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Abstract
Precise and efficient landslide displacement prediction is crucial for improving the effectiveness of landslide warning sys-
tems. Numerous time series decomposition and machine learning (ML) methods have been proposed and applied in landslide 
displacement prediction. Nevertheless, most ML methods display individual biases when applied to landslide displacement 
datasets, and the effect of different methods for time series decomposition on prediction results has not been systematically 
studied. Therefore, this paper adopts four methods commonly used for time series decomposition to decompose the accu-
mulated displacement into a trend term and a periodic term. The double exponential smoothing is utilized to predict the 
trend displacement. After the grey relation analysis between the periodic displacement and the external cyclical influencing 
factors, the ensemble algorithm is used to integrate six commonly used ML algorithms for the prediction of periodic dis-
placement, so as to eliminate the bias of individual artificial intelligence method and enhance the accuracy and stability of 
prediction results. Furthermore, Bayesian optimization is employed to optimize the base-learners, ensuring the integration 
fairness. The typical step-like landslides (i.e., Bazimen landslide, Caojiatuo landslide) in the Three Gorges area are selected 
to compare the performance of different methods for time series decomposition and illustrate the effectiveness of the frame-
work of the ensemble algorithm with the evaluation indices of mean absolute error, mean absolute percentage error and root 
mean square error. The prediction results indicate that the ICEEMDAN method has the best performance in displacement 
decomposition. In addition, the prediction results of Bayesian optimized ensemble method are more robust than those of 
individual ML method, facilitating more accurate and stable landslide displacement prediction and more effective reference 
for landslide early warning.

Keywords  Displacement prediction · Machine learning · Ensemble algorithm · Bayesian Optimization · Time series 
decomposition
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FOA	� Fruit fly optimization algorithm
GA	� Genetic algorithm
GRA​	� Grey relation analysis
GRU​	� Gate recurrent unit
GWO	� Grey wolf optimizer
ICEEMDAN	� Improved complete ensemble EMD with 

adaptive noise
IMF	� Intrinsic mode functions
LSTM	� Long short-term memory
MA	� Moving average
ML	� Machine learning
MLP	� Multilayer perceptron
MFIT	� Multi-feature fusion transfer learning
NARX	� Nonlinear autoregressive neural network 

with exogenous inputs
PSO	� Particle swarm optimization
RF	� Random forest
RNN	� Recurrent neural network
SSSC	� Soft screening stopping criteria
SVR	� Support vector regression
VMD	� Variational mode decomposition
WA	� Wavelet analysis
WMA	� Weighted moving average
XGBoost	� Extreme gradient boosting

Notation
Yt 	� Original time series of total displacement
Tt 	� Time series of trend displacement
Ct 	� Time series of periodic displacement
M 	� The order of MA
�a,b(t) 	� Successive wavelet of WA
a 	� The frequency factor of wavelet basis 

function
b 	� The time factor of wavelet basis function
Wa,b 	� Wavelet coefficients of WA
m1(t) 	� The average envelope of the original time 

series Yt
d1(t) 	� Remaining sequence corresponding to 

m1(t)

J 	� The quantity of the decomposed IMF of 
the Gaussian white noise of ICEEMDAN

S1
t
 	� The first exponential smoothing value of 

the t period of DES
S2
t
 	� The second exponential smoothing value 

of the t period of DES
� 	� Smoothing constant of DES
at, bt 	� Model parameters of DES
Q 	� The number of periods predicted for the 

future
Ft+Q 	� Predicted value of the t + Q period of DES
�t(k) 	� The correlation coefficient between the 

sequence of influencing factors and the dis-
placement sequence

Ct(k) 	� The sequence of landslide displacement
It(k) 	� The sequence of influencing factors
� 	� The gray resolution coefficient
K 	� The dividing quantity of the cross-valida-

tion of ensemble algorithm
x 	� The parameter space of the machine learn-

ing models
f (x) 	� The objective function in the optimization 

process of the machine learning models

1  Introduction

Step-like landslides are a type of rainfall reservoir-induced 
landslide with step-like deformation characteristics, which 
are affected by periodic external factors (Lu et al. 2021; 
Zhang et al. 2021a). These landslides are widely distributed 
in the Three Gorges area of China and pose great potential 
safety hazards to the lives and property of the local peo-
ple (Miao et al. 2022). As such, the disaster warning and 
prevention of step-like landslides are particularly important 
(Lin et al. 2022). Globally, landslide early warning systems 
are crucial for mitigating landslide hazards (Naidu et al. 
2018; Fan et al. 2019). Within these systems, precise and 
efficient prediction of landslide displacement is essential for 
early detection of landslide event, understanding landslide 
progression, and providing reliable data for early warning 
initiatives (Yao et al. 2015). Hence, developing methods to 
accurately and efficiently predict displacement in step-like 
landslides holds significant value.

The methods of landslide displacement prediction have 
been developed over the past five decades. So far, various 
methods have emerged (Miao et al. 2018; Wang et al. 2023), 
broadly classified into four categories based on their under-
lying principles and modeling processes: empirical model, 
numerical simulation, statistical model and nonlinear pre-
diction model. The empirical model is mainly based on the 
creep theory, and the rheological function describing the 
landslide deformation is constructed according to the physi-
cal simulation results of the laboratory creep experiment 
(Saito 1969; Tavenas and Leroueil 1981; Voight 1988; Li 
et al. 2012). The numerical simulation of the landslide is 
primarily using the methods like finite element or material 
point methods based on geometric model to calculate the 
deformation (Wang et al. 2016; Kardani et al. 2021), which 
is associated with high computational costs and low mod-
eling efficiency (Augarde et al. 2021; Liu and Wang 2021). 
The statistical model predicts the displacement mainly by 
analyzing the statistical trend of landslide evolution (Li et al. 
2012), which is constrained when considering the com-
plexities in the landslide evolution under the influence of 
multiple factors (Gao et al. 2020). The nonlinear prediction 
model mainly predict the landslide displacement based on 
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the nonlinear relationship between landslide displacement 
and influencing factors (Cao et al. 2016). Herein, due to 
the robust nonlinear prediction capability (Liu et al. 2021a, 
2021b), the machine learning (ML) has been widely used 
in the field of landslide displacement prediction. (Liu et al. 
2014; Li et al. 2015; Hu et al. 2021; Zhang et al. 2024). Due 
to the variety of linear and nonlinear factors in the evolution 
process of landslides, the landslide displacement is mainly 
composed of trend, periodic and random displacement 
(Zhou et al. 2016), which is influenced by different exter-
nal factors. Generally, the displacement prediction process 
that decomposing the cumulative displacement into differ-
ent components firstly and then predict them respectively is 
conformed to the evolution mechanism of landslide displace-
ment, which has been widely applied in landslide displace-
ment prediction (Yang et al. 2019). Although some stud-
ies have attempted to predict random displacement (Miao 
et al. 2018), the minimal impact and inherent randomness 
of these displacements cast doubt on the reliability of such 
predictions. Consequently, this paper omits consideration of 
random displacement terms.

The signal of cumulative displacement can be expressed 
as the sum of trend and periodic displacement due to the 
independence of different components (Du et  al. 2013; 
Zhang et al. 2021c). The moving average (MA) technique, 
a conventional approach for time series decomposition in 
landslide displacement analysis, is simple and convenient 
but has limitations in processing the initial and final data 
points, and the smoothing order requires manual determi-
nation (Zhou et al. 2016; Zhang et al. 2021d). As spectrum 
analysis technology advances, wavelet analysis (WA) has 
gained popularity for its ability to decompose landslide 
displacement, although it necessitates manual selection of 
successive wavelet (Cai et al. 2016; Huang et al. 2016). Fur-
thermore, empirical mode decomposition techniques, such 
as empirical mode decomposition (EMD), ensemble EMD 
(EEMD), and improved complete ensemble EMD with adap-
tive noise (ICEEMDAN), offer substantial versatility and 
reduce manual intervention based on the principle of signal 
decomposition. Despite their utility, EMD and EEMD some-
times exhibit issues with local oscillations and residual noise 
in their results (Lian et al. 2014). The ICEEMDAN method 
refines this by improving the noise addition in the EMD 
process, achieving more uniform and precise decomposition 
(Colominas et al. 2014). While these methods have been 
applied in landslide displacement decomposition, the char-
acteristics of their decompositions, such as the number of 
components, vary across methods. The impact of choosing 
different decomposition methods on landslide displacement 
prediction has not been thoroughly explored and compared 
in the literature.

Trend displacement, indicative of the landslide's long-
term internal evolutionary trend, typically follows a 

relatively stable developmental law. Generally, the polyno-
mial fitting method is employed for predicting trend dis-
placement due to its ease of operation and straightforward 
principle (Xu and Niu 2018; Zhang et al. 2021d). However, 
as polynomials are fundamentally unbounded oscillating 
functions, they may not be ideal for predicting monotoni-
cally increasing trend displacements. Beyond polynomial 
fitting, the double exponential smoothing (DES) is another 
viable method for predicting the landslide trend displace-
ment (Huang et al. 2017; Xing et al. 2020). In the context of 
predicting periodic displacement, ML methods are increas-
ingly being utilized, leveraging the nonlinear mapping 
relationship between periodic displacement and seasonal 
influencing factors. These methods include support vector 
machine, artificial neural network, decision tree regression 
(DTR), extreme learning machine, among other advanced 
technologies (Hochreiter and Schmidhuber 1997; Ma et al. 
2017, 2018; Li et al. 2018, 2019; Wang et al. 2022; Xing 
et al. 2019). In this context, seasonal influencing factors 
are typically identified using methods such as grey relation 
analysis (GRA) (Zhang et al. 2020b). Due to variations in 
data characteristics and the potential for ML models to be 
biased, excellent performance achieved by an individual 
ML method on a specific sample dataset does not guarantee 
the same level of performance on other datasets in different 
research cases (Kardani et al. 2021). The predictive perfor-
mance of landslide displacement varies depending on the 
ML method used, and there exists an individual bias associ-
ated with each method's generalization ability. In addition, 
to improve the prediction performance of ML algorithms, 
various metaheuristic algorithms are used to optimize the 
hyperparameters of the prediction model (Ma et al. 2022), 
such as genetic algorithm, artificial bee colony algorithm, 
particle swarm optimization algorithm and grey wolf algo-
rithm (Li and Kong 2014; Cai et al. 2016; Zhu et al. 2018; 
Zhang et al. 2021b; Zeng et al. 2022). However, these algo-
rithms often gravitate towards local optimum and may suffer 
from lower computational efficiency.

This paper proposes a displacement prediction model for 
step-like landslide based on ensemble framework, aiming 
to overcome the bias of individual ML model to different 
landslide datasets and improve the prediction accuracy and 
generalization ability. To highlight the effectiveness of the 
ensemble framework, six commonly used ML models are 
selected to construct the learner pool of ensemble algorithm. 
The Bayesian optimization method is employed to optimize 
the hyperparameters of base-learners in the ensemble model 
to ensure the fairness in the process of ensemble. In addi-
tion, four conventional techniques of time series decomposi-
tion are utilized to decompose the time series of landslide 
displacement, and their respective effects on landslide dis-
placement prediction are compared. For practical applica-
tion, two typical step-like landslides in the Three Gorges 
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area, Bazimen landslide and Caojiatuo landslide, are cho-
sen as case studies. To assess and contrast the various time 
series decomposition and displacement prediction meth-
odologies, evaluation metrics such as mean absolute error 
(MAE), mean absolute percentage error (MAPE) and root 
mean square error (RMSE) are calculated.

2 � Methodology

2.1 � Decomposing the displacement time series 
into trend and periodic term

As the value of the random displacement is relatively small 
and unpredictable due to its inherent randomness, the time 
series of cumulative displacement are decomposed the into 
two components: trend displacement and periodic displace-
ment (Lin et al. 2022; Zhou et al. 2022), as shown in Eq. (1). 
To analyze the influence of different time series decomposi-
tion methods on the landslide displacement prediction, the 
methods of MA, WA, EMD and ICEEMDAN, which are the 
major methods used widely in landslide displacement pre-
diction at present, are selected to decompose the cumulative 
displacement of landslide.

where Yt donates the original time series of total displace-
ment; Tt donates the time series of trend displacement; Ct 
donates the time series of periodic displacement.

2.1.1 � Moving average

The MA method operates by sliding a fixed-size time win-
dow across the time series data. Within this window, it 
calculates the average value of a specified number of data 
points, effectively highlighting the long-term trend of the 
time series. This averaging approach is particularly effective 
at mitigating the impact of random fluctuations, making it 
well-suited for time series with periodic variations, such as 
landslide displacement. The primary formula for the MA 
calculation is as follows:

(1)Yt = Tt + Ct

where M is the order of MA, which is relevant to the data 
frequency and the impact cycle of the external factors. Due 
to the annual variation of the landslide influencing factors 
(i.e., rainfall), the M is set to 12 to represent the time scale 
of one year (Yang et al. 2019; Zhang et al. 2021c).

2.1.2 � Wavelet analysis

The WA method decomposes the time series of landslide 
displacement into components with varying frequencies. 
This decomposition is achieved by calculating wavelet coef-
ficients. These coefficients are determined through the inter-
action between successive, artificially selected wavelets and 
the total displacement. In essence, each component analyzed 
matches the frequency of the current wavelet basis function 
(Huang et al. 2016). The general form of wavelet basis func-
tion utilized is as follows:

where �a,b(t) donates the successive wavelet; a donates the 
frequency factor of wavelet basis function; b donates the 
time factor of wavelet basis function.

The calculation formula of wavelet coefficients is as 
follows:

Figure 1 illustrates the process of continuous transla-
tion and expansion of the successive wavelet, achieved 
through altering parameters a and b, which in turn trans-
forms the frequency. The wavelet coefficients, computed 
between the original signal and the successive wavelet, 
facilitate the analysis of different frequency components 
present in the time series of the original signal, specifi-
cally for landslide displacement.
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Fig. 1   Principle diagram of 
wavelet analysis (WA)
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2.1.3 � EMD

The EMD method identifies all vibration modes in a time 
series using the characteristic time scale. Subsequently, it 
decomposes the complex time series into a finite number 
of intrinsic mode functions (IMF). These IMFs encapsulate 
local characteristic sequences at different frequencies from 
the original time series (Chen and Chou 2012; Xu and Niu 
2018). The process of EMD to decompose the time series of 
landslide displacement is as follows:

where m1(t) donates the average envelope of the original 
time series; Ytmax donates the fitting curve of the maximum 
point on the original time series (upper envelope); Ytmin 
donates the fitting curve of the minimum point on the origi-
nal time series (lower envelope); d1(t) donates the remaining 
sequence.

When d1(t) satisfies the stopping condition for obtain-
ing the IMF, which means that the number of local extreme 
points and zero-crossing points of d1(t) are equal to 1 or the 
quantity gap between the two types of points is less than 1, 
and the average values of the upper envelope and the lower 
envelope at different times are equal to zero, then the d1(t) 
can be regarded as the first IMF obtained by the decomposi-
tion of the original time series. Otherwise, Eqs. (6) and (7) 
are repeated until the stopping condition is satisfied. After 
the first IMF is obtained, the original sequence is subtracted 
to obtain the first-order residual quantity, which is used to 
replace the original time series. The n-order modal compo-
nent is obtained after repeating the steps above for n times. 
The IMF with the lowest frequency is regarded as the trend 
displacement, and the remaining IMF components are cumu-
lated to obtain the periodic displacement.

2.1.4 � ICEEMDAN

The ICEEMDAN method employs EMD to decompose 
Gaussian white noise, which has a zero mean, into J IMF 
components. These components are then added to the origi-
nal landslide displacement time series for sequence recon-
struction. Consequently, J time series of landslide displace-
ment are created for decomposition. The IMF of each order 
is determined by calculating the mean of the IMFs derived 
from the decomposition of the J -times reconstructed time 
series. This process, including the separation of trend and 
periodic displacement components, is consistent with the 
EMD approach (Colominas et al. 2014).

(6)m1(t) =
Ytmax + Ytmin

2

(7)d1(t) = Yt − m1(t)

2.2 � Predicting the trend displacement

The DES is employed to predict the trend displacement 
derived from time series decomposition. This method 
utilizes a specialized weighted average approach, where 
greater weight is assigned to historical data closer to the 
forecast period, and less weight to data further away. The 
weights assigned decrease exponentially with distance 
from the prediction period. This characteristic makes DES 
particularly effective for predicting linear trend displace-
ment (Xing et al. 2020). The primary calculation formula 
of DES is as follows:

where S1
t
 donates the first exponential smoothing value of the 

t period; S2
t
 donates the second exponential smoothing value 

of the t period; � donates the smoothing constant, which is 
set to 0.5 appropriately generally. The prediction results are 
given by the following formula:

where Ft+Q donates the predicted value of the t + Q period; 
Q donates the number of periods predicted for the future; at 
and bt donate the model parameters respectively.

2.3 � Predicting the periodic displacement

2.3.1 � Grey relation analysis

When the base-learners of the ensemble algorithm are 
utilized to predict the periodic displacement, the input 
original data includes the periodic displacement and its 
external influencing factors. Herein, GRA is used to select 
the influencing factors closely related to the periodic dis-
placement to improve the prediction accuracy. GRA is a 
multi-factor statistical analysis method. By calculating 
the correlation coefficient between the mother sequence 
(periodic displacement) and the sub-sequence (time series 
of influencing factors, such as rainfall, etc.) and sorting, 
the relation degree between the influencing factors and 
the periodic displacement is measured (Miao et al. 2018; 
Zeng et al. 2022). The correlation coefficient is calculated 
according to Eq. (13).

(8)S1
t
= �Yt−1 + (1 − �)S1

t−1

(9)S2
t
= �S1

t
+ (1 − �)S2

t−1

(10)Ft+Q = at + btQ

(11)at = 2S1
t
− S2

t

(12)bt =
�

1 − �

(

S1
t
− S2

t

)



3036	 Stochastic Environmental Research and Risk Assessment (2024) 38:3031–3058

where �t(k) donates the correlation coefficient between 
the sequence of influencing factors It(k) at time k and the 
displacement sequence Ct(k) , which is generally between 
0 ~ 1. The relation degree increases with the growth of 
correlation coefficient; minimink||Ct(k) − It(k)

|

|

 donates the 
absolute value of the second-order minimum difference 
between the sub-sequence and the mother sequence at 
time k; maximaxk||Ct(k) − It(k)

|

|

 donates the absolute value 
of the second-order maximum difference between the sub-
sequence and the mother sequence at time k; � donates the 
gray resolution coefficient, which is set to 0.5 appropriately 
generally.

2.3.2 � Ensemble algorithm

The ensemble algorithm is used to predict the periodic dis-
placement obtained by time series decomposition, which 
can eliminate the individual bias of different ML methods 
to improve the accuracy and generalization ability of the 
prediction model by integrating multiple individual learners, 
that means the overall learner is superior to the individual 
learner (Jena et al. 2020; Kardani et al. 2021; Rong et al. 
2023). Figure 2 shows the operation process of the ensem-
ble algorithm. The ensemble algorithm generally includes 
two parts: the base-learners (the first layer) and the meta-
learner (the second layer). In the training process of ensem-
ble model, the K-Fold cross-validation method is introduced 
to train the base-learners firstly. By dividing the training 
dataset of ensemble into K parts on average, each part is 

(13)

�t(k) =
mintmink

|

|

Ct(k) − It(k)
|

|

+ �maxtmaxk
|

|

Ct(k) − It(k)
|

|

|

|

Ct(k) − It(k)
|

|

+ �maxtmaxk
|

|

Ct(k) − It(k)
|

|

used as the testing data of each Fold, and the remaining 
data is used as the training data of the current Fold, then the 
base-learners Mi can be trained based on the training data 
and obtain the periodic displacement based on the testing 
data Mi, k. The prediction results of periodic displacement 
on each Fold through training and testing of one base-learner 
are spliced in turn to obtain a complete prediction result of 
periodic displacement of each base-learner on the original 
dataset. The prediction results of individual base-learner 
are used as the input features and the periodic displacement 
obtained by time series decomposition are used as the tar-
get output to train the meta-learner, then the training of the 
ensemble model is completed. In this study, we focus on the 
effectiveness of the ensemble framework rather than the per-
formance of a single artificial intelligence approach. Hence, 
six commonly used ML regression algorithms (i.e., DTR, 
multilayer perceptron (MLP), random forest (RF), extreme 
gradient boosting (XGBoost), support vector regression 
(SVR) and Ridge), are selected to construct the learner pool 
of the ensemble algorithm.

In general, the traditional evaluation of the perfor-
mance of ML model is mainly carried out by quan-
tifying the accuracy of the prediction results of test 
dataset after the model training on the training set. 
However, the results of this performance evaluation 
are easily affected by the division of the training and 
testing dataset, while the original dataset is not fully 
utilized. Hence, a 5-Fold cross-validation method is 
used to evaluate the performance of the prediction 
models in this study, which shows the advantages of 
reducing over-fitting and fully utilizing the original 
dataset. The original dataset mainly incorporates the 
time series of periodic displacement obtained by time 

Fig. 2   The operation process of the ensemble algorithm
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series decomposition and the corresponding influence 
factors. After dividing the training dataset of ensem-
ble into 5 parts on average, each part is utilized as the 
testing dataset of ensemble model on the current Fold, 
and the remaining data is used as the training dataset 
of ensemble model on the current Fold. Hence, the pre-
diction results of periodic displacement on each Fold 
through training and testing of the ensemble model on 
the original dataset are spliced in turn to obtain a com-
plete prediction result of periodic displacement. The 
basic process of cross-validation has been described in 
the training process of the base-learners above.

2.3.3 � Bayesian optimization algorithm

The Bayesian optimization algorithm, recognized as 
one of the best methods in ML for efficiently balanc-
ing optimization efficiency and accuracy in hyperpa-
rameter tuning, is utilized in this study to optimize the 
hyperparameters of base-learners, aiming to ensure the 
fairness in model integration and enhance the modeling 
efficiency (Huang et al. 2022; Li and Yang 2022; Yang 
et al. 2022). Figure 3 shows the main process of Bayes-
ian optimization, where x donates the parameter space 
of the ML models, and f (x) donates the objective func-
tion. The objective function is typically a regression 
evaluation index such as mean square error. The optimal 
parameters are determined when the objective function 
obtains the minimum value. In this optimization process, 
the surrogate function is utilized to fit to the real objec-
tive function based on randomly sampled points along 
the x-axis. This surrogate function is continually refined 
by collecting more data points near the minimum value 
or in unsampled areas, so as to approximate the true 
objective function progressively. The goal is to find the 

optimal solution corresponding to the minimum value of 
the objective function, and this process is guided by the 
sampling function.

2.4 � Flowchart of the proposed model for landslide 
displacement prediction

To evaluate the performance of different methods of 
landslide displacement prediction and time series decom-
position, three indices of regression evaluation, MAE 
(Eq. (14)), MAPE (Eq. (15)) and RMSE (Eq. (16)) are 
adopted. Figure 4 shows the main process of the displace-
ment prediction model proposed in this paper, which 
mainly includes three parts: time series decomposition, 
trend displacement prediction and periodic displacement 
prediction.

Part 1. Decompose the monitoring data of landslide 
cumulative displacement by the methods for time series 
decomposition to obtain the landslide periodic displace-
ment and trend displacement.

Part 2. Predict the trend displacement by the method of 
DES, and the predicted trend displacement will be added 
to the predicted period displacement to obtain the total 
displacement.

Part 3. Confirm the influencing factors of landslide 
preliminarily by analyzing the monitoring data of land-
slide cumulative displacement. The GRA method is 
used to select the most influential factors related to the 
periodic displacement. The time series of these selected 
factors are used as inputs, while the time series of peri-
odic displacement serves as the output for training the 
base-learners. The prediction results of each base-learner 
on the periodic displacement are obtained by cross-val-
idation, which are used as the input of the meta-learner 
to establish the ensemble model. To ensure the fairness 
in the ensemble, Bayesian optimization is used to opti-
mize the base-learners' parameters. The primary steps of 
Bayesian optimization include:

(I)	 Initialization of the surrogate function;
(II)	 Sampling using the sampling function;
(III)	Training learners based on parameters from the sam-

pled points to obtain the objective function value;
(IV)	Updating the surrogate function;
(V)	 Repeating the above steps until the maximum number 

of iterations is reached.

Based on the theory of time series analysis, the predicted 
total displacement is obtained by adding the predicted trend 
and periodic displacement, and the performance of landslide 
displacement prediction is evaluated according to the statis-
tical results of evaluation index.

Fig. 3   The process of Bayesian optimization
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where Yt donates the original time series of total displace-
ment; Yp donates the predicted time series of total displace-
ment, N represents the quantity of total monitoring periods.

(14)MAE =
1

N

N
∑

i=1

|

|

|

Yp − Yt
|

|

|

(15)MAPE =
1

N

N
∑

i=1

|

|

|

Yp − Yt
|

|

|

Yt
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3 � Results

3.1 � Case 1: Bazimen landslide

3.1.1 � Geological conditions and monitoring data

The Bazimen landslide is located in Guizhou Town, Zigui 
County, Hubei Province, which is on the right bank of the 
Xiangxi River, a tributary of the northern bank of the Yang-
tze River. The bank slope is in north–south direction, and the 
landslide body is distributed at the foot of the bank slope in 
a dustpan shape with 139 ~ 280 m distribution elevation, the 
slope of the landslide body is 10 ~ 30°, and the volume of the 
landslide is about 2 million m3. The types of monitoring data 
mainly include landslide surface displacement, rainfall and 

Fig. 4   Flowchart of the proposed prediction model of landslide displacement
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reservoir water level. The distribution of GPS monitoring 
points of surface displacement is shown in Fig. 5.

Figure 6 displays the monitoring data for the Bazimen 
landslide, showing that from October 2013 to October 2020, 
there were multiple step-like uplifts in the landslide. Among 
them, a significant trend was observed where the largest 
uplifts in the Bazimen landslide coincided with the high-
est rainfall each June, with this pattern being particularly 
pronounced in June of 2015, 2016, and 2017. This correla-
tion suggests a substantial relationship between the landslide 
deformation and both the rainfall and the fluctuations in the 
water level of the Three Gorges Reservoir. It is important to 
note that the monitoring period for the Bazimen landslide 

was set at one-month intervals, and thus, the displacement 
predictions made in this study were conducted on a monthly 
basis.

3.1.2 � Displacement decomposition

Figure 6 indicates that among the Bazimen landslide's 
GPS monitoring points, GPS-3 exhibits the largest surface 
displacement with a pronounced step-like feature. Conse-
quently, the monitoring data from GPS-3 is selected as the 
sample data for landslide displacement prediction. Various 
methods, including the MA, WA, EMD, and ICEEMDAN, 
are adopted to decompose the landslide displacement into 

Fig. 5   The diagram of the 
distribution about the GPS 
monitoring points of surface 
displacement on Bazimen 
landslide

Fig. 6   Monitoring data of Bazi-
men landslide
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trend and periodic components. Figure 7 presents the 
decomposition results using these methods. It is observed 
that while the results from EMD and its improved ver-
sion ICEEMDAN are similar, the trend and periodic dis-
placements derived from other methods show differences. 
Notably, the trend displacement obtained through WA is 
the smoothest and most stable, yet this does not necessar-
ily imply that WA's decompositions accurately reflect the 
actual scenario. The effectiveness of these decomposition 

methods needs further verification through the testing 
results of the total displacement prediction.

3.1.3 � Trend displacement prediction

The DES method is used to predict the trend displacement 
derived from various time series decomposition methods. 
Figure 8 shows the prediction results of the trend displace-
ment and the corresponding prediction error. It can be 

Fig. 7   Displacement decom-
position of Bazimen landslide 
based on different methods for 
time series decomposition

Fig. 8   Trend displacement 
prediction of Bazimen landslide 
based on different methods for 
time series decomposition

(a) MA (b) WA

(c) EMD (d) ICEEMDAN
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observed that DES effectively predicts the trend displace-
ment, accurately reflecting the evolution characteristic of 
steady growth based on historical data up to the prediction 
point, thus offering practical significance in forecasting. 
Moreover, the average prediction errors for the trend dis-
placement, derived from various time series decomposi-
tion methods, exhibit relative uniformity, predominantly 
between 11 to 13 mm. A noteworthy observation is that 
a decrease in the slope of the trend displacement curve is 
associated with a reduction in prediction error.

3.1.4 � Periodic displacement and total displacement 
prediction

Determination of influencing factors  The ensemble algo-
rithm predicts the periodic displacement by extracting the 
nonlinear relation between the periodic displacement and 
seasonal influencing factors. To improve the accuracy of 
these predictions, it is necessary to select the influencing 
factors closely related to the periodic displacement (Xu and 
Niu 2018). Based on the Bazimen landslide monitoring data, 
eight influencing factors have been identified: the 1-month 
cumulative antecedent rainfall, the 2-month cumulative ante-
cedent rainfall, the 3-month cumulative antecedent rainfall, 
the average elevation of reservoir level in the current month, 
reservoir level change in 1-month period, reservoir level 
change in 2-month period, the displacement over the past 
1 month, the displacement over the past 2 months and the 

displacement over the past 3 months (Zhang et al. 2021d; 
Ma et al. 2022). The correlation coefficient between dif-
ferent influencing factors and the periodic displacement is 
calculated by the GRA method. Then, factors with high cor-
relation coefficients are selected as inputs for the ensemble 
algorithm. Figure 9 illustrates the grey relational analysis 
process, showing the correlation between periodic displace-
ment (obtained through different time series decomposition 
methods) and the selected influencing factors. A correlation 
coefficient closer to 1 indicates a more significant impact 
of the influencing factors on the periodic displacement. As 
depicted in Fig. 9, the correlation between past displacement 
and the periodic displacement decreases over time.

Table 1 presents the average values of the correlation coef-
ficients, calculated by the GRA method, which quantify the 
relationship between periodic displacement and influencing 
factors. These coefficients range from 0.5 to 1, signifying 
a notable correlation between the periodic displacement, 
derived from diverse time series decomposition methods, 
and external influencing factors. Significantly, factors per-
taining to rainfall and reservoir levels demonstrate a sub-
stantial impact on periodic displacement, as evidenced by 
higher correlation coefficients. Conversely, factors related 
to displacement in recent months exhibit a lesser influence, 
with correlation coefficients showing a decreasing trend over 
longer time intervals. Following the principle that a higher 
correlation coefficient indicates a stronger relation degree 

Fig. 9   The results of GRA of 
Bazimen landslide based on 
different methods for time series 
decomposition: (a) MA; (b) 
WA; (c) EMD; (d) ICEEMDAN
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(Miao et al. 2018; Yang et al. 2019; Zhang et al. 2020b), 
factors with coefficients exceeding 0.9 were selected as 
input features for the ensemble algorithm to forecast peri-
odic displacement.

Periodic displacement prediction  The selected influenc-
ing factors and periodic displacement are used as the 
original sample data for the ensemble algorithm to predict 
the periodic displacement. Herein, six commonly used 
ML algorithms are chosen to construct the learner pool 
of the ensemble algorithm: DTR, MLP, RF, XGBoost, 
SVR and Ridge. Generally, increasing the variety of base-
learners in the ensemble algorithm can improve the pre-
diction effect. Hence, all models in the learner pool are 
selected as the base-learners. To ensure the fairness of 
the ensemble, the Bayesian optimization method is used 
to obtain the optimal parameters of each base-learner. 
The prediction results from base-learners on the original 
sample data, validated through K-fold cross-validation, 
are then used as inputs for the meta-learner. Considering 
the need for reasonable sample division, choosing 5 as 
the value of K in this study. Each individual model in the 
learner pool is regarded as meta-learner and combined 
with the base-learners to establish the ensemble model. 
Figure 10 shows the prediction results of the periodic 
displacement obtained by different time series decompo-
sition methods, based on the ensemble algorithms with 
various meta-learners.

According to the prediction results, it can be observed 
that the Bayesian optimized ensemble algorithm model has 
a good performance on the periodic displacement predic-
tion of Bazimen landslide, which can correctly reflect the 
annual fluctuation of the periodic displacement. Among 
them, the prediction performance of the periodic displace-
ment based on the ICEEMDAN method is the best com-
pared with other methods for time series decomposition, 
indicating that the periodic displacement decomposed by 
the ICEEMDAN method are the most realistic and consist-
ent with the actual situation.

Total displacement prediction  Figure 11 shows the predic-
tion results for the total displacement of the Bazimen land-
slide, achieved by various time series decomposition meth-
ods and ensemble algorithms with different meta-learners. 
These results represent the sum of the predicted trend dis-
placement and periodic displacement predictions. The pro-
posed method, combining time series decomposition and 
Bayesian optimized ensemble algorithm, shows excellent 
performance, aligning well with the step-like deformation 
characteristics of Bazimen landslide. Notably, the ICEEM-
DAN method outperforms other time series decomposition 
methods in predicting total displacement. Additionally, the 
prediction results vary significantly across local time periods 
when different decomposition methods are used. This varia-
tion is attributed to the significant impact of the time series 
decomposition results on the predictions. If there is a major 
discrepancy between the decomposed components (trend 
and periodic terms) and the actual components, the ML 
methods may fail to accurately map the relationship between 
influencing factors with seasonal fluctuations and periodic 
displacement. This can adversely affect displacement pre-
diction accuracy. Therefore, selecting the most appropriate 
time series decomposition method is crucial for accurately 
predicting landslide displacement, particularly when dealing 
with low-frequency and simple signal scenarios.

Figure 12 shows the evaluation indices for the total dis-
placement predictions based on various time series decom-
position methods and ensemble algorithms with different 
meta-learners, including MAE, MAPE and RMSE.1 The 
results indicate that the ensemble algorithms with different 
meta-learners yield relatively stable and accurate predic-
tions, demonstrating the proposed model has better gener-
alization ability. Among them, the ICEEMDAN method con-
sistently shows the lowest values across all three evaluation 

Table 1   Calculation results of 
correlation coefficient between 
the influencing factors and the 
periodic displacement

Influencing factor MA WA EMD ICEEMDAN

1-month cumulative antecedent rainfall 0.951 0.947 0.951 0.950
2-month cumulative antecedent rainfall 0.909 0.906 0.910 0.908
The average elevation of reservoir level in the 

current month
0.915 0.913 0.916 0.914

Reservoir level change in 1-month period 0.986 0.981 0.985 0.986
Reservoir level change in 2-month period 0.987 0.982 0.986 0.987
The displacement over the past 1 month 0.750 0.746 0.748 0.747
The displacement over the past 2 months 0.619 0.615 0.617 0.616
The displacement over the past 3 months 0.537 0.533 0.535 0.534

1  Mean absolute error (MAE), mean absolute percentage error 
(MAPE) and root mean square error (RMSE).
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indices, suggesting its exceptional performance in landslide 
displacement prediction.

To further verify the advantages of the proposed 
method, the paired t-test is conducted based on the pre-
diction results related to different time series decomposi-
tion. According to the paired t-test, the significance level 
is achieved when the p-value < 0.05, indicating that the 
difference of the compared time series is significant. As 
shown in Table 2, the most p-value related to ICEEM-
DAN vs. the other time series decomposition are less than 
0.05, suggesting the superiority of the proposed predic-
tion model. Besides, the significant difference between 
ICEEMDAN and EMD are smaller than the other pair-
wise comparison, which is consistent with expectations 

according to the results of time series decomposition in 
Fig. 7.

3.2 � Case 2: Caojiatuo landslide

3.2.1 � Geological conditions and monitoring data

The Caojiatuo landslide is located in Wushan area of Three 
Gorges, north bank of Yangtze River, with dustpan shape, 
and there are many large gullies on both sides of the land-
slide boundary. The landslide mainly produces sliding 
deformation in the direction of the Yangtze River with 187° 
sliding direction, and the distribution elevation is between 
125 and 275 m. The length and width of the landslide are 

Fig. 10   Prediction of periodic 
displacement of Bazimen land-
slide based on different methods 
for time series decomposition

(a) MA

(b) WA

(c) EMD

(d) ICEEMDAN
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about 900 m and 500 m, respectively. The thickness of the 
sliding body is about 25 m, which belongs to the large soil 
landslide. The monitoring types of Caojiatuo landslide 
incorporate multiple monitoring points of landslide surface 
displacement, meteorological and hydrological. Here, the 
distribution of GPS monitoring points of surface displace-
ment is shown in Fig. 13.

Figure 14 shows the displacement monitoring data of 
Caojiatuo landslide that from February 2007 to November 
2013. It can be seen that the deformation of Caojiatuo 
landslide is related to the change of rainfall and reser-
voir water level. After the end of each water impound-
ment period (i.e., the reservoir water level declined to the 
minimum), the deformation of the landslide would uplift 
in the several few months, which exhibits the annual vari-
ation features of step-like deformation generally. Nota-
bly, the first large-scale deformation was observed in 2009 
after the first wider fluctuation of reservoir water level. 
The fluctuation of reservoir water level generally affects 
the stability of the front edge of the landslide. With the 
periodic change of reservoir water level, the front edge of 
the landslide is constantly washed away, forming multiple 
local small bank collapses and constantly developing to 
the trailing edge and causing the Caojiatuo landslide to 
present the deformation characteristics as the retrogressive 
landslide. The displacement prediction for the Caojiatuo 
landslide was conducted monthly, aligned with the estab-
lished monthly monitoring schedule.

3.2.2 � Displacement decomposition

The GPS-6 monitoring data is selected as the sample data 
for the modelling of landslide displacement prediction 
due to the most obvious step-like deformation character-
istics, and the four methods for time series decomposi-
tion selected in this study are utilized to decompose the 
cumulative displacement to obtain the trend displace-
ment and periodic displacement. Figure 15 shows the 
decomposition results of GPS-6 monitoring data, which 
indicates that the decomposition characteristics of the 
four methods for time series decomposition are similar to 
the decomposition results of Bazimen landslide. Herein, 
the curve of trend displacement obtained by WA is the 
smoothest, while the decomposition results of EMD and 
ICEEMDAN methods are similar. In general, the decom-
position results of other methods are quite different.

3.2.3 � Trend displacement prediction

Figure 16 shows the prediction results of the trend dis-
placement of Caojiatuo landslide. The pattern of predic-
tion errors over different time periods closely resembles 
that observed in the Bazimen landslide, where the pre-
diction error diminishes as the slope of the trend dis-
placement curve decreases. Furthermore, the prediction 
results show that the DES method is also suitable for the 
prediction of trend displacement. Although obviously 

Fig. 11   Prediction of total dis-
placement of Bazimen landslide 
based on different methods for 
time series decomposition
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smoother than those obtained by other decomposition 
methods, the trend displacement results from the WA 
method show little difference compared to those based 
on the DES method.

3.2.4 � Periodic displacement and total displacement 
prediction

Determination of influencing factors  The initial influencing 
factors selected for the displacement prediction of Caojiatuo 

Fig. 12   Evaluation of error in 
total displacement prediction 
of Bazimen landslide based on 
different methods for time series 
decomposition
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landslide are the same as those of Bazimen landslide, owing 
to the similar geological similarities and deformation charac-
teristics between the two cases. Figure 17 and Table 3 show 
the calculation process of GRA and the average value of the 
calculation results of correlation coefficient between peri-
odic displacement and influencing factors in the different 
monitoring periods. Generally, the features of the calculation 
results of the correlation coefficient between the influencing 
factors and periodic displacement of Caojiatuo landslide are 
roughly same as that of Bazimen landslide. Notably, the cor-
relation coefficient between cumulative rainfall and periodic 
displacement of Caojiatuo landslide is lower than that of 
Bazimen landslide. According to the calculation results in 
Fig. 17 and Table 3, the influencing factors with the cor-
relation coefficient larger than 0.9 are selected as the input 
features of the ensemble algorithm, which are the same as 
those of the Bazimen landslide.

Periodic displacement prediction  After the deter-
mination of the influencing factors, the prediction of 
periodic displacement of Caojiatuo landslide adopts 
the same ensemble pattern as that of the Bazimen land-
slide. The selected six ML algorithms in the learner 

Table 2   Results of the paired t-test regarding the comparison of per-
formances of the proposed prediction model models related to Bazi-
men landslide based on different time series decomposition

Meta-models Pairwise comparison p-value significance

DTR ICEEMNAN vs. MA 0.001 Yes
ICEEMNAN vs. WA 0.000 Yes
ICEEMNAN vs. EMD 0.072 No

MLP ICEEMNAN vs. MA 0.000 Yes
ICEEMNAN vs. WA 0.001 Yes
ICEEMNAN vs. EMD 0.017 Yes

RF ICEEMNAN vs. MA 0.001 Yes
ICEEMNAN vs. WA 0.001 Yes
ICEEMNAN vs. EMD 0.056 No

Ridge ICEEMNAN vs. MA 0.000 Yes
ICEEMNAN vs. WA 0.000 Yes
ICEEMNAN vs. EMD 0.001 Yes

SVR ICEEMNAN vs. MA 0.022 Yes
ICEEMNAN vs. WA 0.003 Yes
ICEEMNAN vs. EMD 0.201 Yes

XGBoost ICEEMNAN vs. MA 0.004 Yes
ICEEMNAN vs. WA 0.000 Yes
ICEEMNAN vs. EMD 0.032 Yes

Fig. 13   The diagram of the 
distribution about the GPS 
monitoring points of surface 
displacement on Caojiatuo 
landslide
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pool are regarded as base-learners to be combined with 
individual ML methods (meta-learner) in the learner 
pool to establish the ensemble model, and the Bayes-
ian optimization is adopted to optimize the hyperpa-
rameters of each base-learner in the ensemble model 
to obtain the optimal base-learner, so as to ensure the 
fairness of the ensemble. During the ensemble process, 
the prediction results of the base-learners are used as 
the input of the meta-learner by 5-Fold cross-valida-
tion. Using the established ensemble prediction model, 
the periodic displacement of Caojiatuo landslide is pre-
dicted based on the input of the inf luencing factors 
determined by GRA.

Figure 18 shows the prediction results of the periodic dis-
placement obtained by different methods for time series 
decomposition of Caojiatuo landslide by the ensemble 
model with different meta-learners. It can be observed that 
the ensemble model exhibits a good performance in predict-
ing the periodic displacement of Caojiatuo landslide, which 
is consistent with the seasonal fluctuation characteristics of 
the monitored periodic displacement. In addition, the predic-
tion results of the periodic displacement obtained by differ-
ent methods for time series decomposition are quite differ-
ent. Among them, the prediction results based on the WA 
method produce a large prediction error when the periodic 
displacement changes greatly. Although the WA method can 

Fig. 14   Monitoring data of 
Caojiatuo landslide

Fig. 15   Monitoring data of 
Caojiatuo landslide based on 
different methods for time series 
decomposition

(a) MA (b) WA

(c) EMD (d) ICEEMDAN
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Fig. 16   Trend displacement pre-
diction of Caojiatuo landslide 
based on different methods for 
time series decomposition

(a) MA (b) WA

(c) EMD (d) ICEEMDAN

Fig. 17   The results of GRA of 
Caojiatuo landslide based on 
different methods for time series 
decomposition: (a) MA; (b) 
WA; (c) EMD; (d) ICEEMDAN

Table 3   Calculation results of 
correlation coefficient between 
the influencing factors and the 
periodic displacement

Influencing factor MA WA EMD ICEEMDAN

1-month cumulative antecedent rainfall 0.927 0.915 0.926 0.925
2-month cumulative antecedent rainfall 0.867 0.860 0.868 0.866
The average elevation of reservoir level in the 

current month
0.904 0.902 0.907 0.904

Reservoir level change in 1-month period 0.987 0.968 0.978 0.983
Reservoir level change in 2-month period 0.986 0.968 0.978 0.983
The displacement over the past 1 month 0.772 0.766 0.773 0.770
The displacement over the past 2 months 0.647 0.639 0.647 0.644
The displacement over the past 3 months 0.567 0.559 0.566 0.564
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obtain a relatively smooth trend displacement (Fig. 16), it 
does not mean that the components obtained by the WA 
method are consistent with the actual situation, that means 
the effect of time series decomposition on the landslide dis-
placement prediction needs to be evaluated according to the 
final predictive performance. In addition, the prediction per-
formance based on the MA method in Caojiatuo landslide 
is better than the prediction performance based on the MA 
method in Bazimen landslide. The possible reason is due to 
the fact that, with the decomposition properties of the MA 
method, the initial and final data points of the time series 
of periodic displacement obtained by the MA method are 
always zero according to Eq. (2). When the seasonal fluc-
tuation of landslide evolution is small, it can produce better 
prediction results.

Total displacement prediction  The total displacement 
prediction results are obtained by summing the prediction 
results of periodic trend displacement of Caojiatuo landslide 

obtained by the different methods for time series decomposi-
tion (Fig. 19). It can be observed that the proposed predic-
tion model in this paper shows a good performance in pre-
dicting the displacement of step-like landslide. In addition, 
the prediction results of landslide displacement based on 
different methods for time series decomposition are quite 
different. Herein, the displacement prediction results based 
on ICEEMDAN are the closest to the actual landslide dis-
placement, indicating that the ICEEMDAN method is the 
most suitable for the decomposition of the accumulative dis-
placement, which is the same as the displacement prediction 
of Bazimen landslide.

Figure 20 shows the statistical results of MAE, MAPE 
and RMSE2 of total displacement predicted based 

Fig. 18   Prediction of periodic 
displacement of Caojiatuo land-
slide based on different methods 
for time series decomposition

(a) MA

(b) WA

(c) EMD

(d) ICEEMDAN

2  Mean absolute error (MAE), mean absolute percentage error 
(MAPE) and root mean square error (RMSE).
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on different time series decomposition and ensemble 
model. Among them, the calculation results of MAPE 
are quite different from those of Bazimen landslide. That 
is because the initial displacement value of Caojiatuo 
landslide is close to zero. According to Eq.  (15), the 
prediction error in the initial stage will be amplified. 
Hence, due to the first data of the trend displacement 
obtained by the MA is close to zero, the MAPE of the 
prediction results of landslide displacement obtained 
by the MA is significantly smaller than other methods 
for time series decomposition. In addition, according 
to the calculation results of MAE and RMSE shown in 
Fig. 20, the accuracy of the prediction results based on 
the ICEEMDAN method is the highest compared with 
the other methods for time series decomposition, which 
indicates that the ICEEMDAN can produce the best 
decomposition performance on the cumulative displace-
ment of the step-like landslide. Furthermore, it can be 
seen from Table 4 that the results of the paired t-test of 
the prediction results of Caojiatuo landslide are similar 
to that of Bazimen landslide, the prediction performance 
based on the ICEEMDAN are significantly better than 
other time series decomposition, while the significant 
difference between ICEEMDAN and EMD are smaller 
than the other pairwise comparison.

4 � Discussions

4.1 � Comparison with individual ML models

To verify the superiority of the proposed ensemble model 
in estimating the individual bias of different artificial 
intelligence models, the prediction results of the Bazi-
men landslide and the Caojiatuo landslide from the opti-
mized individual ML model and the ensemble model with 
the optimized base-learners are compared. It should be 
noted that evaluation of individual ML model is based 
on the fivefold cross-validation method. Figure 21 shows 
the statistical results of distribution range of the evalu-
ation indices of the prediction results based on different 
methods for time series decomposition. It should be noted 
that the upper and lower bounds of each index represent 
the maximum and minimum values of the calculation 
results respectively based on different prediction models. 
According to the statistical results in Fig. 21, the distri-
bution range of each evaluation index of the ensemble 
algorithms with the optimized base-learners is generally 
lower and smaller than individual optimized ML models 
based on Bayesian optimization, especially for the MAE 
and RMSE, indicating that the prediction results of the 
ensemble algorithm with the optimized base-learners are 

Fig. 19   Prediction of total 
displacement of Caojiatuo land-
slide based on different methods 
for time series decomposition

(a) MA (b) WA

(c) EMD (d) ICEEMDAN
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more accurate and robust. In addition, due to the error 
amplification effect of the MAPE index in the initial and 
final monitoring periods when the displacement value is 
close to zero, the MAPE of the displacement prediction 

results of Caojiatuo landslide is unstable. Hence, it is nec-
essary to select appropriate evaluation index according to 
the characteristics of the data itself when evaluating the 
accuracy of regression prediction of time series.

Fig. 20   Error evaluation indices 
of total displacement prediction 
of Caojiatuo landslide
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4.2 � Influence of the Bayesian optimization 
algorithm on the proposed ensemble model

In this study, the Bayesian optimization method is used to 
obtain the optimal base-learners to ensure the fairness of 
ensemble and enhance the predictive performance, which 
means that the predictive performance of the base-learners 
will influence the final prediction results of the ensemble 
model. To verify the significance of the Bayesian optimiza-
tion algorithm to the ensemble model, the prediction results 
of the two research cases based on the ensemble model with 
optimized base-learners and the ensemble model without 
optimized base-learners are compared. Figure 22 shows the 
distribution range of the statistical results of evaluation indi-
ces based on different methods for time series decomposi-
tion. It can be observed that the distribution range and upper 
limit of each evaluation index are reduced obviously after 
the optimization of the base-learners in the ensemble model. 
Although the statistical results of MAPE of the prediction 
results of the Caojiatuo landslide show the error amplifica-
tion effect, the Bayesian optimization algorithm can improve 
the accuracy and robustness of ensemble model in predicting 
the landslide displacement. Furthermore, the focus of this 
paper is whether the Bayesian optimization algorithm can 
improve the performance of the ensemble model, rather than 
finding the optimal hyperparameter optimization algorithm, 
whereas the choice of optimization algorithm should be one 
of the important factors affecting the model performance. 

Hence, it is worthy to conduct systematic comparative 
studies on different types of optimization algorithms in the 
future.

4.3 � Comparison with other studies of the step‑like 
landslide displacement prediction of Bazimen 
landslide and Caojiatuo landslide

In order to eliminate the contingency inherent in a single 
case and enhance the persuasiveness of the conclusion, this 
research focuses on the Bazimen and Caojiatuo landslides, 
chosen for their sufficient monitoring data and typical step-
like deformation characteristics. While numerous studies 
have investigated landslide displacement predictions for 
these cases, as summarized in Table 5, they predominantly 
emphasize the superior efficacy of deep learning methods 
over traditional ML models and highlight the role of hyper-
parameter optimization in enhancing prediction accuracy. 
However, these studies lack the exploration of the influence 
of time series decomposition on the prediction results of 
landslide displacement, and the individual bias of differ-
ent artificial intelligence models on landslide datasets is not 
considered. In this study, the framework of ensemble learn-
ing is used to eliminate the individual bias of different arti-
ficial intelligence models to obtain more robust prediction 
results, and the prediction results of landslide displacement 
based on different methods of time series decomposition are 
analyzed. To explore the effectiveness of the framework of 
ensemble learning and compare the displacement prediction 
results of different methods of time series decomposition, 
six traditional ML algorithms are selected to be applied to 
the proposed prediction method for landslide displacement. 
In the future, the application of the framework of ensemble 
learning in deep learning can be studied, so as to establish 
displacement prediction models with better performance, 
combing them with the time series decomposition method 
that is more suitable for landslide deformation.

4.4 � Discussion of the impact of rainfall factors 
on the prediction results

To comprehensively illustrate the possible impact of rain-
fall factors on the prediction results, the prediction results 
related to the Bazimen and Caojiatuo landslide with and 
without the input factors of rainfall are compared. Herein, 
the method of ICEEMDAN with the best performance is uti-
lized to decompose the landslide accumulate displacement. 
The trend displacement is predicted by the double exponen-
tial smoothing, and the periodic displacement is predicted 
by ensemble learning with different ML models optimized 
by the Bayesian optimization algorithm as the meta-model. 
the Tables 6 and 7 present the comparison of the predic-
tion results of the Bazimen and Caojiatuo landslides with 

Table 4   Results of the paired t-test regarding the comparison of per-
formances of the proposed prediction model models related to Caojia-
tuo landslide based on different time series decomposition

Meta-models Pairwise comparison p-value significance

DTR ICEEMNAN vs. MA 0.007 Yes
ICEEMNAN vs. WA 0.01 Yes
ICEEMNAN vs. EMD 0.001 Yes

MLP ICEEMNAN vs. MA 0.005 Yes
ICEEMNAN vs. WA 0.001 Yes
ICEEMNAN vs. EMD 0.002 Yes

RF ICEEMNAN vs. MA 0.016 Yes
ICEEMNAN vs. WA 0.01 Yes
ICEEMNAN vs. EMD 0.047 Yes

Ridge ICEEMNAN vs. MA 0.002 Yes
ICEEMNAN vs. WA 0.01 Yes
ICEEMNAN vs. EMD 0.007 Yes

SVR ICEEMNAN vs. MA 0.01 Yes
ICEEMNAN vs. WA 0.01 Yes
ICEEMNAN vs. EMD 0.168 Yes

XGBoost ICEEMNAN vs. MA 0.049 Yes
ICEEMNAN vs. WA 0.01 Yes
ICEEMNAN vs. EMD 0.055 No
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Fig. 21   The range of error indi-
ces for the predicted displace-
ments by the ensemble and the 
individual ML algorithms, both 
based on Bayesian optimization

(a) MA

(b) WA

(c) EMD

(d) ICEEMDAN
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Fig. 22   The range of error indi-
ces of prediction results by the 
ensemble model with optimized 
base-learners by Bayesian 
optimization and unoptimized 
base-learners

(a) MA

(b) WA

(c) EMD

(d) ICEEMDAN
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Table 5   The prediction results related to the Bazimen and Caojiatuo landslides of other studies

Landslide cases Time series 
decomposition

Displacement prediction Monitoring 
point

MAE RMSE Reference

Bazimen land-
slide

MA BPNN Z111 15.01 17.73 (Du et al. 2013)

Bazimen land-
slide

- Switched pre-
diction

Z111 12.91 25.08 (Li et al. 2015)

Bazimen land-
slide

MA PSO-SVR ZG111 13.28 25.95 (Zhou et al. 2016)

Bazimen land-
slide

MA GA-SVR ZG111 16.12 27.22 (Zhou et al. 2016)

Bazimen land-
slide

MA Grid-SVR ZG111 14.69 29.19 (Zhou et al. 2016)

Bazimen land-
slide

MA SVR ZG111 19.32 28.32 (Yang et al. 2019)

Bazimen land-
slide

MA LSTM ZG111 10.2 13.83 (Yang et al. 2019)

Bazimen land-
slide

- Grey prediction 
model

ZG110 8.9 12.48 (Li and Wu 2021)

Bazimen land-
slide

- LSSVR ZG110 17.61 21.87 (Li and Wu 2021)

Bazimen land-
slide

VMD FOA-SVR ZG110 22.74 24.17 (Lu et al. 2021)

Bazimen land-
slide

VMD Bi-LSTM ZG110 1.18 1.36 (Zhang et al. 
2021a)

Bazimen land-
slide

VMD Bi-LSTM ZG111 2.19 2.47 (Zhang et al. 
2021a)

Bazimen land-
slide

PSO-VMD NARX ZG110 4.45 5.47 (Jiang et al. 2022)

Bazimen land-
slide

PSO-VMD NARX ZG111 4.87 5.93 (Jiang et al. 2022)

Bazimen land-
slide

WMA LSTM-FC ZG111 2.36 2.97 (Lin et al. 2022)

Bazimen land-
slide

WMA RNN ZG111 6.03 6.93 (Lin et al. 2022)

Bazimen land-
slide

WMA GRU​ ZG111 5.28 5.97 (Lin et al. 2022)

Bazimen land-
slide

WMA BiLSTM ZG111 4.64 5.14 (Lin et al. 2022)

Bazimen land-
slide

WMA BiGRU​ ZG111 4.68 5.34 (Lin et al. 2022)

Bazimen land-
slide

- MFIT ZG111 3.59 5.54 (Long et al. 2022)

Bazimen land-
slide

SSSC-EMD DBi-LSTM ZG111 5.11 5.32 (Zhang et al. 
2022)

Caojiatuo land-
slide

MA ELM GPS-6 13.4 13.52 (Zhang et al. 
2020a)

Caojiatuo land-
slide

MA GWO-ELM GPS-6 5.5 5.66 (Zhang et al. 
2020a)

Caojiatuo land-
slide

MA ELM GPS-3 7.00 7.12 (Zhang et al. 
2020a)

Caojiatuo land-
slide

MA GWO-ELM GPS-3 3.00 3.04 (Zhang et al. 
2020a)

Caojiatuo land-
slide

CEEMDAN GRU​ GPS-6 3.9 4.0 (Zhang et al. 
2022)

Caojiatuo land-
slide

CEEMDAN SVR GPS-6 9.7 9.9 (Zhang et al. 
2022)
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and without the inputs factors of rainfall. In general, it can 
be observed that the accuracy of the prediction results with 
the rainfall factors as the input factors is higher than that 
without the rainfall factors as the input factors, verifying 
the strong correlation between the rainfall and landslide 
displacement. Furthermore, the difference of the predic-
tion results with and without the rainfall factors as input of 
the Bazimen landslide are larger than that of the Caojiatuo 

landslide. The possible reason is that the regional location 
and geological conditions of the two landslide cases are not 
exactly the same, resulting in different responses of landslide 
deformation to rainfall.

5 � Conclusions

In this paper, a novel method for predicting step-like land-
slide displacement based on time series decomposition and 
Bayesian optimized ensemble model is proposed to elimi-
nate the individual bias of different artificial intelligence 
models. Additionally, a systematic comparative analysis is 
performed on various methods for time series decomposi-
tion. Two typical step-like landslides, namely Bazimen land-
slide and Caojiatuo landslide in the Three Gorges area, are 
selected as research cases. The main findings of this study 
can be summarized as follows:

(1)	 The evolution of landslides is a system affected by a 
variety of linear and nonlinear factors, which means 
that the deformation characteristics are usually con-
trolled by the imposition pattern of influencing factors. 
According to the monitoring data of the research cases 
in this paper, the landslide displacement is affected by 
the combined action of periodic fluctuation factors, 
such as rainfall and reservoir water level, which cause 
the step-like displacement change. These deformation 
characteristics can provide a basis for intelligent algo-
rithm to predict landslide displacement.

(2)	 The accuracy of landslide displacement prediction is 
influenced by the choice of time series decomposition 
method. For the Bazimen and Caojiatuo landslides, the 
MAE and RMSE of predictions based on the Bayesian 
optimized ensemble learning and ICEEMDAN method 
range between 19  mm—23  mm and 25—29  mm, 
respectively. This represents a decrease around 30%—
60% compared to the other time series decomposition 
methods. Overall, the experimental results indicate 
that the ICEEMDAN approach is the most effective 
for decomposing landslide deformation monitoring 
data for displacement prediction purposes.

(3)	 The ensemble algorithm efficiently mitigates indi-
vidual biases of the different ML models, enhancing 

Table 5   (continued)

Landslide cases Time series 
decomposition

Displacement prediction Monitoring 
point

MAE RMSE Reference

Caojiatuo land-
slide

CEEMDAN GRU​ GPS-3 4.8 5.1 (Zhang et al. 
2022)

Caojiatuo land-
slide

CEEMDAN SVR GPS-3 9.4 9.6 (Zhang et al. 
2022)

Table 6   The evaluation indices of the prediction results related to the 
Bazimen landslide with and without the input factors of rainfall

Rainfall factors Meta-learners MAE MAPE RMSE

with DTR 19.92 0.07 25.97
MLP 20.67 0.09 25.41
RF 20.99 0.10 25.67
Ridge 20.29 0.08 26.22
SVR 22.78 0.10 28.36
XGBoost 19.80 0.08 26.96

without DTR 25.75 0.11 32.50
MLP 26.01 0.12 31.16
RF 23.50 0.11 29.68
Ridge 23.43 0.10 29.68
SVR 24.57 0.12 30.07
XGBoost 24.35 0.12 31.53

Table 7   The evaluation indices of the prediction results related to the 
Caojiatuo landslide with and without the input factors of rainfall

Rainfall factors Meta-learners MAE MAPE RMSE

with DTR 21.21 5.33 25.18
MLP 20.44 5.63 24.28
RF 21.66 7.37 26.21
Ridge 19.76 4.53 24.08
SVR 21.93 6.67 26.22
XGBoost 22.79 2.20 27.81

without DTR 24.24 7.09 29.54
MLP 22.65 7.06 27.25
RF 20.20 5.51 25.64
Ridge 21.07 7.21 25.46
SVR 22.45 7.59 27.24
XGBoost 25.26 6.97 30.81
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the predictive performance for landslide displacement. 
The distribution range of the evaluation indices of the 
displacement prediction results based on the ensemble 
framework is smaller than that of the individual ML 
method. Meanwhile, the ensemble framework reduces 
prediction errors related to the individual ML method. 
Besides, the Bayesian optimization technique refines 
the parameters of each base-learner in the ensemble 
algorithm, thereby improving the performance of 
ensemble models with smaller prediction errors, while 
ensuring fairness within the ensemble. Therefore, the 
Bayesian optimized ensemble model exhibits signifi-
cant potential for landslide displacement prediction.
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