hürlimann M, Guo Z, Lloret A, Vaunat J (2021) Fast phys-

ically-based model for rainfall-induced landslide susceptibility 
assessment at regional scale. CATENA 201:105213. https://doi.
org/10.1016/j.catena.2021.105213

Merghadi A, Yunus AP, Dou J, Whiteley J, ThaiPham B, Bui DT, 
Avtar R, Abderrahmane B (2020) Machine learning methods 
for landslide susceptibility studies: a comparative overview of 
algorithm performance. Earth Sci Rev 207:103225. https://doi.
org/10.1016/j.earscirev.2020.103225

Miao F, Zhao F, Wu Y, Li L, Török Á (2023) Landslide susceptibility 
mapping in Three Gorges Reservoir area based on GIS and boost-
ing decision tree model. Stoch Env Res Risk Assess 37:2283–
2303. https://doi.org/10.1007/s00477-023-02394-4

Mondini AC, Guzzetti F, Melillo M (2023) Deep learning forecast of 
rainfall-induced shallow landslides. Nat Commun 14(1):2466. 
https://doi.org/10.1038/s41467-023-38135-y

Montgomery DR, Dietrich WE (1994) A physically based model for 
the topographic control on shallow landsliding. Water Resour Res 
30(4):1153–1171. https://doi.org/10.1029/93WR02979

Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on 
the use of logistic regression and artificial neural networks with 
different sampling strategies for the preparation of landslide 
susceptibility maps. Eng Geol 97(3–4):171–191. https://doi.
org/10.1016/j.enggeo.2008.01.004

Nguyen BQV, Song CH, Kim YT (2022) A hybrid physical and 
machine learning model for assessing landslide spatial prob-
ability caused by raising of ground water table and earthquake in 
Atsuma, Japan—case study. KSCE J Civ Eng 26(8):3416–3429. 
https://doi.org/10.1007/s12205-022-1656-2

Olea RA (1999) Geostatistics for engineers and earth scientists. Klu-
wer Academic, Norwell

Oliveira SC, Zêzere JL, Lajas S, Melo R (2017) Combination of sta-
tistical and physically based methods to assess shallow slide 
susceptibility at the basin scale. Nat Hazards Earth Syst Sci 
17(7):1091–1109. https://doi.org/10.5194/nhess-17-1091-2017

Pradhan AMS, Kim YT (2016) Evaluation of a combined spatial multi-
criteria evaluation model and deterministic model for landslide 
susceptibility mapping. CATENA 140:125–139. https://doi.
org/10.1016/j.catena.2016.01.022

Razavi-Termeh SV, Hatamiafkoueieh J, Sadeghi-Niaraki A, Choi SM, 
Al-Kindi KM (2023) A GIS-based multi-objective evolutionary 
algorithm for landslide susceptibility mapping. Stoch Env Res 
Risk Assess 1–26. https://doi.org/10.1007/s00477-023-02562-6

Reichenbach P, Rossi M, Malamud B, Mihir M, Guzzetti F 
(2018) A review of statistically-based landslide susceptibil-
ity models. Earth Sci Rev 180:60–91. https://doi.org/10.1016/j.
earscirev.2018.03.001

Saha A, Villuri VGK, Bhardwaj A (2023) Development and assessment 
of a novel hybrid machine learning-based landslide susceptibility 
mapping model in the Darjeeling Himalayas. Stoch Env Res Risk 
Assess 1–24. https://doi.org/10.1007/s00477-023-02528-8

Shahabi H, Khezri S, Ahmad BB, Hashim M (2014) Landslide suscep-
tibility mapping at central zab basin, Iran: a comparison between 
analytical hierarchy process, frequency ratio and logistic regres-
sion models. CATENA 115:55–70. https://doi.org/10.1016/j.
catena.2013.11.014

Strauch R, Istanbulluoglu E, Riedel J (2019) A new approach to map-
ping landslide hazards: a probabilistic integration of empirical and 
physically based models in the North Cascades of Washington, 

Dai FC, Lee CF (2003) A spatiotemporal probabilistic modelling of 
storm-induced shallow landsliding using aerial photographs and 
logistic regression. Earth Surf Process Landf 28(5):527–545. 
https://doi.org/10.1002/esp.456

Fang Z, Wang Y, Peng L, Hong H (2020) Integration of convolutional 
neural network and conventional machine learning classifiers for 
landslide susceptibility mapping. Comput Geosci 139:104470. 
https://doi.org/10.1016/j.cageo.2020.104470

Fredlund DG, Morgenstern NR, Widger RA (1978) The shear strength 
of unsaturated soils. Can Geotech J 15(3):313–321. https://doi.
org/10.1139/t78-029

Fu Z, Wang F, Dou J, Nam K, Ma H (2023) Enhanced absence sam-
pling technique for data-driven landslide susceptibility map-
ping: a case study in Songyang County, China. Remote Sens 
15(13):3345. https://doi.org/10.3390/rs15133345

Gong W, Hu M, Zhang Y, Tang H, Liu D, Song Q (2022) GIS-based 
landslide susceptibility mapping using ensemble methods for 
Fengjie County in the Three Gorges Reservoir Region, China. Int 
J Environ Sci Technol 19(8):7803–7820. https://doi.org/10.1007/
s13762-021-03572-z

Harp EL, Keefer DK, Sato HP, Yagi H (2011) Landslide inventories: 
the essential part of seismic landslide hazard analyses. Eng Geol 
122(1):9–21. https://doi.org/10.1016/j.enggeo.2010.06.013

Horton P, Jaboyedoff M, Rudaz BEA, Zimmermann M (2013) Flow-
R, a model for susceptibility mapping of debris flows and other 
gravitational hazards at a regional scale. Nat Hazards Earth Syst 
Sci 13(4):869–885. https://doi.org/10.5194/nhess-13-869-2013

Jasiewicz J, Stepinski TF (2013) Geomorphons—a pattern recog-
nition approach to classification and mapping of landforms. 
Geomorphology 182:147–156. https://doi.org/10.1016/j.
geomorph.2012.11.005

Jelínek R, Wagner P (2007) Landslide hazard zonation by determin-
istic analysis (Veľká Čausa landslide area, Slovakia). Landslides 
4(4):339–350. https://doi.org/10.1007/s10346-007-0089-9

Ji J, Cui H, Zhang T, Song J, Gao Y (2022) A GIS-based tool 
for probabilistic physical modelling and prediction of land-
slides: GIS-FORM landslide susceptibility analysis in seismic 
areas. Landslides 19(9):2213–2231. https://doi.org/10.1007/
s10346-022-01885-9

Kavzoglu T, Sahin EK, Colkesen I (2015) Selecting optimal condition-
ing factors in shallow translational landslide susceptibility map-
ping using genetic algorithm. Eng Geol 192:101–112. https://doi.
org/10.1016/j.enggeo.2015.04.004

Kim J, Lee K, Jeong S, Kim G (2014) GIS-based prediction method 
of landslide susceptibility using a rainfall infiltration-groundwa-
ter flow model. Eng Geol 182:63–78. https://doi.org/10.1016/j.
enggeo.2014.09.001

Lee CT, Huang CC, Lee JF, Pan KL, Lin ML, Dong JJ (2008) Statisti-
cal approach to storm event-induced landslides susceptibility. Nat 
Hazards Earth Syst Sci 8(4):941–960. https://doi.org/10.5194/
nhess-8-941-2008

Liu Q, Tang A, Huang D, Huang Z, Zhang B, Xu X (2022) Total proba-
bilistic measure for the potential risk of regional roads exposed 
to landslides. Reliab Eng Syst Saf 228:108822. https://doi.
org/10.1016/j.ress.2022.108822

Liu Q, Tang A, Huang D (2023) Exploring the uncertainty of land-
slide susceptibility assessment caused by the number of non–
landslides. CATENA 227:107109. https://doi.org/10.1016/j.
catena.2023.107109

Long J, Liu Y, Li C, Fu Z, Zhang H (2021) A novel model for regional 
susceptibility mapping of rainfall-reservoir induced landslides 
in jurassic slide-prone strata of western Hubei Province, Three 
Gorges Reservoir area. Stoch Env Res Risk Assess 35:1403–
1426. https://doi.org/10.1007/s00477-020-01892-z

Lu M, Zheng J, Zhang J, Huang H (2023) On assessing the proba-
bility of rainfall-induced slope failure during a given exposure 

1 3

https://doi.org/10.1007/s11440-022-01655-w
https://doi.org/10.1007/s11440-022-01655-w
https://doi.org/10.1016/j.nhres.2021.11.001
https://doi.org/10.1016/j.catena.2021.105213
https://doi.org/10.1016/j.catena.2021.105213
https://doi.org/10.1016/j.earscirev.2020.103225
https://doi.org/10.1016/j.earscirev.2020.103225
https://doi.org/10.1007/s00477-023-02394-4
https://doi.org/10.1038/s41467-023-38135-y
https://doi.org/10.1029/93WR02979
https://doi.org/10.1016/j.enggeo.2008.01.004
https://doi.org/10.1016/j.enggeo.2008.01.004
https://doi.org/10.1007/s12205-022-1656-2
https://doi.org/10.5194/nhess-17-1091-2017
https://doi.org/10.1016/j.catena.2016.01.022
https://doi.org/10.1016/j.catena.2016.01.022
https://doi.org/10.1007/s00477-023-02562-6
https://doi.org/10.1016/j.earscirev.2018.03.001
https://doi.org/10.1016/j.earscirev.2018.03.001
https://doi.org/10.1007/s00477-023-02528-8
https://doi.org/10.1016/j.catena.2013.11.014
https://doi.org/10.1016/j.catena.2013.11.014
https://doi.org/10.1002/esp.456
https://doi.org/10.1016/j.cageo.2020.104470
https://doi.org/10.1139/t78-029
https://doi.org/10.1139/t78-029
https://doi.org/10.3390/rs15133345
https://doi.org/10.1007/s13762-021-03572-z
https://doi.org/10.1007/s13762-021-03572-z
https://doi.org/10.1016/j.enggeo.2010.06.013
https://doi.org/10.5194/nhess-13-869-2013
https://doi.org/10.1016/j.geomorph.2012.11.005
https://doi.org/10.1016/j.geomorph.2012.11.005
https://doi.org/10.1007/s10346-007-0089-9
https://doi.org/10.1007/s10346-022-01885-9
https://doi.org/10.1007/s10346-022-01885-9
https://doi.org/10.1016/j.enggeo.2015.04.004
https://doi.org/10.1016/j.enggeo.2015.04.004
https://doi.org/10.1016/j.enggeo.2014.09.001
https://doi.org/10.1016/j.enggeo.2014.09.001
https://doi.org/10.5194/nhess-8-941-2008
https://doi.org/10.5194/nhess-8-941-2008
https://doi.org/10.1016/j.ress.2022.108822
https://doi.org/10.1016/j.ress.2022.108822
https://doi.org/10.1016/j.catena.2023.107109
https://doi.org/10.1016/j.catena.2023.107109
https://doi.org/10.1007/s00477-020-01892-z


Stochastic Environmental Research and Risk Assessment

large regions with limited data. J Geophys Research: Earth Surf 
128(5). https://doi.org/10.1029/2022JF006810

Xue Z, Feng W, Yi X, Dun J, Wu M (2024) Integrating data-driven 
and physically based landslide susceptibility methods using 
matrix models to predict reservoir landslides. Adv Space Res 
73(3):1702–1720. https://doi.org/10.1016/j.asr.2023.11.014

Yalcin A (2008) GIS-based landslide susceptibility mapping using 
analytical hierarchy process and bivariate statistics in Ardesen 
(Turkey): comparisons of results and confirmations. CATENA 
72(1):1–12. https://doi.org/10.1016/j.catena.2007.01.003

Yang S, Tan Z, Chen H, Zhang J (2022) Analysis of instability disas-
ter of rainfall induced shallow landslides at the regional scale 
based on the modified green-ampt model. Bull Geol Sci Technol 
41(2):221–229. https://doi.org/10.19509/j.cnki.dzkq.2022.0048

Yilmaz I (2009) Landslide susceptibility mapping using frequency 
ratio, logistic regression, artificial neural networks and their 
comparison: a case study from kat landslides (Tokat—Turkey). 
Comput Geosci 35(6):1125–1138. https://doi.org/10.1016/j.
cageo.2008.08.007

Zhan C, Xie M (2022) Exploring the link between ozone pollution 
and stratospheric intrusion under the influence of tropical cyclone 
Ampil. Sci Total Environ 828:154261. https://doi.org/10.1016/j.
scitotenv.2022.154261

Zhan W, Baise LG, Moaveni B (2023) An uncertainty quantification 
framework for logistic regression based geospatial natural haz-
ard modeling. Eng Geol 324:107271. https://doi.org/10.1016/j.
enggeo.2023.107271

Zhang LL, Zhang J, Zhang LM, Tang WH (2011) Stability analy-
sis of rainfall-induced slope failure: a review. Proc Institution 
Civil Engineers-Geotechnical Eng 164(5):299–316. https://doi.
org/10.1680/geng.2011.164.5.299

Zhang J, Huang HW, Zhang LM, Zhu HH, Shi B (2014) Probabilistic 
prediction of rainfall-induced slope failure using a mechanics-
based model. Eng Geol 168:129–140. https://doi.org/10.1016/j.
enggeo.2013.11.005

Zhang Y, Schaap MG, Zha Y (2018) A high resolution global map of 
soil hydraulic properties produced by a hierarchical parameteriza-
tion of a physically based water retention model. Water Resour 
Res 54(12):9774–9790. https://doi.org/10.1029/2018WR023539

Zhang J, Zhu D, Zhang S (2020) Shallow slope stability evolu-
tion during rainwater infiltration considering soil cracking 
state. Comput Geotech 117:103285. https://doi.org/10.1016/j.
compgeo.2019.103285

Zhang K, Zhang K, Cai C, Liu W, Xie J (2021) Displacement pre-
diction of step-like landslides based on feature optimization and 
VMD-Bi-LSTM: a case study of the Bazimen and Baishuihe 
landslides in the three gorges, China. Bull Eng Geol Environ 
80(11):8481–8502. https://doi.org/10.1007/s10064-021-02454-5

Zhao Y, Wang R, Jiang Y, Liu H, Wei Z (2019) GIS-based logistic 
regression for rainfall-induced landslide susceptibility mapping 
under different grid sizes in yueqing, southeastern China. Eng 
Geol 259:105147. https://doi.org/10.1016/j.enggeo.2019.105147

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

USA. Nat Hazards Earth Syst Sci 19(11):2477–2495. https://doi.
org/10.5194/nhess-19-2477-2019

Su C, Wang B, Lv Y, Zhang M, Peng D, Bate B, Zhang S (2023) 
Improved landslide susceptibility mapping using unsupervised 
and supervised collaborative machine learning models. Georisk: 
Assess Manage Risk Eng Syst Geohazards 17(2):387–405. 
https://doi.org/10.1080/17499518.2022.2088802

Sun D, Xu J, Wen H, Wang D (2021) Assessment of landslide suscep-
tibility mapping based on bayesian hyperparameter optimization: 
a comparison between logistic regression and random forest. Eng 
Geol 281:105972. https://doi.org/10.1016/j.enggeo.2020.105972

Sun Y, Zhang J, Wang H, Lu D (2024) Probabilistic thresholds 
for regional rainfall induced landslides. Comput Geotech 
166:106040. https://doi.org/10.1016/j.compgeo.2023.106040

Süzen ML, Doyuran V (2004) Data driven bivariate landslide sus-
ceptibility assessment using geographical information sys-
tems: a method and application to Asarsuyu catchment, 
Turkey. Eng Geol 71(3-4):303–321. https://doi.org/10.1016/
S0013-7952(03)00143-1

Tobutt DC (1982) Monte Carlo simulation methods for slope 
stability. Comput Geosci 8(2):199–208. https://doi.
org/10.1016/0098-3004(82)90021-8

Vanacker V, Vanderschaeghe M, Govers G, Willems E, Poesen J, 
Deckers J, De Bievre B (2003) Linking hydrological, infinite 
slope stability and land-use change models through GIS for 
assessing the impact of deforestation on slope stability in high 
Andean watersheds. Geomorphology 52(3–4):299–315. https://
doi.org/10.1016/S0169-555X(02)00263-5

Vieira BC, Fernandes NF, Augusto Filho O, Martins TD, Montgomery 
DR (2018) Assessing shallow landslide hazards using the TRI-
GRS and SHALSTAB models, Serra do Mar, Brazil. Environ 
Earth Sci 77(6):1–15. https://doi.org/10.1007/s12665-018-7436-0

Wang H, Yang T, Zhang P, Liu F, Liu H, Niu P (2023) Landslide sus-
ceptibility prediction considering rock integrity and stress state: 
a case study. Bull Eng Geol Environ 82(7):259. https://doi.
org/10.1007/s10064-023-03250-z

Wang H, Zhang L, Luo H, He J, Cheung RWM (2021a) AI-powered 
landslide susceptibility assessment in Hong Kong. Eng Geol 
288:106103. https://doi.org/10.1016/j.enggeo.2021.106103

Wang H, Zhang L, Yin K, Luo H, Li J (2021b) Landslide identification 
using machine learning. Geosci Front 12(1):351–364. https://doi.
org/10.1016/j.gsf.2020.02.012

Wang Y, Zhao T, Cao Z (2015) Site-specific probability distribution 
of geotechnical properties. Comput Geotech 70:159–168. https://
doi.org/10.1016/j.compgeo.2015.08.002

Wei Z, Lü Q, Sun H, Shang Y (2019) Estimating the rainfall threshold 
of a deep-seated landslide by integrating models for predicting 
the groundwater level and stability analysis of the slope. Eng 
Geol 253:14–26. https://doi.org/10.1016/j.enggeo.2019.02.026

Wei X, Zhang LL, Luo JY, Liu DS (2021) A hybrid framework integrat-
ing physical model and convolutional neural network for regional 
landslide susceptibility mapping. Nat Hazards 109(1):471–497. 
https://doi.org/10.1007/s11069-021-04844-0

Wei X, Zhang L, Gardoni P, Chen Y, Tan L, Liu D, Du C, Li H (2023) 
Comparison of hybrid data-driven and physical models for land-
slide susceptibility mapping at regional scales. Acta Geotech 
1–24. https://doi.org/10.1007/s11440-023-01841-4

Wei X, Gardoni P, Zhang L, Tan L, Liu D, Du C, Li H (2024) Improv-
ing pixel-based regional landslide susceptibility mapping. Geosci 
Front 101782. https://doi.org/10.1016/j.gsf.2024.101782

Woodard JB, Mirus BB, Crawford MM, Or D, Leshchinsky BA, All-
stadt KE, Wood NJ (2023) Mapping landslide susceptibility over 

1 3

https://doi.org/10.1029/2022JF006810
https://doi.org/10.1016/j.asr.2023.11.014
https://doi.org/10.1016/j.catena.2007.01.003
https://doi.org/10.19509/j.cnki.dzkq.2022.0048
https://doi.org/10.1016/j.cageo.2008.08.007
https://doi.org/10.1016/j.cageo.2008.08.007
https://doi.org/10.1016/j.scitotenv.2022.154261
https://doi.org/10.1016/j.scitotenv.2022.154261
https://doi.org/10.1016/j.enggeo.2023.107271
https://doi.org/10.1016/j.enggeo.2023.107271
https://doi.org/10.1680/geng.2011.164.5.299
https://doi.org/10.1680/geng.2011.164.5.299
https://doi.org/10.1016/j.enggeo.2013.11.005
https://doi.org/10.1016/j.enggeo.2013.11.005
https://doi.org/10.1029/2018WR023539
https://doi.org/10.1016/j.compgeo.2019.103285
https://doi.org/10.1016/j.compgeo.2019.103285
https://doi.org/10.1007/s10064-021-02454-5
https://doi.org/10.1016/j.enggeo.2019.105147
https://doi.org/10.5194/nhess-19-2477-2019
https://doi.org/10.5194/nhess-19-2477-2019
https://doi.org/10.1080/17499518.2022.2088802
https://doi.org/10.1016/j.enggeo.2020.105972
https://doi.org/10.1016/j.compgeo.2023.106040
https://doi.org/10.1016/S0013-7952(03)00143-1
https://doi.org/10.1016/S0013-7952(03)00143-1
https://doi.org/10.1016/0098-3004(82)90021-8
https://doi.org/10.1016/0098-3004(82)90021-8
https://doi.org/10.1016/S0169-555X(02)00263-5
https://doi.org/10.1016/S0169-555X(02)00263-5
https://doi.org/10.1007/s12665-018-7436-0
https://doi.org/10.1007/s10064-023-03250-z
https://doi.org/10.1007/s10064-023-03250-z
https://doi.org/10.1016/j.enggeo.2021.106103
https://doi.org/10.1016/j.gsf.2020.02.012
https://doi.org/10.1016/j.gsf.2020.02.012
https://doi.org/10.1016/j.compgeo.2015.08.002
https://doi.org/10.1016/j.compgeo.2015.08.002
https://doi.org/10.1016/j.enggeo.2019.02.026
https://doi.org/10.1007/s11069-021-04844-0
https://doi.org/10.1007/s11440-023-01841-4
https://doi.org/10.1016/j.gsf.2024.101782

	Hybrid method for rainfall-induced regional landslide susceptibility mapping
	Abstract
	1 Introduction
	2 Methodology
	2.1 Data-driven model
	2.2 Physically-based model
	2.3 Hybrid model
	2.4 Model evaluation

	3 Case study
	3.1 Engineering background
	3.2 Rainfall data
	3.3 Conditioning factors

	4 Results
	4.1 Logistic regression model for landslide susceptibility mapping
	4.2 RARIL model for landslide susceptibility mapping
	4.3 Hybrid model I for landslide susceptibility mapping
	4.4 Hybrid model II for landslide susceptibility mapping
	4.5 Hybrid model III for landslide susceptibility mapping

	5 Discussion
	5.1 Comparison of the conventional and hybrid models
	5.2 Improvement of prediction capacity through model hybridization
	5.3 Event-induced landslide susceptibility mapping

	6 Summary and conclusions
	Appendix
	References


