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Abstract
In the latest years the capacity and complexity of climate and environmental modeling has increased considerably. Therefore, 
tools and criteria for model performance evaluation are needed to ensure that different users can benefit from model selec-
tion. Among graphical tools, Taylor’s diagram is widely used to provide evaluation and comparison of model performances, 
with particular emphasis on climate models. Taylor’s diagram accounts for different statistical features of model outputs 
and observations, including correlation, variability and centered root mean square error. Not included is model bias, which 
is an essential feature for climate model evaluations, and it is usually calculated separately to complement the information 
embedded in Taylor’s diagram. In this paper a new diagram is proposed, referred to as Aras’ diagram, which allows for visual 
assessments of the correspondence between model outputs and reference data in terms of total error, correlation, as well as 
bias and variability ratios through an easy-to-interpret two-dimensional (2D) plot, allowing for proper weighting of differ-
ent model features. The strengths of the new diagram are exemplified in a case study of performance evaluation of EURO-
CORDEX historical experiment over Southern Italy using E-OBS as reference dataset, for three hydrological variables (i.e. 
daily precipitation, daily surface minimum temperature, and daily maximum surface temperature), and four popular climate 
indices (i.e. total annual precipitation, annual maxima of daily precipitation, annual minima of daily minimum temperatures, 
and annual maxima of daily maximum temperatures). The proposed diagram shows interesting properties, in addition to 
those already included in Taylor’s diagram, which may help promoting climate model evaluations based on their accuracy 
in reproducing the climatological patterns observed in time and space.

Keywords Bias ratio · Variability ratio · Correlation · Climate models · Kling Gupta efficiency · Taylor’s diagram · 
Performance evaluation · EURO-CORDEX experiment · E-OBS · Aras’ diagram

1 Introduction

Gaining understanding of natural phenomena has been cru-
cial for advancing knowledge and supporting societal devel-
opment. Models are vital tools towards this aim, as they 
allow for simulation of the dynamics of natural processes 
in both space and time (see e.g. Chaulya and Prasad 2016). 
Under this setting, it is important to evaluate model per-
formances by comparing model outputs with observations 
(see e.g. Legates and McCabe 1999; Flato et al. 2013; Paul 

et al. 2023). Typically, this step can be carried out using 
qualitative and quantitative measures supported by the appli-
cation of criteria and benchmarks for model selection (see 
e.g. Moriasi et al. 2012). The evaluation of models is often 
an iterative process, in which the model is calibrated and 
tested against observed data, and then refined and tested 
again. Sensitivity and uncertainty analyses are also impor-
tant components of performance evaluation, as they provide 
insights into the robustness and reliability of model predic-
tions. However, this should be considered only a module of 
model evaluation, as the latter should be complemented by 
a detailed investigation of the accuracy of the model struc-
ture in reproducing the different processes involved (see e.g. 
Gupta et al. 2008; Knutti 2010; Biondi et al. 2012; Kaleris 
& Langousis 2017). Qualitative analysis can involve the use 
of graphical tools (see e.g. Kundzewicz & Robson 2004), as 
graphical measures may allow for direct or adjusted com-
parisons, depending on the transformations imposed to data 
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(see e.g. Moriasi et al. 2015). Quantitative assessment of 
model performances, instead, relies on computing statistical 
measures, aimed at providing an evaluation of the goodness-
of-fit of model outputs to observations (see e.g. Ritter & 
Muñoz-Carpena 2013). To this end, a number of criteria 
has been developed, used, and critically reviewed in the sci-
entific literature, highlighting the importance of this topic 
(see e.g. Moriasi et al. 2015; Krause et al. 2005) as well as 
the distance from reaching a rigorous procedure for model 
performance assessment (see e.g. Ritter and Muñoz-Carpena 
2013; Baker and Taylor 2016).

Several quantitative statistical metrics can be used for 
evaluating the performance of models, including: (1) Bias, 
which measures the average difference between the model’s 
output and observed data; (2) correlation, (3) root mean 
square error (RMSE), which is the square root of the average 
of the squared differences between the model’s output and 
the observed data; (4) the Nash–Sutcliffe efficiency (NSE, 
Nash and Sutcliffe 1970), which is a measure of how well 
the model predicts the observed data relative to the mean of 
the observed data; (5) the Kling–Gupta Efficiency (KGE), 
proposed by Gupta et al. (2009), a measure of how well a 
model simulates the observed data, including explicit evalu-
ation of correlation, variability, and bias. The latter study 
also showed that both NSE and RMSE provide an evaluation 
of model performance that is conditionally biased by cor-
relation. Evidently, the combined use of different metrics 
should be retained as the most appropriate way to approach 
model selection (see e.g. Flato et al. 2013; Moriasi et al. 
2015).

On these grounds, a practical and easy way to compare 
multiple models is by graphically representing different 
and preferentially complementary performance meas-
ures in a single diagram (see e.g. Jolliff et al. 2009). An 
example is Taylor’s diagram (Taylor 2001), which exploits 
the law of cosines to display the analytical relationship 
between standard deviations, correlation, and centered 
root-mean-squared error (CRMSE) of different model out-
puts and reference data. Plotted in a polar coordinate sys-
tem, Taylor’s diagram eases comparison of multiple model 
outputs (represented by distinct points) by utilizing the 
conceptual equivalence of their distance from the origin 
to CRMSE. The radial and azimuthal coordinates of each 
point, which corresponds to a different model, allow for 
visual assessment of the potential reasons of the discrep-
ancies observed between model outputs and observations. 
Due to its compactness in yielding an immediate assess-
ment of multiple model performances, Taylor’s diagram 
has been widely used in environmental sciences. Particu-
larly popular is its use in the evaluation and comparison of 
climate models. The latter are fundamental tools for simu-
lating and predicting the Earth’s climate system, including 
its atmospheric, oceanic, and land surface components. 

The development and evaluation of these models is crucial 
for improving our understanding of the climate system, 
predicting future climate change, and informing policy 
decisions (see e.g. Deidda et al. 2013; Langousis and Kal-
eris 2014; Langousis et al. 2016; Emmanouil et al. 2022, 
2023).

However, Taylor’s diagram has well known limitations 
that should be considered when interpreting results. In par-
ticular, (1) it does not explicitly consider the overall bias of 
model outputs (see e.g. Gleckler et al. 2008; Hu et al. 2019) 
and (2) it exploits the root-mean-squared error (RMSE), 
which is a measure of fit conditional on correlation. More 
precisely, as shown in  Appendix, selection of best perform-
ing models via minimization of the RMSE implicitly ben-
efits those that underestimate the variability of observations, 
unless the correlation coefficient between model results and 
observations is equal to 1. With regard to point (1), please 
note that a model characterized by significant bias could 
still be assessed to provide a good fit to observations based 
on standard deviation and correlation. According to several 
performance evaluation studies, climate models heavily suf-
fer from large biases and cannot be used directly for impact 
studies, such as hydrological model applications, unless they 
are treated using bias correction methods (see e.g. Mamala-
kis et al. 2017; Perra et al. 2020; Emmanouil et al. 2021, 
2023).To remedy the aforementioned shortcoming, Taylor 
(2001) proposed a methodology to complement the origi-
nal diagram with information on bias. In addition, several 
alternative metrics and tools were progressively developed 
(see e.g. Xu et al. 2016; Hu et al. 2019; Sáenz et al. 2020; 
Paul et al. 2023).

Evidently, the development of alternative performance 
evaluation approaches indicates that the choice of the per-
formance measure to be used should be consistent with 
the requirements of the application (see e.g. Zhou et al. 
2021). In this study, we propose Aras’ diagram, a new tool 
which exploits in a geometrical setting the structure of the 
Kling–Gupta efficiency (KGE) index. The choice of KGE is 
motivated by several advantages over other measures used 
for model performance assessments. First, KGE accounts for 
three metrics (i.e. correlation, variability ratio and normal-
ized bias ratio, see Sect. 2). Second, KGE is dimensionless, 
making it insensitive to the variables considered and their 
range of values. Third, KGE is a relative measure, allowing 
for easy comparison of model performances across different 
sites and time periods. Lately, KGE has become a widely 
used measure for model performance assessments due to its 
comprehensiveness, simplicity, and ease of interpretation, 
being used in a variety of studies, including climate change 
impact assessments (see e.g. Liu 2020; Agyekum et al. 2022; 
Ahmed et al. 2019; Castaneda-Gonzalez et al. 2018; Ta et al. 
2018), water resources management, and flood forecasting 
(see e.g. Pechlivanidis and Arheimer 2015; Mwangi et al. 
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2016; Pool et al. 2018; Lamontagne et al. 2020; Brunner 
et al. 2021).

In order to demonstrate the attributes and skills of Aras’ 
diagram, we use it for performance evaluation of EURO-
CORDEX historical experiment over Southern Italy using 
E-OBS as reference dataset, for three hydrological variables 
(i.e. daily precipitation, daily minimum surface temperature, 
and daily maximum surface temperature), and 4 climate 
indices (i.e. total annual precipitation, annual maxima of 
daily precipitation, annual minima of daily minimum surface 
temperatures, and annual maxima of daily maximum surface 
temperatures).

The paper is structured as follows. In Sect. 2, the under-
lying theoretical background of Aras’ diagram is discussed. 
Section 3 describes the study area and provides a brief 
summary of the climate model and reference data used. In 
Sect. 4 we describe the most important findings of the pre-
sent study, and in Sect. 5 we discuss the competitive advan-
tages of the newly developed diagram. Concluding remarks 
are presented in Sect. 6.

2  Theoretical foundation and construction 
of Aras’ diagram

Assume n couplets of values 
{

xo,i, xm,i
}

i=1,…,n
 , where sub-

scripts o and m refer to observations and model predictions 
respectively, and n is the length of each time series. Keeping 
the same subscripts, �o, �o and �m, �m stand for the estimated 
mean and standard deviation of observed and simulated 
series, respectively, while � denotes their correlation 
coefficient.

Taylor’s diagram (Taylor 2001) is based on a graphical 
representation of the relationship between the centered root-
mean-squared error (CRMSE), standard deviation and cor-
relation between observations and predictions:

noting that CRMSE is linked to RMSE and BIAS as:

with CRMSE, RMSE and BIAS defined as:

and.

(1)CRMSE2 = �2

m
+ �2

o
− 2�m�o�

(2)RMSE2 = BIAS2 + CRMSE2

(3)CRMSE =

{

1

n

n
∑

i=1

[(

xm,i − �m

)

−
(

xo,i − �o

)]2

}
1

2

(4)RMSE =

[

1

n

n
∑

i=1

(

xm,i − xo,i
)2

]
1

2

Comparing the structure of Eq. (1) with the geometrical 
law of cosines:

a graphical representation of CRMSE, �m , �o and � can be 
obtained by setting:

The Kling–Gupta efficiency (KGE, Gupta et al. 2009) 
can be regarded as a statistical measure of the accuracy of 
different model simulations. It is a dimensionless index that 
ranges between − ∞ and 1, where the value of 1 indicates 
perfect agreement between model simulations and observed 
data (see e.g. Lamontagne et al. 2020).

Applying the same notation as in Gupta et al. (2009), we 
define the variability ratio:

and the normalized bias ratio:

The Kling–Gupta efficiency is defined as:

In a geometrical interpretation, Eq.  (10) involves the 
concept of Euclidian distance from two points in a three-
dimensional space. Equation (10) can also be formulated by 
introducing the total error, E:

Equation (11) can also be interpreted as the three-dimen-
sional formulation of the Pythagorean theorem,

where d = 1 − KGE , y = � − 1, x = � − 1 and z = −1.
In such a 3D representation, d is the Euclidean distance 

between the point representing model performance and the 
origin of the diagram (the ideal point) and is equal to the 
error measure E = 1—KGE.

Gupta et al. (2009) also introduced a general “scaled ver-
sion” of KGE, by incorporating into Eq. (11) the scaling 
factors s�,s� and sr , aimed to rescale the criteria space before 
computing the Euclidian distance from the ideal point, as a 
means of weighting differently the components of the total 
error:

(5)BIAS = �m − �o

(6)d2 = x2 + y2 − 2xycos�

(7)d = CRMSE, x =�m, y = �o and � = arccos(�)

(8)� =
�m

�o

(9)� =
�m

�o

(10)KGE = 1 −

√

[(� − 1)]2 + [(� − 1)]2 + [(� − 1)]2

(11)
E = (1 − KGE)2 = [(� − 1)]

2 + [(� − 1)]
2 + [(� − 1)]

2

(12)d2 = y2 + x2 + z2
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Practical implications of the aforementioned concepts can 
be represented in a Cartesian coordinate system using a two-
dimensional diagram, where β -1 and α -1 take values on the 
x and y axes, respectively; see Fig. 1 and discussion below.

To do so, one first exploits the scaled KGEs formula-
tion by assuming s� = s� = 1 and sr = 0. Under this setting, 
Eq. (11) reduces to:

and by setting y = � − 1 , x = � − 1 and using the Pythagorean 
theorem, one obtains a graphical representation on a 2D Car-
tesian coordinate plane of the error component E�� induced 
by the bias and variability ratios, as:

where d denotes the Euclidean distance of point E�� in Fig. 1 
from the origin.

At a second step, one calculates the total percentage error 
E given by Eq. (11), and draws a line segment that starts 
from point E�� , has length equal to the difference E−E�� 
(computed from Eqs. (11) and (14)), and slope:

Figure 1, which forms the foundation of Aras’ diagram 
(named by the first name of the first Author), illustrates the 
construction of the aforementioned error representation, 
where the length of the segment that links point E (i.e. total 
percentage error) to point E�� (i.e. percentage error induced 

(13)
KGEs = 1 −

√

[

s�(� − 1)
]2

+
[

s�(� − 1)
]2

+
[

sr(� − 1)
]2

(14)E�� =
(

1 − KGE��

)2
= (� − 1)

2 + (� − 1)
2

(15)E�� = d2 = y2 + x2

(16)tan� =
a − 1

� − 1

by the bias and variability ratios) provides an indication of 
the error component induced by discrepancies in correlation 
(i.e. the longer the segment the larger the disagreement). 
The slope of the segment indicates the relative contribu-
tion of variance and bias ratios (i.e. larger slopes corre-
spond to smaller bias-induced errors). The endpoint of the 
segment, which represents the error E�� , is marked using a 
circle which is filled (empty) in case of positive (negative) 
correlation.

Figure 2 presents a guide to Aras’ diagram. The origin 
of the diagram (i.e. point (0, 0)) indicates perfect model 
performance relative to observations. The closer the model 
mark (i.e. point E in Figs. 1, 2) is to the origin the better 
is model performance. In the diagram, circles representing 
% errors are drawn (e.g. 10%, 25% and 50%). Any model 
mark located inside the inner circle has error below 10%, any 
model mark located inside the second circle has error below 
25% and any model mark located inside the third circle has 
error below 50%.

The two axes split the entire diagram into four quadrants. 
With respect to the y-axis, positive and negative y-values 
correspond to variability ratios 𝛼 > 1 and 𝛼 < 1 , respectively. 
Therefore, the quadrants above and below the x-axis are 
indicative of over- and under-estimation of the variability of 
observed data, respectively. Similarly, the quadrants on the 
right and left of the y-axis correspond to bias ratios 𝛽 > 1 , 
(i.e. positive bias) and 𝛽 < 1 (i.e. negative bias), respectively, 
indicating over- and under-estimation of the mean value of 
the observed data.

Fig. 1  Model error representation used in Aras’ diagram

Fig. 2  Aras’ diagram guide
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3  Case study and data

In what follows, we use Aras’ diagram to assess the accu-
racy of climate model outputs from EURO-CORDEX (Jacob 
et al. 2014) historical experiments over southern Italy, using 
E-OBS (Haylock et al. 2008a, b) gridded data as reference 
dataset.

3.1  Description of the study area

The study area is the entire southern part of the Italian pen-
insula (latitude 37.5–42.5 N; longitude 11–19E) (see Fig. 3) 
with approximate area of 90,000  km2 crossed by the moun-
tainous ridge of Southern Italy, and a long coastal-line on 
the order of 2500 km. It is characterized by a wide range of 
elevations, with peaks reaching up to 2912 m and it includes 
the “Tavoliere delle Puglie”, the second larger plain in Italy. 
Precipitation in southern Italy varies depending on eleva-
tion and location. The regional average of mean annual rain-
fall ranges from 1000 to 1500 mm. Precipitation generally 
increases with elevation, with some of the highest elevations 

receiving more than 2000 mm of rain annually. Seasonality 
also affects precipitation which is mainly distributed in the 
autumn and winter months, with dry summers. The average 
temperature in the entire area varies between 7–9 °C in win-
ter and 21–23 °C during summer. Temperature is influenced 
by elevation and proximity to the sea. The coastal areas of 
the region have a Mediterranean climate, with mild winters 
and hot summers. At higher elevations, temperatures gener-
ally decrease, and the climate becomes more continental, 
with colder winters and milder summers. The region is an 
important area for agriculture, with crops such as olives, 
grapes, and citrus.

3.2  Climate data

The only way to assess the magnitude and probable causes 
of climate change is by understanding the natural climate 
variability (Tsonis et al. 2017). Climate models are com-
puter-based algorithms used to simulate and predict climate 
conditions under different deterministic scenarios. They are 
fundamental tools for simulating and predicting the Earth’s 
climate system, including its atmospheric, oceanic, and land 

Fig. 3  Digital elevation model (DEM) of the study area
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surface components. The development and evaluation of 
these models is crucial for improving our understanding of 
the climate evolution, analyze and predict climate change, 
and inform policy decisions (Wetterhall et al. 2009; Palatella 
et al. 2010).

The evaluation of climate models performance with 
respect to ground observations is a complex and challeng-
ing task, due to the highly nonlinear and dynamic nature 
of the climate system, the large spatial and temporal scales 
involved, and the complexity of the physical processes that 
govern the system. The evaluation process can be used also 
to diagnose and identify model strengths and weaknesses. 
Moreover, by evaluating the historical period and choosing 
the best performing climate model, one may assume that 
such a model should be the best option for future projections. 
The increasing complexity of climate models, incorporat-
ing more physical processes and components, also requires 
larger and powerful computational resources (Tsonis and 
Kirwan 2023).

A global climate model (GCM) is designed to represent 
the Earth’s climate system on a global scale. It contains com-
plex mathematical equations that simulate the interactions 
between the atmosphere, oceans, land surface, ice and other 
components of the climate system. GCMs are used to under-
stand the long-term climate patterns, project future climate 
scenarios and assess the impact of greenhouse gas emissions 
on global climate (see e.g. Kirchmeier-Young and Zhang 
2020; Moustakis et al. 2021). A regional climate model 
(RCM), on the other hand, is a more specialized model that 
focuses on a smaller geographical area, typically a region 
within a global model grid. RCMs use higher resolution and 
a more detailed representation of physical processes com-
pared to GCMs, which allows for a more accurate represen-
tation of local and regional climate characteristics including 
orographic effects. RCMs are often driven by the output of 
a GCM that provides larger scale boundary conditions for 
the regional model. By downscaling the GCM output, RCMs 
can provide more localized information for assessing climate 
impacts, such as assessing changes in precipitation patterns, 
temperature extremes or regional climate variability (see e.g. 
Vrac et al. 2007; Fowler et al. 2007; Johnson and Sharma 
2009; Mujumdar et al. 2009).

In summary, GCMs provide a global overview of the 
Earth’s climate, while RCMs focus on smaller regions in a 
global context and provide more detailed and localized cli-
mate information. RCMs are often used in conjunction with 
GCMs to bridge the gap between global climate projections 
and regional climate assessments.

As mentioned in the Introduction, for the purpose of 
this paper a performance evaluation of EURO-CORDEX 
historical experiment over Southern Italy has been carried 
out considering historical reference periods of all avail-
able combinations of GCMs and RCMs. The investigation 

focuses on the hydrological variables of precipitation and 
temperature, by considering four climate indices: annual 
total precipitation (PRCP), annual maxima of daily precipi-
tation (RX1day), annual minima of daily minimum surface 
temperatures (TNn) and annual maxima of daily maximum 
surface temperatures (TXx).

In order to test the historical experiment of EURO-COR-
DEX over Southern Italy, we used the E-OBS reference 
dataset (Haylock et al. 2008a, b): a high-resolution grid-
ded dataset of daily climate over Europe, widely used for 
climate model evaluations. EURO-CORDEX (http:// www. 
EURO- CORDEX. net/) climate model outputs at the high-
est available resolution (i.e. 0.11°) and for a total number of 
55 GCM-RCM combinations (see Fig. 4) were compared 
with the reference dataset of E-OBS at the same resolution 
(0.11°), using two types of analysis. The first, which we refer 
to as “temporal analysis”, was conducted by averaging the 
time series of model outputs and reference data over the 
entire study area, while preserving the temporal resolution 
of the original series. The second type of analysis, which we 
refer to as “spatial analysis”, was conducted by averaging 
the model outputs and reference data over the entire refer-
ence period, while preserving the spatial resolution of the 
original fields.

4  Results

The first variable considered for performance evaluation in 
this study is surface temperature. The climate indices chosen 
are the annual minima of daily minimum temperatures, TNn, 
and the annual maxima of daily maximum temperatures, 
TXx (i.e. the lowest and highest temperature values from 
each year, respectively).

Figure 5 shows the climatological spatial pattern of the 
annual minima of daily minimum surface temperatures TNn 
(after averaging the corresponding time series over the entire 
reference period), where different colours (marks) denote 
different RCM models (GCM drivers). According to Tay-
lor’s diagram (Fig. 5a), all GCM–RCM model combinations 
display high correlations in space, on the order of 0.9. A 
visual ranking of model performances is feasible, looking at 
the model distances from the origin. The entirety of models 
shows a quite homogeneous trend in performance indicators, 
from better to lower performances, with all of them being 
very close to the 0.9 radius line. Aras’ diagram (Fig. 5b) 
also indicates high correlations, as all models display short 
segments, but additional patterns of model performance 
become also visible. More precisely, no model exhibits total 
percentage error below 10%, while only 3 out of all GCM-
RCM model combinations show total percentage error less 
than 30%. These 3 combinations are all driven by the same 
GCM (NCC-NorESM1-M), with best performing RCMs (in 

http://www.EURO-CORDEX.net/
http://www.EURO-CORDEX.net/
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descending performance order): IPSL-WRF381P, CLMcom-
ETH-COSMO-crCLIM-v1-1 and ICTP-RegCM4-6. Over-
all, 15 model combinations display performances with total 
error lower than 50%. The generally good agreement of 
model simulations and reference data in terms of correla-
tion in space for all GCM-RCM combinations, leads to a 
bias-variability percentage error (Eαβ in Figs. 1, 2) that is 
very close to the total percentage error (i.e. E in Figs. 1, 2). 
Moreover, almost all models overestimate both the mean and 
variability (i.e. they are displayed in the first quadrant of the 
diagram, where x = β -1 and y = α -1 coordinates are posi-
tive). Exceptions include RCM model CNRM-ALADIN53 
driven by GCM model CNRM-CERFACS-CNRM-CM5 
(the only one underestimating variability), and three model 
combinations with negative bias. Two of the latter have the 
same RCM: GERICS-REMO2015 and are driven by GCMs 
NCC-NorESM1-M and MPI-M-MPI-ESM-LR.

In general, patterns or clusters of model combinations 
sharing the same RCMs (same colour but different marks) 
are also very clear in Aras’ diagram. For instance, similar 
performances are shown by RCMs: MOHC-HadREM3-
GA7-05, KNMI-RACMO22E, CNRM-ALADIN63 and 
SMHI-RCA4, independent of the driving GCM. Worst 

performances in terms of bias are provided by all models 
sharing RCM KNMI-RACMO22E regardless of the GCM 
drivers.

Figure 6 shows diagrams for the spatial climatological 
pattern of the annual maxima of daily maximum surface 
temperatures TXx. In this case, the correlation values that 
range from somewhat below 0.8 to more than 0.9 still dis-
play an overall good agreement of model data with observa-
tions. This difference in correlation performance is strongly 
highlighted in Aras’ diagram, where the few models char-
acterized by correlation less (or close to) 0.8 are associated 
with much longer segments. Most of them are driven by the 
same RCM (ICTP-RegCM4-6) nested in 5 different GCMs. 
The same 5 models are also among the 7 models showing 
the lowest bias-variability percentage error (less than 10%).

Both Taylor’s and Aras’ diagrams coincide in indicating 
GERICS-REMO2015 driven by CNRM-CERFACS-CNRM-
CM5 as the best performing model, having a total percentage 
error approximately equal to 10%. This is the best score we 
obtained in this study, over all indices and models evaluated. 
Aras’ diagram also shows that: a) all models display perfor-
mances in simulating the spatial climatological pattern of 
TXx with total percentage error lower than 50%, b) 9 models 

Fig. 4  EURO-CORDEX GCM-RCM combinations used in this study. TN corresponds to daily minimum surface temperature, TX to daily sur-
face maximum temperature and Pr to daily total precipitation
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Fig. 5  Spatial climatological pattern analysis for the annual minima of daily minimum surface temperatures using: a Taylor’s diagam, and b Aras’ diagram
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Fig. 6  Spatial climatological pattern analysis for the annual maxima of daily maximum surface temperatures using: a Taylor’s diagram, and b Aras’ diagram
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exhibit negative bias, and c) all models except for 5 (all of 
which being among the 7 best performing models regarding 
bias-variability percentage error) overestimate the spatial 
variability of TXx field.

Shifting to the larger picture, a general observation one 
can make is that the overall EURO-CORDEX experiment 
provides better results for the maximum than for the mini-
mum daily surface temperature in space (compare Figs. 6, 
5), with the majority of model combinations overestimating 
both the mean and variability of the reference data.

The annual minima of daily minimum temperatures 
TNn, and the annual maxima of daily maximum tempera-
tures TXx averaged over the entire study area were also sub-
jected to temporal analysis with results shown in Figs. 7, 8, 
respectively.

The first impression one gets from both diagrams is that 
performances in terms of correlation in time are well below 
those in space for all models and indices analyzed (com-
pare Figs. 5, 6 to Figs. 7, 8). The two Taylor diagrams in 
Figs. 7a, 8a show that correlation is always below 0.3–0.4 
and a significant number of models exhibit negative correla-
tion with the reference data in time. The insufficient overall 
performance in terms of correlation error is also shown in 
Aras’ diagram, where all models display long segments, with 
those exhibiting negative correlations being marked with an 
empty circle at their endpoints E��.

No model in both Aras’ diagrams shown in Fig. 7b and 
Fig. 8b exhibits total percentage error below 50%, with most 
of the insufficient performance being due to errors in cor-
relation. In fact, when considering the bias-variability per-
centage error E�� , a good number of models (i.e. about half 
for the minimum and almost all for the annual maximum 
temperatures) are encompassed within the 50% error circle.

More precisely, with specific regard to annual minima 
of daily minimum surface temperatures TNn (see Fig. 7b), 
22 models exhibit bias-variability percentage errors (i.e. 
E�� ) less than 50%, 7 models less than 25% and 1 model 
less than 10%. The latter, corresponds to RCM CLMcom-
ETH-COSMO-crCLIM-v1-1 driven by GCM ICHEC-EC-
EARTH. All except for 2 models overestimate the interan-
nual variability, and one model (CNRM-ALADIN63 driven 
by MOHC-HadGEM2-ES) reproduces the interannual vari-
ability almost perfectly. All except 6 models exhibit positive 
bias, and a general tendency is observed towards overesti-
mation of both the mean and variability of annual minimum 
daily temperatures.

The best model according to Aras’ diagram is different 
from the best one indicated by Taylor’s diagram; i.e. accord-
ing to Taylor’s diagram, RCM CNRM-ALADIN53 driven by 
GCM CNRM-CERFACS-CNRM-CM5 performs best (see 
Fig. 7a), whereas Aras’ diagram indicates RCM CNRM-
ALADIN63 nested in GCM MOHC-HadGEM2-ES as the 
best performing model combination (see Fig. 7b). This 

difference is attributed to the fact that, contrary to Taylor’s 
diagram, Aras’ diagram accounts for model biases, which in 
the case of annual minima of daily surface minimum tem-
peratures play an important role; i.e. 117% for the best model 
according to Taylor’s diagram, and 87% for the best model 
according to Aras’ diagram (see Fig. 7b).

With specific regard to annual maxima of daily maximum 
temperatures (see Fig. 8), TXx, Taylor’s and Aras’ diagrams 
indicate the same best performing model: RCM GERICS-
REMO2015 driven by GCM IPSL-IPSL-CM5A-MR, with 
total percentage error of 62% mostly due to low correlation.

When looking at the bias-variability percentage error, 
11 models exhibit errors below 10%, 4 of them sharing the 
same RCM (ICTP-RegCM4-6) and other 3 sharing RCM 
IPSL-WRF381P. Also, 35 models exhibit bias-variability 
percentage errors below 25%.

A general tendency to overestimate both the mean and 
variability of maximum daily temperatures is also evi-
dent: 82% of the models have positive bias, and 78% of the 
models overestimate interannual variability with respect to 
observations.

With regard to precipitation over southern Italy, the 
EURO-CORDEX models show a wide range of perfor-
mances in terms of both the spatial and temporal patterns 
of annual precipitation totals (PRCP) and annual maxima 
of daily rainfall (Rx1day). Results from the spatial analysis 
are shown in Figs. 9, 10.

The Taylor diagrams in Fig. 9a and Fig. 10a show that all 
models exhibit positive correlation with the reference data, 
indicating better performance for PRCP relative to Rx1day. 
This is also visible from the length of the segments and their 
filled endpoints shown in Aras’ diagrams in Figs. 9b, 10b.

With regard to PRCP, the Aras diagram in Fig. 9b indi-
cates that only one model exhibits total error less than 25% 
(i.e. RCM CLMcom-CCLM4-8–17 driven by GCM ICHEC-
EC-EARTH). The same model is the second best in terms of 
bias-variability error (i.e. E�� less than 10%), outperformed 
only by the model sharing the same RCM and driven by 
GCM MOHC-HadGEM2-ES. Also, all combinations of 
CLMcom-ETH-COSMO-crCLIM-v1-1 RCM perform well 
(i.e. bias-variability percentage error E�� less than 25%), 
independent of the driving GCM. Worst performances in 
terms of overestimation of variability are associated with 
RCM DMI-HIRHAM5. Overall, 48 out of 55 models over-
estimate the variability of the reference data and 45 out of 
55 models overestimate the observed mean.

Regarding the annual maximum daily precipitation, 
Rx1day, the Aras diagram in Fig. 10b shows that all mod-
els exhibit total errors above 50%, and positive bias with 
respect to the spatial climatological pattern averaged over 
time. When considering only the bias-variability percent-
age error E�� , best models (with error under 25%) are 
those resulting from RCM ICTP-RegCM4-6 driven by 
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Fig. 7  Temporal analysis for the annual minima of daily minimum temperatures using: a Taylor’s diagram, and b Aras’ diagram
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Fig. 8  Temporal analysis for the annual maxima of daily maximum surface temperatures using: a Taylor’s diagram, and b Aras’ diagram
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Fig. 9  Spatial analysis of annual total precipitation using: a Taylor’s diagram, and b Aras’ diagram
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Fig. 10  Spatial analysis of annual maxima of precipitation using: a Taylor’s diagram, b Aras’ diagram
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5 different GCMs. This can be seen as an evidence that 
regional climate model selection is of major importance 
when interest is in the spatial distribution of annual max-
ima of daily rainfall.

The results of the temporal analysis of the two indices 
related to precipitation (i.e. PRCP and Rx1day) are shown 
in Figs. 11, 12. The Taylor diagrams in Figs. 11a, 12a are 
somewhat similar to those of temperature related indices 
(Figs. 7a, 8a): all models show low correlation (always 
below 0.5) with an important number exhibiting negative 
correlations. The Aras diagrams in Figs. 11b, 12b confirm 
this and, in addition, indicate that none of the available 
GCM-RCM combinations exhibits total percentage error 
lower than 50%, for both the annual rainfall totals (PRCP) 
and the annual maxima of daily rainfall (Rx1day).

With specific regard to PCRP (Fig.  11), 7 models 
exhibit bias-variability percentage error E�� below 10%, 
and 15 models below 25%. The best performing model 
in term of bias-variability percentage error corresponds 
to RCM CLMcom-ETH-COSMO-crCLIM-v1-1 driven 
by GCM MOHC-HadGEM2-ES, the second and third 
best models in terms of E�� are RCMs CLMcom-ETH-
COSMO-crCLIM-v1-1 and GERICS-REMO2015, both 
nested in GCM NCC-NorESM1-M. The majority of mod-
els (i.e. 48 out of 55) exhibit positive bias, and 41 out of 
55 overestimate variability. The worst performing model 
according to Taylor’s diagram is RCM CNRM-ALADIN63 
driven by GCM NCC-NorESM1-M, while according to 
Aras’ diagram the worst model combination results from 
the same RCM (i.e. CNRM-ALADIN63) nested in CNRM-
CERFACS-CNRM-CM5. This difference is attributed to 
the fact that, differently from Taylor’s diagram, Aras’ dia-
gram accounts for model biases, which in the latter case 
exceed 150%.

Results relative to temporal analysis of Rx1day averaged 
over Southern Italy (Fig. 12b), show that all models are asso-
ciated with positive biases and, in addition, overestimate the 
interannual variability. No model exhibits total error below 
50%, with the best model in terms of bias-variability error 
(below 25%) resulting from the combination of RCM ICTP-
RegCM4-6 nested in GCM NCC-NorESM1-M. Models with 
E�� below 50% include: RCM ICTP-RegCM4-6 driven by 
GCMs ICHEC-EC-EARTH, CNRM-CERFACS-CNRM-
CM5 and MPI-M-MPI-ESM-LR, and RCM IPSL-WRF381P 
driven GCM NCC-NorESM1-M, and RCM CNRM-ALA-
DIN53 driven by GCM CNRM-CERFACS-CNRM-CM5. 
The aforementioned same-RCM-clusters, regardless of the 
driving GCM, indicate, once more, the critical role of RCMs 
when it comes to modeling rainfall maxima. The worst 
model (in both diagrams) in terms of interannual variabil-
ity of daily rainfall maxima is RCM MOHC-HadREM3-
GA7-05 driven by GCM CNRM-CERFACS-CNRM-CM5, 
with associated error that exceeds 200%.

5  Discussion

Application of Aras’ diagram to four indices related to 
extreme temperature and precipitation highlight the added 
value of including in a single 2-dimensional graphical tool 
three important and independent metrics for performance 
evaluation of climate models: correlation, bias and vari-
ability ratios. By displaying the total percentage error and 
the percentage error due to bias and variability, it is pos-
sible to easily identify models with similar performances, 
as well as the sources of observed discrepancies. The three 
homocentric circles corresponding to different values of 
relative error (i.e. 10%, 25% and 50%) ease selection of 
models with better overall performance, whereas decom-
position of the observed error to bias-, variability- and 
correlation-related components becomes visually possible.

By visually detecting clusters of model combinations 
with similar performances (see Sect. 4), we found a gen-
eral dominance of RCM selection in model performance; 
i.e. models using the same RCM driven by different GCMs 
tend to perform similarly. Also, similarly to other studies 
(see e.g., Deidda et al. 2013; Sillmann et al. 2013; Kotlar-
ski et al. 2014; Mascaro et al. 2018; Vautard et al. 2021), 
we found that climate models performance for tempera-
ture is better than that for precipitation, in particular when 
looking at spatial patterns, see discussion on Figs. 5–12. 
The component of total error due to lack of correlation 
proved to be one of the most important sources of poor 
model performance for temporal analysis of all three vari-
ables (precipitation, minimum temperature, and maximum 
temperature), see Figs. 7, 8, 11, 12. Very good results in 
terms of correlation were obtained by all models of the 
EURO-CORDEX experiment in the analysis of the spa-
tial distribution of maximum and minimum temperatures. 
Not so high but still positive correlations were obtained 
by all EURO-CORDEX models in the spatial analysis of 
annual rainfall totals (PRCP) and annual maxima of daily 
rainfall (Rx1day); see discussion on Figs. 9, 10. Lack of 
correlation becomes the most important error source in the 
temporal analysis, with about half of the models exhibit-
ing negative correlations for all studied variables. Another 
general result, is that we could not identify a single best 
performing model for all studied variables.

We exploited Aras’ diagram also to gain information 
about underestimation/overestimation of the mean and 
variability of the reference data. A systematic overesti-
mation of the mean and variability can be observed in all 
analyses we performed; see Figs. 5–12 and their discus-
sion. In particular, in the spatial analysis of minimum and 
maximum temperatures and annual rainfall totals, almost 
all models overestimate both the mean and variability of 
observed fields. In the spatial analysis of annual maxima 
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Fig. 11  Temporal analysis of annual total precipitation using: a Taylor’s diagram, and b Aras’ diagram
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Fig. 12  Temporal analysis of annual maxima of daily precipitation using: a Taylor’s diagram, and b Aras’ diagram
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of daily rainfall all models show a strong positive bias. In 
the temporal analysis of minimum temperatures almost all 
models overestimate variability, while for the maximum 
temperatures almost all models exhibit positive bias. In 
the temporal analysis of annual maxima of daily rainfall 
all models without exception strongly overestimate both 
the mean and variability of the spatial averages.

Taylor’s and Aras’ diagrams allow for different views 
of model performances. For instance, with regard to tem-
poral analysis of annual rainfall totals (Fig. 11), best per-
forming models according to Taylor’s diagram are: RCM 
ICTP-RegCM4-6 driven by CNRM-CERFACS-CNRM-
CM5, and RCMs MOHC-HadREM3-GA7-05, CLMcom-
ETH-COSMO-crCLIM-v1-1 nested in CNRM-CER-
FACS-CNRM-CM5. Among those, Aras’ diagram allows to 
clearly detect RCM CLMcom-ETH-COSMO-crCLIM-v1-1 
driven by CNRM-CERFACS-CNRM-CM5 as the best per-
forming one. This is due to the value added by accounting 
for biases in models’ total error.

6  Conclusions

Different types of diagrams may be used to evaluate cli-
mate models. Among those, the most popular one is Taylor’s 
diagram. While very useful, this diagram does not include 
information on bias-induced errors. In this context, we pro-
pose a two-dimensional diagram, referred to as Aras’ dia-
gram, which allows for visual evaluation of the relative per-
formances of complex models. This is done by exploiting the 
Kling–Gupta efficiency (KGE) through a decomposition to 
its three main components: correlation, bias and variability 
ratios, allowing for quick assessments of possible overesti-
mation or underestimation of both the mean and variability 
of observed fields.

Aras’ diagram can be used in many aspects of model 
evaluation and diagnosis, for any type of variable, index, 
temporal or spatial climatological pattern, seasonality, etc. 
In this paper Aras’ diagram has been used successfully for 
performance evaluation of climate models over Southern 
Italy for the hydrological variables of precipitation and tem-
perature, by considering four climate indices: annual total 
precipitation, annual maxima of daily precipitation, annual 
minima of daily minimum temperatures, and annual maxima 
of daily maximum temperatures, in both space and time. 
The proposed diagram, based on the Kling–Gupta efficiency 
equation and its decomposition, has shown interesting prop-
erties which may assist climate model evaluations based on 
their accuracy in reproducing the climatological patterns 
observed in time and space.

An important note to be made here is that, as Aras’ dia-
gram is based on the standardization used in deriving the 
KGE index (see Sect. 2), it may lead to inconclusive results 

in cases when the observations exhibit low mean value and/
or standard deviation (see e.g. Clark et al. 2021), resulting 
in high values of the bias and variability ratios, respectively. 
In such cases, Aras’ and Taylor’s should be used in con-
junction, as their combined use should allow for a better 
overall assessment of the accuracy of model results relative 
to observations.

Appendix

Denote by (μm, σm) and (μo, σo) the first two statistical 
moments (i.e. means and standard deviations) of model 
results and observations, respectively. As shown by Gupta 
et  al. (2009), the mean-squared-error (MSE) and the 
Nash–Sutcliffe efficiency (NSE) are linked through the fol-
lowing strictly monotonically decreasing relationship:

In addition, Gupta et al. (2009) showed that NSE can be 
decomposed as:

where a = σm/σο, b = (μm – μo)/σο, and ρ stands for the cor-
relation coefficient between observations and model results.

By combining equations (17) and (18), one obtains:

By taking the 1st and 2nd derivatives of equation (19) 
with respect to a, and considering that �2

o
 is a positive con-

stant, one obtains:

According to equation (20), the minimum MSE 
(corresponding to d(MSE)/da = 0) is attained when 
a = σm/σο = ρ ≤ 1. Therefore, unless ρ = 1, model selection 
through minimization of MSE and/or RMSE =  MSE1/2, 
would favor models that tend to underestimate the variabil-
ity of observations.
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