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Abstract
In this study changes in the heatwave characteristics and associated population exposure for the five months (March–July) 
of the year is examined over India. The study considered 1.5 °C, 2 °C, and 3 °C global warming levels (GWL) and for two 
time periods, i.e., the near future (T1; 2021–2050) and the distant future (T2; 2071–2100) using the Coupled Model Inter-
comparison Phase 6 (CMIP6) framework. This study identifies the heatwave using the extreme heatwave factor (EHF). The 
findings demonstrate a significant rise in mean summer heatwave frequency, duration, and severity with increasing GWLs. 
With the increase in GWLs, most of the regions of India would face severe heatwave but the Himalayan, Coastal, and North-
east regions are the most vulnerable to heat waves and associated severity. The March (18-fold) and April (9-fold) months 
show the maximum increase in severity compared to the months of May, June, and July from the current world (1991–2020). 
The population exposure showed significant regional variations, with the Coastal and Northeast regions seeing the highest 
exposure for all SSPs and warming periods, and the Himalayan region experiencing the lowest exposure. Comparing the 
population under all SSP, climate change contributes more to total exposure. The total exposure increases 1.4–1.6 folds from 
1.5 to 2 °C GWL under all SSPs over India.

Keywords  CMIP6 · Global warming · EHF · Heatwave severity · Population exposure

1  Introduction

The earth’s temperature has already reached 1.2 °C above 
pre-industrial levels (WMO 2020; IPCC 2021). If the cur-
rent rate of warming persists, it is projected that earth’s 
temperature will reach 1.5 °C above pre-industrial levels 
by 2030–2040. Climate models predict that the global tem-
perature will rise in the future and may reach 5.5 °C by the 
end of the century (Mazdiyasni et al. 2017; IPCC 2014). 
This increasing global temperature is expected to lead to a 
substantial increase in the frequency, duration, and intensity 

of extreme weather events, such as extreme precipitation, 
droughts, heat waves, etc. (Li et al. 2020). Heat waves are a 
major environmental hazard that affects millions of people 
worldwide, causing adverse health effects (such as dehy-
dration, heat stroke, heat exhaustion, etc.), crop losses, 
increased energy demand, increased evapotranspiration, 
intensification of drought, and economic damages (Mazdi-
yasni et al. 2017; Nishant et al. 2022; IPCC 2014). Urban 
areas tend to be significantly warmer than rural areas due to 
the urban heat island effect (Nishant et al. 2022; IPCC 2014) 
which poses additional risks to vulnerable high-density pop-
ulations during heat waves, especially in the summer season.

Recent studies have exhibited that exposure to heat waves 
has increased globally (Zhou et al. 2022), particularly in 
low-income countries where populations are vulnerable to 
extreme heat. The highest increases in heatwave exposure 
was observed in Asia and Africa (Li et al. 2020). Heatwaves 
caused approximately 166,000 deaths worldwide between 
1998 and 2017 (Rohini et al. 2019; Jyoteeshkumar Reddy 
et al. 2021). Zhou et al., (2022) found a significant increase 
in heatwave mean and peak intensity across West USA, Bra-
zil, South Africa, West Asia, Central Asia, and Australia 
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whereas, an increase in heatwave frequency and duration 
over the US, Eurasia, and North Africa in the future period 
(2070–2100). The previous studies investigated the popu-
lation exposure to extreme temperatures across the globe 
and revealed significant increases in Southeast Asia, South 
Asia, Africa, the United States (US), and North America 
(Smirnov et al. 2016; Liu et al. 2017; Andrews et al. 2018; 
Harrington and Otto 2018; Zhang et al. 2018; Rohat et al. 
2019). Andrews et al., (2018) reported that as the warming 
increased to 3 °C from the pre-industrial era, the risk of 
extreme heat stress would affect a much larger area and the 
number of high-risk heat-exposed countries would double 
(with more than 10 million people).

India is vulnerable to heat waves due to its high popu-
lation density, limited access to air conditioning, and rap-
idly changing climate. Extreme temperature events com-
bined with high population growth could have a significant 
impact on Indian society in terms of severe heat stress and 
increased mortality (McMichael et al. 2008). In India, heat 
waves occur between March–June and cause severe human 
health impacts (Pai et al. 2013; Pattanaik et al. 2017; Rao 
et al. 2023). The severity of heat mortality caused 27,366 
deaths across India between 1992 to 2019. Most of the casu-
alties happened in the eastern coastal region of India during 
the summer period (Guleria 2018; Rohini et al. 2019; Nag-
eswararao et al. 2020). Several studies have documented an 
increasing trend in heat waves and their severity in India 
in recent years and near-future (Rohini et al. 2016; Mishra 
et al. 2017; Mukherjee and Mishra 2018; Singh et al. 2021; 
Rao et al. 2023). Rohini et al. (2019) report an increase in 
heatwave events and their duration 2020 to 2064 period. 
Heatwave trends were particularly pronounced over the 
north-western and south-eastern coastal regions of India 
(Ratnam et al. 2016; Rohini et al. 2016). Rao et al. (2023) 
studied heatwave characteristics for the near and far future 
over India and found a significant increase in frequency, 
magnitude duration, and season length of summertime heat-
waves. Mishra et al. (2017) reported that population expo-
sure to severe heatwaves is expected to increase by 15 and 
92 times from the current level (1986–2015) by the middle 
and end of the century, respectively over India. Das et al. 
(2022) analysed population exposure to compound extreme 
events in India for two future periods and found that Cen-
tral Northeast India would have the highest total exposure 
whereas, hilly terrain would exhibit the lowest exposure. The 
previous studies also highlighted the need for effective heat 
wave management strategies (Mishra et al. 2017; Mukherjee 
and Mishra 2018).

It is therefore crucial to study heat wave characteristics 
and associate population exposure at a regional level in 
the context of global warming levels. However, no single 
approach or set of criteria can monitor or classify heat waves 
worldwide or regionally (Perkins and Alexander 2013). The 

warming of the surface temperature is non-uniform with 
different degrees of tolerance (Nageswararao et al. 2020). 
Keeping in view, heat wave indices defined by temperature 
threshold (intensity) and number of consecutive days of 
exceeding the threshold (duration) were utilised to under-
stand the impact of the heatwave and associated mortality 
(Andrews et al. 2018; Mukherjee and Mishra 2018; Oleson 
et al. 2018; Dahl et al. 2019; Nori-Sarma et al. 2019). For 
the current study, we used the Excess Heat Factor (EHF) 
to define the heat wave. The severity of the EHF has been 
widely used for assessing exposure and its correlation with 
human health impact across the globe (Nairn et al. 2018).

According to the reports released by the Intergovernmen-
tal Panel on Climate Change (IPCC) and the 26th United 
Nations Climate Change Conference of the Parties (COP26), 
the primary objective is to mitigate global warming to a 
maximum increase of 1.5 °C (Dwivedi et al. 2022; COP26 
2021). While earlier studies (Rohini et  al. 2016, 2019; 
Mishra et al. 2017; Rao et al. 2023) have predominantly 
concentrated on prospective temporal periods (historical, 
near future, and far future), our investigation redirects its 
focus toward the examination of distinct degrees of warm-
ing, specifically 1.5 °C, 2 °C, and 3 °C above pre-industrial 
level. There exists a dearth of studies that have examined 
alterations in heatwave characteristics and the corresponding 
exposure of populations across various levels of warming. 
Heatwave events exhibit significant regional variability. The 
utilisation of this focused methodology enables us to investi-
gate the distinct attributes of heatwaves within temperature-
homogenous areas of India at critical thresholds and better 
aligns with the Paris Agreement's objectives.

The following research questions are addressed in the pre-
sent study (1) How well different climate models can capture 
the summer mean temperature pattern and heatwave char-
acteristics (heatwave severity frequency, duration, intensity, 
etc.) over India. (2) How would the heatwave characteristics 
and associated population exposure change under 1.5 °C, 
2 °C, and 3 °C global warming scenarios compared to the 
base period (1971–2000)? (3) How much the population 
growth and climate change contribute to the total exposure?

2 � Study area and datasets

Figure 1 shows seven homogeneous temperature regions 
classified by the Indian Institute of Tropical Meteorology 
(IITM) based on topographical, geographical, and clima-
tological features namely the east coast (EC), interior pen-
insula (IP), north central (NC), northeast (NE), northwest 
(NW), western Himalaya (WH), and west coast (WC). This 
classification has been widely used to study the changes in 
temperature in India (Kothawale and Rupa Kumar 2005; 
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Dash and Mamgain 2011; Sonali and Kumar 2013; Maurya 
et al. 2023).

The study uses observed gridded daily maximum and 
minimum temperature datasets from the National Climatic 
Centre (NCC), Indian Meteorological Department (IMD) 
for 1951–2014, which have been developed using a modi-
fied Shepard's angular distance weighting interpolation algo-
rithm. The datasets have a resolution of 1° × 1° and cover 
a spatial domain of 7.5° N to 37.5° N and 67.5° E to 97.5° 
E, with a few grids excluded from the analysis. The study 
uses 13 bias-corrected CMIP6 climate models to estimate 
the changes in heatwave characteristics for the future period, 
with the minimum and maximum temperature datasets at 

0.25° resolution developed by Mishra et al.  (2020). All 
the data sets used in the study were further re-gridded at 
0.5° × 0.5° resolution using a linear interpolation technique. 
For the analysis, a base period of 1971–2000 was assumed.

The Shared Socioeconomic Pathways (SSPs) are sce-
narios that define future greenhouse gas emissions based 
on assumptions regarding economic and population growth, 
investments in health and education, land use, air pollution, 
energy systems, and climate mitigation efforts. In this study, 
we focused on four SSP scenarios, namely SSP1-2.6, SSP2-
4.5, SSP3-7.0, and SSP5-8.5. To assess population exposure 
to heat wave events, we used gridded population datasets 
at 1/8° resolution for SSP1, SSP2, SSP3, and SSP5. The 

Fig. 1   Study area showing homogeneous temperature regions of India
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population datasets were obtained from the Socioeconomic 
Data and Applications Centre (SEDAC) from 2000 to 2100 
and re-gridded at 0.5-degree spatial resolution. The datasets 
are available at a 10-year interval and were linearly interpo-
lated to an annual time step. The global population data are 
categorized into different pathways, including SSP1 (sus-
tainability) and SSP5 (fossil fuel development), which both 
assume low population growth in high-fertility countries 
and high urbanization in most regions of the globe, but dif-
fer in economic growth. SSP1 assumes medium economic 
growth, while SSP5 assumes high economic growth. SSP2 
(middle of the road) is considered to have medium growth in 
population, urbanization, and economic growth, while SSP3 
(regional rivalry) assumes high population growth and low 
urbanization, with low economic growth.

3 � Methodology

The warming periods are the time intervals in which the 
global mean temperature increases to a certain level of 
warming (such as 1.5, 2.0, and 3.0 °C) above the pre-indus-
trial era (1881–1910). We used the time-slice method to 
calculate the warming periods (Schleussner et al. 2016; Li 
et al. 2018; Yu et al. 2018; Singh and Kumar 2019). The 
details of the models and their warming are presented in 
Table S1. We calculated the heatwave characteristics and 
associated population exposure for 1.5, 2.0, and 3.0 °C GWL 
and for the near future (T1, 2021–2050) and the far future 
(T2, 2071–2100). Since the mean temperature for the sum-
mer season is used to define the heatwaves therefore, we cal-
culate the model's bias for the March, April, May, June, and 
July months. Generally, a heatwave is a period where tem-
peratures consistently exceed a predefined threshold (which 
may be fixed or based on a percentile) (Raei et al. 2018). 
Here, we use the method developed by Nairn and Fawcett, 
(2011) based on three-day-averaged daily mean temperature 
to identify the heatwave intensity, duration, and its severity 
for five months (March–July) of the year.

3.1 � Excess heat factor (EHF)

EHF is a metric that is used to measure the severity of 
extreme heat events. The EHF index is a combination of the 
maximum temperature, the duration of the heat event, and 
the rate of temperature change. EHF considers the impact of 
nocturnal temperatures and provides an overall measure of 
the intensity and duration of an extreme heat event and can 
be used to compare heat events across different regions and 
periods. Also, it provides spatial distribution by accounting 
for local geographic acclimatization, heat load, and recent 
temperature variation (Nairn and Fawcett 2014; Keggenhoff 
et al. 2015).

EHF was introduced by Nairn and Fawcett, (2011) and 
widely used in previous studies (Keggenhoff et al. 2015; 
Raei et al. 2018; Zhou et al. 2022; Rao et al. 2023; Reddy 
et al. 2021; Nairn et al. 2018). EHF is the combined effects 
of two indices, excess heat ( EHIsig ) and heat stress ( EHIaccl ). 
These indices are defined as:

theEHIsig is significance of heat even and Ti is the daily mean 
temperature at day i and T95 is the 95th percentile of daily 
mean temperature of the base period (1971–2000). Recent 
past heat stress quantifies heat evet ( EHIaccl) is define as,

where 
(

Ti−1+Ti−2+⋯⋯⋯+Ti−30

30

)
 is the recent past 30 days mean 

temperature from day i . EHF is the combined effect of EHIsig 
and EHIaccl.

We considered EHF (ºC2) is positive as thresholds for 
heatwave. Heatwave is considered if three consecutive days 
are greater than 0.

EHF85 is 85th percentile of all positive EHF for the base 
period. To agree with the annual temporal resolution of daily 
EHFSeverity values were summarised into annual maximum 
severity time series.

3.2 � Heatwave indices

EHF is used to identify the heatwave days in the present 
study. Positive value of EHIsig define heatwave like condi-

tions for ith day. If 
(

Ti+Ti+1+Ti+2

3

)
> T95 for at least three con-

secutive days, then these days are considered as heatwave. 
Once the heatwave days are defined, different characteristics 
of heatwave can be calculated. All the calculated heatwave 
characteristics indices based on duration (HWD, HWAS, and 
HWSL), frequency (HWN and HWF) and intensity (HWMI 
and HWAI) are defined in Table 1.

To assess the spatial agreement between a reference and 
each Regional Climate Model (RCM), we employ the Spa-
tial Efficiency (SPAEF) and Percent Bias (PBIAS) (Koch 
et al. 2018; Petrovic et al. 2023). SPAEF is a comprehensive 
performance measure that evaluates the similarity of spatial 
patterns. It is defined as:

(1)EHIsig =

(
Ti + Ti+1 + Ti+2

3

)
− T95

(2)

EHIaccl =

(
Ti + Ti+1 + Ti+2

3

)
−

(
Ti−1 + Ti−2 +⋯⋯⋯ + Ti−30

30

)

(3)EHF = max
(
0,EHIsig

)
× max

(
1,EHIaccl

)

(4)EHFSeverity =
EHF

EHF85
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where α is the Pearson correlation coefficient between 
observed and simulated patterns, β is the fraction of the 
coefficient of variation representing spatial variability and 
calculated as:

And � is the minimum of the overlapped histograms of 
the observed (K) and simulated (L) patterns with the same 
number of bins (n) expressed as:

To calculate γ, the z score of the patterns is utilized, 
enabling the comparison of variables with different units. 
The count of values in each bin i is determined for both K 
and L histograms. Then, the minimum count between Ki 
and Li is selected for each bin, indicating the number of 
shared values in that bin. These numbers are subsequently 
summed and divided by the total number of values (n) in 
either K or L. The SPAEF is a metric that ranges from -∞ 
to 1, where 1 represents perfect agreement between the 
two patterns. The three components of SPAEF are inde-
pendent of each other and typically carry equal weight-
age, complementing each other to provide comprehensive 
pattern information. Instead of focusing on precise grid-
scale values, this approach evaluates global features such 
as distribution and variability, offering holistic assessment 
of the patterns (Koch et al. 2018).

To assess the accuracy and reliability of climate mod-
els we calculate PBIAS. It provides an indication of the 

(5)SPAEF = 1 −

√
(� − 1)

2 + (� − 1)
2 + (� − 1)

2

(6)� =

(
�sim

�sim

)/
�obs

�obs

(7)� =

∑n

i−1
min(K

i
, L

i
)∑n

i−1
K
i

overall bias or systematic deviation of the model's results 
from the observed data.

Q is the mean of simulation, O is the mean of observed. 
An ideal PBIAS value is 0, indicating a model that accu-
rately simulates the observed data. PBIAS values with a 
small magnitude suggest a good match between simulated 
and observed values. Positive PBIAS values indicate a bias 
of overestimation in the model, while negative values indi-
cate a bias of underestimation.

3.3 � Population exposure

The population's exposure to heatwave can be determined 
by multiplying the number of heatwave days with the popu-
lation affected. To identify heatwave days, a threshold of 
the 95th percentile of daily maximum temperature with 
three consecutive days was used, which was calculated for 
each grid based on base period. The method proposed by 
Jones et al. (2015) was used to calculate the total change 
in exposure, which has been used in various studies. Addi-
tionally, the study examined the impact of both population 
growth and climate change on total exposure. Other stud-
ies (Liu et al. 2017; Chen and Sun 2019, 2021; Chen et al. 
2020; Weber et al. 2020; Das et al. 2022) have also used this 
approach. The contribution of population and climate change 
on total exposure was calculated by Eq. (9).

ΔE is the total change in exposure, ΔC and ΔP are 
the change in HWD and population from the base period 

(8)PBIAS = 100 ∗

⎢⎢⎢⎢⎣

∑n

i−1

�
Q
�

∑n

i−1
O

− 1

⎥⎥⎥⎥⎦

(9)ΔE = P1 × ΔC + C1 × ΔP + ΔC × ΔP

Table 1   Details of heatwave indices calculated based on the Excess Heat Factor (EHF)

Abbreviations Indices Definition Unit

HWN Annual heat wave number Total number of the annual summer (March-July) heat waves events 
where conditions persist for at least 3 consecutive days with positive 
EHF values

Number 
of 
events

HWF Annual heatwave frequency Number of Heatwave days relative to the total number of days (March–
July)

%

HWD Longest heat wave duration The length of the longest summer (March–July) heat wave Days
HWAS Annual average heatwave Spell The average length of all summer (March–July) heat wave spells Days
HWMI The annual maximum intensity of heatwave Maximum magnitude of all summer (March–July) heat wave days °C
HWAI The annual average intensity of heatwave Average magnitude of all summer (March–July) heat wave days °C
HWSL Duration of the annual heatwave Total length of the summer (March–July) heat wave where conditions 

persist for at least 3 consecutive days with positive EHF values
Days
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(1971–2000) to 1.5, 2, and 3 GWL. P1 × ΔC , C1 × ΔP , and 
ΔC × ΔP are the population, climate and their interaction 
effect. The contribution rate of each factor was calculated 
by:

where C , P, and I represent the percentage changes in the 
climate, population, and interaction of population and cli-
mate respectively.

4 � Results

4.1 � Performance evaluation of historic climate 
simulations

The performance of Global Climate Models (GCMs) and 
Regional Climate Models (RCMs) in simulating observed 
data can be assessed using various quantifiable measures. In 
this study, three indicators were used to evaluate the perfor-
mance of 13 historic CMIP6 temperature datasets from 1951 
to 2014, compared to the gridded IMD temperature datasets 
observed during the same period. The three indicators used 
for evaluation were the mean of the temperature, PBIAS, and 
SPAEF. The performance of the models was analyzed and 
presented in Table 2. Most models underestimated the mean 
temperature and exhibit the bias ranging between -0.05% to 
-0.03%, except for NorESM2-MM, which showed an over-
estimation by 24.15%. On the other hand, all models dem-
onstrated good spatial agreement with the observed data, 
with SPAEF values ranging from 0.33 to 0.36. The mean 
temperature of each of the models shows relatively close to 
the observed mean temperature except for NorESM2-MM. 
Based on the performance of models, 12 best-performing 
models were selected for further ensemble analysis. The 
ensemble of these 12 models showed acceptable spatial 
agreement (SPAEF of 0.31) and a small underestimation 
bias (PBIAS of − 0.04%). These findings indicate that the 
selected ensemble of models performed well in replicating 
the observed temperature data, suggesting their suitability 
for further analysis for climate modeling studies.

We calculated the PBIAS and SPAEF for the indices 
(Table 2). All selected 12 models show an overestimation 
of bias for all the indices except for HWMI. However, the 
ACCESS-ESM1-5 model exhibited an underestimation of 

(10)C =
ΔC × P1

ΔE
× 100

(11)P =
ΔP × C1

ΔE
× 100

(12)I =
ΔC × ΔP

ΔE
× 100

bias, with a negative bias of − 0.15% for HWN. The high-
est bias for the HWN was observed in the MRI-ESM2-0 
model. However, For the HWAS, HWD, and HWAI indices, 
all models consistently overestimated the bias. The ranges 
for overestimation were 7% to 58% for HWAS, 8% to 58% 
for HWD, and 0.7% to 1.5% for HWAI. Among the mod-
els, MPI-ESM1-2-LR shows the highest PBIAS for these 
indices. Whereas, all the models show an underestima-
tion of bias (range from − 20 to − 3.5%) for HWMI. The 
SPAEF values, which assess the spatial pattern and struc-
ture reproduction, are negative or very low for all models 
compared to the reference data. This indicates a lack of sat-
isfactory reproduction of the spatial characteristics across 
all calculated indices. The higher SPAEF score is found for 
EC-Earth3-Veg, while MPI-ESM1-2-LR shows the lowest 
SPAEF value for all the indices. To summarize the model 
performance based on SPAEF and PBAIS, the ACCESS-
ESM1-5 model demonstrated the best performance for the 
HWN index, while the MPI-ESM1-2-LR model exhibited 
the weakest performance. For the HWAS and HWD indices, 
the BCC-CSM2-MR model showed the best performance, 
while the MPI-ESM1-2-LR model displayed the weakest 
performance. Regarding the HWAI index, the ACCESS-
CM2 model performed the best, while the BCC-CSM2-
MR model showed the weakest performance. Whereas, 
MRI-ESM2-0 model achieved the best performance for the 
HWMI index, while the MPI-ESM1-2-LR model displayed 
the weakest performance.

4.2 � Changes in extremes HW indices

We analysed the characteristics of heatwaves and their sever-
ity in different global warming scenarios. Figure 2 shows the 
ratio of all India averaged heatwave indices for 2001–2086 
period with respect to the base period. Figures 3 and 4 show 
the ratio of the spatial distribution of all heatwave indices. 
Figures S1 and S2 show the change in spatial distribution 
and Fig. S3 and S4 show the change in the regional mean for 
heatwave indices (HWN, HWD, HWAS, HWF, HWMI, and 
HWAI) under 1.5 °C, 2 °C, and 3 °C scenario and period T1 
and T2. All scenarios project an increase in heatwave indices 
in the future, the high emission scenarios SSP5-8.5 display 
the highest increment at the end of the century, while SSP1-
2.6 shows the lowest (Figs. S7–S10). For all three three-
warming scenarios HWN increases over most of the regions 
of India except at a few grid points in the WH, WC, and NE 
regions. The all India mean HWN increased by 2.2, 2.8, 
and 4-folds (14.82, 24, and 41.42 events) under 1.5, 2, and 
3 °C GWL, respectively compared to the base period with 
more than 70% grid showing a significant increase. The WH, 
NE, and coastal regions show the highest increase whereas, 
the IP and NC regions show the lowest increase under the 
three GWLs. Further, we have calculated the change in 
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heatwave indices for 2021–2050 (T1) and 2071–2100 (T2) 
periods. For all India, the HWN would increase by 2.5, and 
4.2 times (19.64, and 44 events) under T1 and T2 periods 

from the base period with more than 80% significant grids. 
Mishra et al., (2017) predict an increase of 3–9 and 16–30 
severe heat wave events from 1971 to 2000 over India for the 

Table 2   Models performance of 
mean temperature (TMm) and 
Heatwave indices

Models Mean SPAEF PBIAS (%) Mean SPAEF PBIAS (%)

Mean temperature HWN
Observed 25.2 15.96
ACCESS-CM2 25.19 0.33  − 0.03 17.63  − 0.1 10.47
ACCESS-ESM1-5 25.19 0.32  − 0.03 15.93  − 0.13  − 0.15
BCC-CSM2-MR 25.19 0.35  − 0.05 19.05  − 0.02 19.41
CanESM5 25.19 0.33  − 0.05 16.85  − 0.04 5.62
EC-Earth3 25.19 0.36  − 0.03 19.19  − 0.11 20.28
EC-Earth3-Veg 25.19 0.35  − 0.03 19.98 0.1 25.2
INM-CM4-8 25.19 0.34  − 0.05 17.43  − 0.09 9.26
INM-CM5-0 25.19 0.34  − 0.05 16.65  − 0.12 4.36
MPI-ESM1-2-HR 25.19 0.36  − 0.03 23.24  − 0.04 45.63
MPI-ESM1-2-LR 25.19 0.34  − 0.04 23.4  − 0.22 46.65
MRI-ESM2-0 25.19 0.34  − 0.03 23.63 0.04 48.06
NorESM2-LM 25.19 0.33  − 0.05 20.77  − 0.16 30.13
NorESM2-MM 31.29 0.26 24.15
Ensemble 25.19 0.31  − 0.04 19.48  − 0.12 22.08

HWAS HWD
Observed 8.54 10.47
ACCESS-CM2 9.82  − 0.1 14.95 11.33  − 0.04 8.19
ACCESS-ESM1-5 11.42  − 0.13 33.72 11.31  − 0.09 8.02
BCC-CSM2-MR 9.15  − 0.1 7.11 11.36 0.01 8.49
CanESM5 11.43  − 0.13 33.83 11.73  − 0.1 11.98
EC-Earth3 10.87  − 0.11 27.35 12.52  − 0.11 19.55
EC-Earth3-Veg 11.92 0.12 39.56 13.72 0.13 30.96
INM-CM4-8 12.43 0.001 45.62 12.8 0.01 22.21
INM-CM5-0 11.56  − 0.28 35.43 11.84  − 0.21 13.02
MPI-ESM1-2-HR 13.01  − 0.08 52.39 16.04 0.003 53.14
MPI-ESM1-2-LR 13.53  − 0.14 58.49 16.59  − 0.16 58.43
MRI-ESM2-0 12.95  − 0.06 51.7 16.27  − 0.04 55.39
NorESM2-LM 12.28  − 0.08 43.83 14.55  − 0.11 38.94
Ensemble 11.7  − 0.17 37 13.34  − 0.12 27.36

HWAI HWMI
Observed 33.02 32.65
ACCESS-CM2 33.35  − 0.11 1 29.48  − 0.13  − 9.7
ACCESS-ESM1-5 33.25  − 0.21 0.7 27.94  − 0.29  − 14.4
BCC-CSM2-MR 33.49  − 0.53 1.43 30.89  − 0.27  − 5.39
MRI-ESM2-0 33.18  − 0.22 0.48 26.15  − 0.44  − 19.9
EC-Earth3 33.45  − 0.5 1.31 29.24  − 0.23  − 10.44
EC-Earth3-Veg 33.47 0.01 1.36 29.56 0.04  − 9.44
INM-CM4-8 33.46  − 0.19 1.32 27.89  − 0.1  − 14.55
INM-CM5-0 33.35  − 0.27 1.01 27.36  − 0.25  − 16.2
MPI-ESM1-2-HR 33.5  − 0.45 1.47 31.11  − 0.23  − 4.71
MPI-ESM1-2-LR 33.47  − 0.42 1.37 30.99  − 0.29  − 5.07
MRI-ESM2-0 33.52  − 0.24 1.5 31.5  − 0.31  − 3.5
NorESM2-LM 33.44  − 0.14 1.27 30.66  − 0.23  − 6.08
Ensemble 33.41  − 0.43 1.18 29.4  − 0.25  − 9.95
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periods of 2021–2050 and 2071–2100, respectively, under 
the RCP8.5 scenario.

The all India mean HWF increase by 2.19, 2.78, and 
fourfold (9.7%, 15.7%, and 27%) from the base period with 
more than 71%, 88%, and 96% of the grid showing a sig-
nificant increase under 1.5, 2, and 3 °C GWL, respectively. 
The NE region shows the highest increase under 1.5 °C 
and 2 °C GWL. Whereas under 3 °C GWL, WC shows 

the highest increase. IP and NC show the lowest increase 
under 1.5, 2, and 3 °C GWL, respectively.

For all India, the HWF increased by 2.5 and 4.2 times 
(12.84% and 28.74%) from the baseline period with 82% 
and 98.45% grids showing significant increases under T1 
and T2 periods, respectively. Mukherjee and Mishra (2018) 
found that the number of 3-consecutive hot days and nights 
increased 4–5 times at the middle of the century and 12 

Fig. 2   Ratio of all India averaged heatwave indices analysed based 
on the Excess Heat Factor (EHF) during the period 2001–2086 with 
respect to the base period. Solid lines show the ensemble average, and 

the shaded areas indicate the 25th and 75th percentiles of the model 
ensemble, representing the projection uncertainty
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Fig. 3   Spatial distribution of the ratio with respect to the base period of heatwave indices calculated based on the Excess Heat Factor (HWN, 
HWD, HWAS) under 1.5 °C, 2 °C, 3 °C GWL and two time periods T1 (2021–2050) and T2 (2071–2100)
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Fig. 4   Spatial distribution of the ratio with respect to the base period of heatwave indices calculated based on the Excess Heat Factor (HWF, 
HWMI, HWAI) under 1.5 °C, 2 °C, 3 °C GWL and two time periods T1 (2021–2050) and T2 (2071–2100)
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times increase at the end of the century under RCP8.5 in 
India. For all India, the HWD increased 2.25, 2.9, and 4.35-
fold (10, 16.6, and 30.7 days) from the base period with 
58.35%, 83%, and 96% of grids showing a significant change 
under 1.5, 2, and 3 °C GWL, respectively. The NE region 
shows the highest change followed by WH and WC regions 
under 1.5, 2, and 3 °C GWL, respectively while IP and NC 
regions show the lowest increase under the three GWL. For 
all India, the HWD increased by 2.6, and 4.7 times (13.5, 
and 34.13 days) from the baseline period with 73.7% and 
96.23% grids showing significant increases under T1 and T2 
periods, respectively. Overall, the analysis found that the fre-
quency and duration of heatwaves are projected to increase 
significantly across India under all three warming scenarios.

HWAS increased by 1.8, 2.22, and threefold (5.86, 9.3, 
and 16.74 days) from the base period with 30.24%, 57%, 
and 90% of grids showing a significant change under 1.5, 
2, and 3 °C GWL, respectively (Fig. S5). The WH region 
shows the highest change followed by NE and WC regions 
under 1.5, 2, and 3 °C GWL, respectively. IP and NC regions 
show the lowest increase under 1.5, 2, and 3 °C GWL, 
respectively. For all India, the HWAS increased by 2, and 
3.4 times (7.7, and 19.39 days) from the baseline period 
with 46.4% and 87.3% grids showing significant increases 
under T1 and T2 periods, respectively. HWAI and HWMI 
show the highest increment in the WH region followed by 
NE and WC under 1.5, 2, and 3 °C GWL. The temporal 
distribution ratio of HWSL for all SSP is depicted in Fig. 
S6. Additionally, Fig. S6 illustrates the change in number 
of days for the summer length of the heatwave (HWSL) in 
different warming periods. The study found that the duration 
of the heatwave (HWSL) increased by 1.7, 2, and 2.6 times 

(16.46, 25.23, and 36.67 days) than the base period under 
1.5, 2, and 3 °C global warming levels, respectively. The WC 
region showed the highest increase, followed by EC, and 
NE. The IP and NC regions had the lowest increase under 
1.5, 2, and 3 °C global warming levels, respectively. Overall, 
India experienced an increase in HWSL by 2 and 3 times 
(21 and 46 days) more from the base period in the T1 and 
T2 periods, respectively. The results show that the length 
of the summer heatwave (HWSL) increases continuously 
due to the early onset of the heatwave (Rao et al. 2023). 
Figures S7–S10 show the spatial distribution of the ratio of 
multi-models mean of heatwave indices under 1.5 °C, 2 °C, 
3 °C GWL, and two time periods (T1 and T2) concerning the 
base period for SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-
8.5, respectively.

4.3 � Changes in heatwave severity

We calculate the average heat wave severity of summer 
months (March–July) for all homogeneous temperature 
regions of India based on EHF under different warming 
scenarios. Fig. S11 shows the change in spatial distribution 
of severity under the three GWL and T1 and T2 periods. 
The severity of heat waves increased significantly in all 
regions under all warming scenarios (Fig. S12). The sever-
ity increases by 3.85, 5.4, and 9.4-folds under 1.5 °C, 2 °C, 
and 3 °C GWL, respectively (with respect to base period). 
The NE (9.68, 12.4, and 18.4-times) is the most vulnerable 
region followed by WH (7.5, 9.2, and 12.9-times), WC (5.3, 
7.8, and 14.7-times) and EC (4.1, 6.2, and 11.3-times) under 
all warming scenarios. The IP (2.2, 3.5, and 7.4 times) and 

Fig. 5   Regional mean of the 
multi-model ensemble of the 
ratio of heatwave severity calcu-
lated based on the Excess Heat 
Factor with respect to the base 
period under different warming 
levels
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NC (2.1, 3.15, and 5.72 times) show the least increase in the 
severity under the three warming scenarios (Fig. 5).

We also calculated the average monthly severity ratio 
of future and current periods for all India. For a 30-year 
running, window centred on each year from 2006 to 2085, 
the ratio of the severity to the current world (1991–2020, 
30-year window centred on 2005) was calculated. The results 
showed that heat wave severity is projected to increase sig-
nificantly in all summer months, especially in March and 
April months. By the end of the century, the March and 
April month heat wave severity increased 18 and 9 times 
than the current levels, respectively. From 2044, the severity 
in March months is expected to increase exponentially and 
reaching 6 times higher than the current period by the end 
of the century The analysis of heat wave severity during the 
months of May, June, and July indicates a consistent upward 
trend, which is projected to persist until the end of the cen-
tury, it will reach 4.75, 4.34, and 5.24 folds higher than the 
current period, respectively (Fig. 6).

4.4 � Projected population exposure to HW 
under different warming levels

We analysed the total exposure, population effect, climate 
effect, and their interaction effect under three different 
warming levels (1.5, 2, and 3 °C) and two time periods for 
each of the four SSPs. The analysis covered 19 combinations 
of SSP, warming level, and time periods, as SSP1-2.6 did 
not achieve the 3 °C warming level. Population exposure is 
expected to increase in all SSPs and under warming, with 
SSP3 showing the most rapid increase due to its high popu-
lation growth scenario. It is also observed that the popula-
tion growth first increases and then decreases (Chen and 

Sun 2019) over India in all the SSPs except in SSP3. Fig. 
S13 shows the changes in population exposure over time. 
As the global warming level increases from 1.5 to 3 °C, the 
total population exposure also increases across all SSPs 
(Fig. 7).The exposure patterns in SSP3-7.0 and SSP2-4.5 
scenarios are similar across all homogeneous regions and 
warming levels. The WC region has the highest exposure, 
followed by the NE and EC regions in all SSPs and warm-
ing levels, while the WH region has the smallest exposure. 
To determine the relative importance of climate change and 
population growth, we calculated the climate and popula-
tion effects. It was found that climate change has a greater 
influence than population growth for all SSPs and regions 
in India (Fig. 8).

For SSP3-7.0, under 1.5, and 2 °C GWL, the contribu-
tion of climate (48%, and 42%) and interaction effect (26%, 
and 34%) to the total exposure is higher than the popula-
tion effect (25% and 24%). However, under a 3 °C GWL, 
the interaction effect's contribution across India is higher 
(43%) than the climate's (38%) and the population's (19%) 
effects. Climate effect (45%) makes a greater contribution 
than interaction effect (31%) and population effect (24%) 
in time period T1. By the end of the century the interaction 
effect (48%) will have a greater contribution than the popu-
lation effect (16%) and climate effect (36%) (Fig. 8). Under 
all warming scenarios, the climate effect shows a greater 
contribution to total exposure under SSP1-2.6, SSP2-4.5, 
and SSP5-8.5 respectively. While interaction effect and 
population effect show moderate contribution in all SSPs. 
The findings indicate a decline in the population effect and a 
rise in the climate effect as global warming increases across 
all SSPs in the homogeneous regions, with the exception of 
the WH region. When the GWLs increased from 1.5 to 2 °C 

Fig. 6   Monthly mean of the multi-model ensemble of the ratio of heatwave severity calculated based on the Excess Heat Factor with respect to 
the current period (1991–2020) with the middle year 2005
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under SSP1-2.6, SSP2-4.5, and SSP5-8.5, the overall expo-
sure would increase by 1.4-fold, whereas, under SSP3-7.0, it 
would increase by 1.6-fold. Similarly, when the warming is 
increased from 2 to 3 °C, the total exposure would increase 
by 1.67 and 1.4 times under SSP2-4.5 and SSP5-8.5, respec-
tively, whereas, it would increase by 1.73-fold in SSP3-7.0. 
From T1 to T2 period, the total exposure would increase by 
1.03, 1.78, 3, and 2 times under SSP1-2.6, SSP2-4.5, SSP3-
7.0, and SSP5-8.5 respectively, over India. In the IP region, 
the exposure increases at a greater rate compared to other 
homogeneous under all the SSPs.

Under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, 
respectively, the total exposure for all India is expected to 
increase by 46%, 48%, 60%, and 44% by limit at 1.5 °C rather 
than 2 °C. All India's total exposure would decrease by 67%, 
73%, and 37% under SSP2-4.5, SSP3-7.0, and SSP5-8.5 if the 
GWL was restricted to 2 °C (rather than 3 °C). The highest 
benefit observed in SSP3-7.0 is due to the high population 
growth rate (Maurya et al. 2023). The IP and WH regions 
would have the greatest and smallest benefit in total exposure, 
respectively, if we restricted the GWL to 1.5 °C and 2 °C. 
Since the population is expected to grow quickly in SSP3 

Fig. 7   Change in the climate, population, interaction, and total effect 
with respect to the base period under different SSPs in the 1.5, 2, 3 °C 
GWL, and two time periods 2021–2050 and 2071–2100. The column 

shows the regional mean value and the bar depict the 90 and 10 per-
centile values obtained from the 100,000 bootstraps
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scenarios, SSP3-7.0 rather than SSP5-8.5 shows a rapid rise 
in overall exposure. Chen and Sun (2019) noted a similar find-
ing for precipitation extremes. According to Das et al., (2022), 
heatwaves and droughts emerge as the most significant com-
pound events influencing population exposure, magnifying the 
impact by a factor ranging from 2.52 to 4.69 in comparison to 
the historical period under SSP3-7.0. According to the current 
study, the change in total exposure of approximately 1.5 bil-
lion person-day under SSP5-8.5 and 2.5 billion person-day for 
SSP3-7.0 under 3 °C GWL. The present study reports climate, 
population, and interaction effects of approximately 0.93, 0.44, 

and 1.16 billion person-day respectively for SSP3-7.0 under 
3 °C GWL (Fig. 7).

5 � Discussion

The present study deals with the future change in heat-
wave characteristics and severity with associated popula-
tion exposure in homogenous temperature regions of India 
using CMIP6 under different GWLs over two time periods. 
Most of the CMIP6 models showed good spatial agreement 

Fig. 8   Contribution of the change in population, climate, and their interaction on the exposure of the different scenarios in the 1.5, 2, 3 °C GWL, 
and two time periods. Unit is %



2535Stochastic Environmental Research and Risk Assessment (2024) 38:2521–2538	

with the observed data. The current study employed the 
period from March to August to identify possible shifts in 
the occurrence of heat wave events in regions character-
ized by elevated temperatures. The results clearly depict 
a significant increase in heatwave events, and the severity 
becomes more pronounced as warming increases in the 
different homogeneous regions of India. Heatwaves are 
caused by rising atmospheric pressure because the fall-
ing air is compressed and heated (Jakob and Reeder 2021, 
IPCC 2013). The Himalayan, Coastal, and Northeastern 
regions of India showed a pronounced increase in heat-
wave characteristics and heatwave severity under all warm-
ing levels. Das and Umamahesh (2022) also report that the 
Himalayan, eastern coast, and southern part of India were 
affected by heatwaves from 2020–2046 to 2074–2100. The 
IP and NC regions showed the lowest increase. Numerous 
physical factors contribute to these changes, such as the 
urban heat island effect, solar variability, climate change, 
shifts in cloud cover, modified atmospheric circulation, 
warming oceans, local influences, human activities, and 
the impact of heatwaves (Meehl and Tebaldi 2004; Roem-
mich et  al. 2007; Santamouris 2014; Mukherjee and 
Mishra 2018). Most parts of the IP and NC were irrigated 
regions. Irrigation affects the surface energy budget across 
the area by increasing the latent heat flux and reducing 
the sensible heat flux (Mukherjee and Mishra 2018). The 
reduced surface air temperature is the result of an increase 
in the latent heat flux and relative humidity, which also 
improves evaporative cooling. Therefore, increased evapo-
rative cooling results in a rapid increase in heat waves 
(Mueller et al. 2016; Mukherjee and Mishra 2018; Sriv-
astava et al. 2022). The coastal regions of India are at 
high risk of heat wave severity due to El Niño-Southern 
Oscillation (ENSO) events and their tropical monsoon 
climate, with high temperatures and humidity throughout 
the year (Dash et al. 2007; Mukherjee and Mishra 2018; 
Joseph et al. 2019). The WH region experiences extreme 
heat during summer due to its geographical location (tropi-
cal and subtropical zones), the effects of global warming, 
and the heat island effect caused by urbanization (Dimri 
and Dash 2012; Rana et al. 2020; Singh et al. 2021). The 
heat wave severity for May, June, and July showed a linear 
increase by the end of the century. The results showed an 
exponential increase in severity during March and April 
by the end of the century. This change indicates the early 
onset of summer due to rapid climate change. This rapid 
change has a significant impacts on agriculture, economic 
losses, human health, work force, energy demand, eco-
systems over India (IPCC 2014; Mazdiyasni et al. 2017; 
Perkins-Kirkpatrick and Lewis 2020; Nishant et al. 2022).

Furthermore, we examined the variation in population 
susceptibility to heatwave events under different global 
warming levels (GWL). A significant increase in exposure 

to heat waves was found under SSP3-7.0, followed by SSP5-
8.5, SSP2-4.5, and SSP1-2.6, because of the high growth 
rate in the population under SSP3-7.0 (Chen and Sun 2019; 
Ma and Yuan 2021). The contribution of climate to the total 
exposure is more pronounced than that of the population and 
the interaction effect under all SSPs, except SSP3-7.0. The 
current result is consistent with those of Das et al. (2022) 
and Liu et al. (2017), who reported that for India, the climate 
and interaction impacts dominate the population effect. Fur-
thermore, Liu et al. (2017) reported that in India, the interac-
tion effect contributes more to the high emission scenario 
(SSP3-7.0) towards the end of the century. The findings 
indicate that the coastal and northeastern regions exhibited 
the highest levels of exposure. The IP region would experi-
ence the greatest benefits among all homogeneous regions 
in terms of limiting global warming, primarily because of its 
high population density. In contrast, the WH region showed 
the lowest exposure due to the lower population density.

The analysis did not consider the effects of adaptive meas-
ures, migration, and urbanization on population exposure. 
It relies on decadal population data and uses linear inter-
polation to estimate yearly figures, potentially introducing 
uncertainties. Additionally, the reliability of the projections 
was influenced by uncertainties in the CMIP6 models and 
population projections. We address the need to understand 
how heatwaves evolve at different warming levels, provid-
ing timely insights that can contribute to the development 
of climate adaptation and mitigation policies in the near to 
intermediate future. Our research encompasses both the 
characteristics of heatwaves and an evaluation of the cor-
responding population exposure under distinct degrees of 
warming. The outcomes of this research will provide valu-
able insights to decision-makers, enabling them to enhance 
their strategies for both mitigating and adapting to climate 
change. Additionally, these findings will aid in effective cli-
mate risk management for the future.

6 � Summary and conclusion

In this study, we focus on analysing characteristics of heat-
waves and associated population exposure in India under the 
present and future warming scenarios. First, we estimated 
the performance of historical mean temperature of climate 
models to enhance comprehension of future climate sce-
narios. Based on the performance of the models, we selected 
the 12 best-performing models for further ensemble analy-
sis. Further, we estimated the climatology and changes in 
summer heat wave severity and associated heatwave events 
based on EHF and population exposure over India under 1.5, 
2 and 3 °C global warming scenarios along with two time 
periods using CMIP6. The results show the early onset of 
heatwaves in coming years that could significantly affect the 
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population and agriculture. The irrigated areas (IP and NC) 
of India showed less increase in heatwave characteristics due 
to the cooling effect of evaporation whereas humid coastal 
areas (EC and WC) showed comparatively higher increases 
as warming increases. Some of the key findings of the study 
are highlighted as follows:

•	 India is anticipated to face exaggerated frequency, 
duration, peak, and mean intensity of heat waves with 
increasing GWL.

•	 The severity of heatwaves in March and April is escalat-
ing more rapidly compared to the months of May, June, 
and July, as compared to the current world (1990–2020).

•	 The WH region exhibits the most pronounced increase 
in heatwave severity, followed by the WC, NE, and EC 
regions after 2050 from the base period.

•	 Pronounced increases are projected in heatwave fre-
quency (HWN (44 events) and HWF (29%)), duration 
(HWD (34 days) and HWAS (19 days)) and intensity 
(HWMI (3.35 °C) and HWAI (1.3 °C)) by the end of 
the century compared to the base period.

•	 Coastal, Northeastern, and Himalayan regions exhibit 
the most substantial changes from the baseline.

•	 The projection of total exposure and their contributing 
factors are expected to increase in all SSPs under dif-
ferent warming.

•	 There will be significant regional variations in pop-
ulation exposure, with the WC, NE, and EC regions 
becoming high-population exposure areas and the WH 
region becoming the least exposed.
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