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Abstract
Aiming to accurately assess the intensity of rockburst in coal mines, we propose a rockburst risk assessment model using

the improved catastrophe progression method based on its sudden, complex, and non-linear characteristics. A risk

assessment indicator system for rockburst is established based on the occurrence conditions of rockburst, which com-

prehensively considers 10 main influencing factors. We introduce a combined weighting method consisting of the variation

coefficient method and analytic hierarchy process (AHP) to determine the weight and ranking of evaluation indicators,

which improves the catastrophe progression method. Finally, by applying 10 coal mine cases into the established model

and comparing them with the unimproved catastrophe progression method and several other risk assessment methods, we

conclude that the accuracy of the model in assessing rockburst intensity level has increased by a maximum of 42.85%. Our

work proves the effectiveness and practicality of the risk assessment model, which can provide good theoretical guidance

for assessing rockburst intensity level in coal mines. Furthermore, based on the model risk assessment results and

comparative analysis, this paper provides feasible suggestions for reducing the intensity of rockbursts.

Keywords Rockburst � Risk assessment model � Catastrophe progression method � Combined weighting �
Analytic hierarchy process

1 Introduction

Rockburst is a coal-rock dynamic disaster characterized by

its suddenness, complexity, and nonlinearity, resulting

from the coupled effect of natural geological conditions

and engineering disturbances (Wei et al. 2018; Wang and

Du 2020; Mi et al. 2022; Yin et al. 2021). In recent years,

with the increasing depth of coal mining, the in-situ stress

increases constantly, and the geological and physical

properties of coal seams and their roof and floor become

more complex. Moreover, the influence of external

dynamic load disturbances, such as large-scale roof

movement and fault slip in the mining area, exacerbates the

occurrence and severity of dynamic rockburst (Ranjith

et al. 2017; Zhang et al. 2021a, b; Li et al. 2019; Gao et al.

2020; Zhang et al. 2023). As the most common type of coal

mine disaster, dynamic rockburst not only causes signifi-

cant economic losses but also poses a serious threat to the

safety of workers (He et al. 2022; Cai et al. 2020).

Therefore, it is of great significance to assess rockburst in a

reasonable and accurate manner. However, due to its

complexity, a sound risk assessment method system has not

been established so far (Hou et al. 2021; Ghasemi et al.

2020).

Many scholars around the world have conducted

extensive research on this and proposed numerous methods

for assessing rockburst. According to different calculation

methods, they are mainly divided into three categories:

theoretical empirical analysis method, field monitoring and

testing method, and applied mathematical model method

(Li 2020).

The theoretical empirical analysis method is a risk

assessment method based on the mechanism of rockburst
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and engineering practice experience. Generally, it analyzes

the stress–strain state of rock and combines it with existing

evaluation indicators. Its biggest advantages are its low

cost, simple operation, and strong practicality. However,

this method involves past experience, which results in

lower risk assessment accuracy. This type of method

mainly includes strength theory empirical criterion (Ma

et al. 2018), energy theory empirical criterion (Miao et al.

2016), brittleness theory criterion (Wang et al. 2015), and

stiffness theory criterion (Tang and Xia 2010).

The field monitoring and testing method uses instru-

ments to monitor certain necessary conditions for the

occurrence of rockburst, or directly test the rock mechan-

ical properties in the field to determine the possibility,

timing, and range of its occurrence. The commonly used

monitoring and testing methods include pulverized coal

drilling cuttings method (He et al. 2021b, a), borehole

stress meter method (Stas et al. 2007), support load

method, roadway deformation measurement method,

acoustic emission method (Zhai et al. 2020), microseismic

method (Xue et al. 2021; Chen et al. 2022). This type of

method can make risk assessments in a timely and larger

range, but its cost is higher.

The method of applying mathematical models is a way

to assess the occurrence of rockburst in unknown areas

based on the existing geological data and the results of

rockburst occurrence by establishing a mathematical

model. This method is generally based on multiple indi-

cators related to rockburst or by training computer pro-

grams with a large amount of data. It is currently the most

commonly used method for assessing rockburst, including

neural network method (Feng et al. 2019; Du et al. 2021),

fuzzy comprehensive evaluation method (He et al.

2021a, b), gray correlation theory method (Zheng et al.

2019), cloud model method (Wang et al. 2020), catastrophe

progression method (Jin et al. 2013). Machine learning-

based risk assessment methods require a large amount of

sample information, and accuracy cannot be guaranteed

when the number of learning samples is insufficient. When

the number of samples is too large, it also affects its gen-

eralization. At the same time, most existing literature uses

samples from the same mining area for training and risk

assessment, so the applicability to mining areas without

samples is not strong. The risk assessment method based on

theoretical analysis has problems such as difficulty in

determining indicator membership and weight, and the

calculation process is not easy to converge (Xue et al.

2020; Xu et al. 2018; Wang et al. 2022; Zhang et al.

2021a, b).

Therefore, this paper innovatively introduces the varia-

tion coefficient method for objective weighting and the

Analytic Hierarchy Process (AHP) for subjective weight-

ing. The weights and ranking of each evaluation indicator

are determined by fusing the subjective and objective

weighting in a proportion of 50% each, taking into account

the degree of importance that experts subjectively attach to

each rating indicator and the inherent laws between eval-

uation indicators. This reduces the impact of the order

between evaluation indicators in the mutation progression

method on the evaluation results, added accuracy to the

evaluation system. Taking into account up to 10 relevant

main influencing factors, a risk assessment model for

rockburst intensity level is constructed, which makes the

risk assessment results more accurate and has a wider range

of applications.

2 Theoretical methods

2.1 Catastrophe progression method

The catastrophe progression method decomposes the

evaluation objective into multiple evaluation indicators at

different levels, generates a catastrophe membership

function by combining catastrophe theory with fuzzy

mathematical functions, and then uses a normalization

formula to quantitatively calculate and obtain the total

membership function for decision-making evaluation (Xia

et al. 2017). The principle is to use evaluation indicators as

control variables to convert control variables of different

qualitative states into state variables of the same qualitative

state. The number of state variables and control variables

determines different catastrophe models. The commonly

used elementary models have a state variable dimension of

1 and a control variable dimension of 1 to 5, respectively:

fold catastrophe model, cusp catastrophe model, swallow-

tail catastrophe model, butterfly catastrophe model, and

Indian cottage catastrophe model. These models are pro-

vided in Table 1 (Singh et al. 2022).

The basic steps to improve the evaluation of the catas-

trophe progression method are as follows:

(1) Establishing a catastrophe progression evaluation

indicator system. The overall indicator system is

decomposed into multiple levels based on the

functional principle of each evaluation indicator

until each evaluation indicator can be measured

separately. Since the number of control variables in

commonly used catastrophe models generally does

not exceed 5, the number of evaluation indicators at

each level does not exceed 5.

(2) Dimensionless treatment of each evaluation indica-

tor. Since the indicators in the evaluation system

have different units and dimensions, unified calcu-

lations cannot be performed between indicators.

Therefore, it is necessary to perform dimensionless
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processing on each indicator. The evaluation indica-

tors include positive indicators (the larger the

indicator, the more likely the occurrence of rock-

burst) and negative indicators (the smaller the

indicator, the more likely the occurrence of rock-

burst), which can be expressed as

positive indicator : xij0 ¼
xij �minðxijÞ

maxðxijÞ �minðxijÞ
ð1Þ

negative indicator : xij0 ¼
maxðxijÞ � xij

maxðxijÞ �minðxijÞ
ð2Þ

where xij refers to the original data of the j th evaluation

indicator in the i th evaluation sample, and x0ij refers to the

data after dimensionless processing.

(3) Determining the weight and ranking of evaluation

indicators using the combined weighting method.

The objective weight is determined using the vari-

ation coefficient method, and the subjective weight is

determined using the AHP. Finally, the combined

weight of each indicator is calculated and ranked

based on a 1:1 ratio.

(4) Calculating the fuzzy catastrophe level value. First,

the corresponding catastrophe model is selected

based on the number of control variables in the

evaluation indicator system. Then, the ranking of

each evaluation indicator is determined based on the

importance of each indicator obtained in step (3).

Finally, the fuzzy catastrophe level value is calcu-

lated by normalizing the weighted sum of the

evaluated indicators.

(5) Following the principle of the normalization formula

evaluation. The fuzzy catastrophe membership

degree is obtained layer by layer from the indicator

layer to the criterion layer. In the process of

normalization formula evaluation, they should follow

the principle of complementarity or non-comple-

mentarity. The principle of complementarity means

that different evaluation indicators can be substituted

for each other and can compensate for each other’s

shortcomings without preconditions. The principle of

non-complementarity means that different evaluation

indicators cannot be substituted for each other and

cannot compensate for each other’s shortcomings. If

the indicator layer satisfies the principle of comple-

mentarity, the membership degree of the criterion

layer is calculated using the ‘‘average value’’

method, e.g., x ¼ ðxa þ xb þ xcÞ=3 in the swallowtail

catastrophe model; If they comply with the principle

of non-complementarity, the value is calculated

using the standard of ‘‘ minimum value ’’ to calculate

the catastrophe membership degree of the criterion

layer, e.g., x ¼ min xa; xb; xcf g in the swallowtail

catastrophe model (Chen et al. 2020). Similarly, the

total catastrophe membership degree of the rockburst

risk assessment can be calculated.

2.2 Combined weighting method

Due to the strong subjectivity and empirical nature of the

subjective weighting method’s expert scoring, and the poor

universality and participation of the objective weighting

method, it cannot reflect the degree of attention that users

attach to different attribute indicators. Therefore, to make

the rating results more authentic and reliable, we use the

additive combined weighting method with the subjective

and objective weighting methods to weigh each evaluation

indicator.

According to the principle of the combined weighting

method and to avoid the problems of absolutization and

subjectification in the traditional weight allocation process,

combining the subjective and objective weighting at a ratio

of 50% each (Wang et al. 2021) yields the combined

weight of the j th evaluation indicator as:

wj ¼ 0:5xj1 þ 0:5xj2 ð3Þ

Table 1 Five common catastrophic models

Catastrophic model Control

variable

Potential function Normalization formula

Fold catastrophe model 1 FðxÞ ¼ x3 þ lx xl ¼
ffiffiffiffiffiffi

lj j
p

Cusp catastrophe model 2 FðxÞ ¼ x4 þ lx2 þ mx xl ¼
ffiffiffiffiffiffi

lj j
p

, xm ¼
ffiffiffiffiffi

mj j3
p

Swallowtail catastrophe

model

3 FðxÞ ¼ x5 þ lx3 þ mx2 þ xx xl ¼
ffiffiffiffiffiffi

lj j
p

, xm ¼
ffiffiffiffiffi

mj j3
p

,xx ¼
ffiffiffiffiffiffiffi

xj j4
p

Butterfly catastrophe model 4 FðxÞ ¼ x6 þ lx4 þ mx3 þ xx2 þ tx xl ¼
ffiffiffiffiffiffi

lj j
p

, xm ¼
ffiffiffiffiffi

mj j3
p

, xx ¼
ffiffiffiffiffiffiffi

xj j4
p

,xt ¼
ffiffiffiffiffi

tj j5
p

Indian cottage catastrophe

model

5 FðxÞ ¼ x6 þ lx4 þ mx3 þ xx2 þ tx2 þ sx xl ¼
ffiffiffiffiffiffi

lj j
p

, xm ¼
ffiffiffiffiffi

mj j3
p

, xx ¼
ffiffiffiffiffiffiffi

xj j4
p

,

xt ¼
ffiffiffiffiffi

tj j5
p

,xs ¼
ffiffiffiffiffi

sj j6
p
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where xj1 is the subjective weight, and xj2 is the objective

weight.

2.2.1 Objective weighting method

The variation coefficient method is used for the objective

weighting of indicators. The variation coefficient method

calculates the quotient between the standard deviation and

the average value of data, which is a method of measuring

difference between indicators (Zhang et al. 2020). The

weighting involves calculating the average value, standard

deviation, coefficient of variation, and weight of each

evaluation indicator after dimensionless processing.

Average valueof theth evaluationindicator : xj ¼
1

n

X

n

i¼1

xij

ð4Þ

Standard deviation of theth evaluation indicator : rj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

ðxij � xjÞ2
s

ð5Þ

Variation coefficient of theth evaluation indicator : CVj

¼ rj
xj

ð6Þ

Weight of theth evaluation indicator : xj ¼
CVj

Pn
j¼1 CVj

ð7Þ

where,
Pn

j¼1 xj ¼ 1.

2.2.2 Subjective weighting method

AHP is currently the most commonly used subjective

weighting method, which establishes a hierarchical evalu-

ation structure of objectives and determines the weights

based on the importance of each indicator to the upper

level (Wang et al. 2021; Senan et al. 2023).

(1) Establishing a hierarchical structure of the indicator

system. The target layer, the criteria layer, and the

indicator layer are defined based on the hierarchical

relationship between the various factors and indica-

tors in the research system, the problems to be

solved, the factors to be considered, and the final

consideration indicators, respectively.

(2) Based on expert scoring, the judgment matrix

between each level can be written as follows to

express the relative importance of each indicator,

R ¼

r11 r12 � � � r1n
r21 r22 � � � r2n
..
. ..

. ..
.

rm1 rm2 � � � rmn

2

6

6

6

4

3

7

7

7

5

ð8Þ

The judgment matrix has the following properties:

rij ¼
1

rji
ð9Þ

where rij is the indicator importance ratio, indicating

the importance of element ai over element aj. Gen-

erally, it is expressed quantitatively on a scale of 1 to

9, where 1 represents equal importance, and the

importance increases as the value increases.

(3) Consistency testing. Because the judgment matrix is

based on expert experience, errors are inevitable, so

the following consistency test formula is used for

testing,

CR ¼ CI

RI
¼ kmax � m

RIðm� 1Þ ð10Þ

where CI is a consistency indicator; RI is an average

random consistency indicator; kmax is the maximum

eigenvalue of the judgment matrix R; m is the order

of the judgment matrix; and CR is the consistency

ratio of the judgment matrix. It is generally believed

that when CR\0:1, the consistency of the judgment

matrix meets the requirements, otherwise the judg-

ment matrix needs to be corrected.

(4) According to the weight calculation formula, the

weight of each corresponding indicator is calculated

as,

xj ¼

Q

n

j¼1

Rij

,

P

n

j¼1

Rij

 ! !1
n

P

n

i¼j

Q

n

j¼1

Rij

,

P

n

j¼1

Rij

 ! !1
n

; j ¼ 1; 2; . . .; n

ð11Þ

3 Establishment of risk assessment model

The specific steps for establishing a rockburst risk assess-

ment model are shown in Fig. 1, which involves improving

and optimizing the catastrophe progression method through

objective weighting using the variation coefficient method

and subjective weighting using the analytic hierarchy

process.
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3.1 Establishment of evaluation indicator system

Rockburst refers to a phenomenon of dynamic instability

where the elastic strain energy accumulated in coal and

rock mass is suddenly released under certain conditions

due to stress concentration. The intensity level of rockburst

is affected by various factors such as the strike of coal

seams, in-situ stress, and physical and mechanical proper-

ties of coal. We select common factors such as maximum

principal stress, coal seam burial depth, inclination, com-

plexity, thickness, uniaxial compressive strength, impact

energy indicator, and roof bending energy indicator, which

are in accordance with previous research experience and

the chapter II of ‘‘Implementation Rules for the Prevention

and Control of Coal Mine Rockburst’’, (State Administra-

tion of Coal Mine Safety 2018). In addition, it also takes

into account the minimum principal stress and coefficient

of variation, which are not commonly used but significantly

impact rockburst. Together, they serve as the primary

evaluation indicators for assessing rockburst. The mini-

mum principal stress and coal seam thickness are negative

indicators, while the rest are positive indicators. They are

divided into three categories: in-situ stress distribution,

geological conditions, and mechanical properties. In

accordance with the evaluation requirements of the catas-

trophe progression method, an evaluation indicator system

for rockburst risk is constructed, as shown in Fig. 2.

3.2 Sample selection and dimensionless
processing of indicators

In this study, the identification results of rock-burst ten-

dency of the following 10 mines are obtained as samples

through extensive investigation and data search. The

samples come from 10 major mining areas in the top 5

important coal producing provinces in China, which have

the most rockburst mines. It covers a variety of coal quality

characteristics and geological conditions, and each evalu-

ation index data is highly dispersed, which can represent

the basic situation of most rockbuest mines. Therefore, the

selected sample has sufficient diversity. The sample data

materials are all from on-site geological reports of various

mines, which poses certain difficulties in investigation and

search. At the same time, 10 samples have satisfied the

calculation needs and fully tested the model. Therefore, 10

highly diverse mine data were ultimately selected as

Fig. 1 Establishment of a

rockburst risk assessment model
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samples. According to the standards of the ‘‘Rock Burst

Measurement, Monitoring and Prevention Methods’’, the

rockburst risk level is divided into three levels: Strong,

Weak, and None. The sample data is shown in Table 2,

where the complexity of coal seam B1 uses the numbers

‘‘1’’, ‘‘2’’, ‘‘3’’, and ‘‘4’’ to indicate that the coal seam

structure is simple, relatively simple, relatively complex,

and complex. The evaluation indexes such as coal seam

thickness B4 and burial depth B2 are average values.

According to Eqs. (1) and (2), each evaluation index of

the 10-sample data is processed dimensionlessly, and the

results are shown in Table 3.

3.3 Determination of combined weight

(1) Determination of objective weight by the variation

coefficient method.

According to the dimensionless values of each

indicator in Table 3 and Eqs. (4), (5), (6), and (7), the

average value, standard deviation, and variation

coefficient of each evaluation indicator are calcu-

lated respectively, and the objective weight is finally

obtained, as shown in Fig. 3.

Fig. 2 Evaluation indicator system for rockburst risk

Table 2 Sample raw data

Sample A1 (MPa) A2 (MPa) B1 B2 (m) B3 (�) B4 (m) B5 C1 (MPa) C2 C3 Identification results

Ji’er 3upper 29.79 5.50 4.00 895.00 6.00 5.92 0.45 16.74 80.72 6.48 Strong

Dongxia 6-1# 17.36 6.98 1.00 823.00 34.50 5.80 31.82 14.20 100.00 18.30 Strong

Junde 17# 33.42 10.81 1.00 770.00 30.00 11.93 0.35 19.35 469.39 6.42 Strong

Xing’an 11# 22.72 14.97 4.00 900.00 25.00 7.50 0.22 10.82 36.67 2.47 Weak

Xiaozhuang 4 30.17 16.04 1.00 800.00 4.50 18.01 0.48 20.62 38.42 1.73 Weak

Pengzhuang 3down 26.92 7.57 1.00 965.52 9.50 6.40 0.56 9.87 86.95 2.09 Weak

Shanjiacun 3# 20.61 8.03 1.00 425.00 17.50 6.50 0.18 7.74 65.00 2.87 Weak

Panxi 3# 33.94 17.49 1.00 1063.00 29.00 2.20 0.36 0.65 10.78 1.82 None

Tangjiahui 6 18.46 13.82 3.00 486.00 4.00 16.00 0.11 5.95 7.51 1.96 None

Fengyuan 2 31.50 21.80 1.00 855.00 20.00 1.93 0.12 1.28 33.10 1.01 None
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(2) Determination of subjective weight by the AHP.

According to the rockburst risk evaluation indicator

system shown in Fig. 1, we invited three mining

engineering experts and two geotechnical engineer-

ing experts to conduct subjective scoring. Establish

the judgment matrix in Eq. (8) by averaging their

scores, and use Eq. (10) to check consistency.

Finally, the relative calculation weight results of

the indicator layer and the target layer are obtained

by using Eq. (11), as shown in Fig. 4.

(3) Determination of combination weights.

The combined weight of each evaluation indicator

can be calculated using Eq. (3) in the combined

weighting method, as shown in Fig. 5.

As can be seen from Fig. 5, the order of the

importance of each evaluation indicator in the

criterion layer is: C[B[A, and the importance

Table 3 Dimensionless values

of sample evaluation indicators
Sample A1 A2 B1 B2 B3 B4 B5 C1 C2 C3

Ji’er 3upper 0.75 1.00 1.00 0.74 0.07 0.75 0.01 0.81 0.16 0.32

Dongxia 6–1# 0.00 0.91 0.00 0.62 1.00 0.76 1.00 0.68 0.20 1.00

Junde 17# 0.97 0.67 0.00 0.54 0.85 0.38 0.01 0.94 1.00 0.31

Xing’an 11# 0.32 0.42 1.00 0.74 0.69 0.65 0.00 0.51 0.06 0.08

Xiaozhuang 4 0.77 0.35 0.00 0.59 0.02 0.00 0.01 1.00 0.07 0.04

Pengzhuang 3down 0.58 0.87 0.00 0.85 0.18 0.72 0.01 0.46 0.17 0.06

Shanjiacun 3# 0.20 0.84 0.00 0.00 0.44 0.72 0.00 0.36 0.12 0.11

Panxi 3# 1.00 0.26 0.00 1.00 0.82 0.98 0.01 0.00 0.01 0.05

Tangjiahui 6 0.07 0.49 0.67 0.10 0.00 0.13 0.00 0.27 0.00 0.05

Fengyuan 2 0.85 0.00 0.00 0.67 0.52 1.00 0.00 0.03 0.06 0.00

Fig. 3 Objective weight calculation results

Fig. 4 Subjective weight calculation results

Fig. 5 Combined weight calculation results
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of each evaluation indicator in the indicator layer is:

C2[C1[C3, B5[B1[B3[B2[B4, A1[A2.

3.4 Calculation of catastrophe level value

From Fig. 1, it can be observed that the indicator layer An

to the criterion layer A, the indication layer Bn to the cri-

terion layer B, the indicator layer Cn to the criterion layer

C, and the criterion layer to the target layer conform to the

cusp catastrophe model, the Indian hut catastrophe model,

the swallowtail catastrophe model, and the swallowtail

catastrophe model, respectively, in the common catastro-

phe model presented in Table 1. Therefore, according to

the importance order of each evaluation indicator deter-

mined in Sect. 3.3, it is substituted into the normalized

formula of the catastrophe model in Table 1 for calculation.

Moreover, the selected rockburst risk assessment indicators

in this paper exhibit a strong correlation, satisfying the

principle of complementarity. Therefore, the ‘‘average

value’’ method is used to calculate the normalized value of

the system. The calculation results are shown in Table 4.

3.5 Relationship between rockburst level
and catastrophe level

Figure 6 shows the catastrophe level values calculated in

Table 4 and the rockburst identification level of each

sample.

As can be seen from Fig. 6, the larger the catastrophe

level, the higher the rockburst level. The catastrophe level

value based on the combined weighting catastrophe pro-

gression model has a good positive correlation with the

rockburst level, with clear differences between levels.

Therefore, the catastrophe level value can be used as a new

standard for assessing the rockburst level. Based on the

observation in Fig. 6, the catastrophe level can be divided

into intervals to represent the rockburst level. The no

impact propensity is represented by X\ 0.75, the weak

impact propensity is represented by 0.75 B X\ 0.85, and

the strong impact propensity is represented by X C 0.85.

3.6 Validation analysis and comparison

The calculated catastrophe level values for the 10 samples

in this work are used to determine the rockburst level by

comparing them to the division intervals. The results are

then compared to the risk assessment made using the

unimproved catastrophe progression method and the single

indicator risk assessment method, which includes uniaxial

compressive strength, impact energy indicator, and bend-

ing energy indicator. The classification criteria for rock-

burst levels in the single indicator risk assessment method

are mainly based on the classification and evaluation cri-

teria in national standards such as ‘‘Standard for the

Determination of Coal Seam Burst Tendency’’ and

‘‘Standard for the Determination of Rockburst Tendency’’,

as shown in Table 5. The results of this analysis are pre-

sented in Table 6.

Table 4 Numerical calculation

results of system catastrophe

levels

Sample A B C X Identification results

Ji’er 3upper 0.9329 0.7006 0.6929 0.9011 Strong

Dongxia 6-1# 0.4844 0.7730 0.7754 0.8775 Strong

Junde 17# 0.9305 0.5565 0.9088 0.9193 Strong

Xing’an 11# 0.6584 0.7688 0.5295 0.8482 Weak

Xiaozhuang 4 0.7930 0.2730 0.5699 0.7824 Weak

Pengzhuang 3down 0.8575 0.5369 0.5626 0.8417 Weak

Shanjiacun 3# 0.6940 0.3618 0.5446 0.7878 Weak

Panxi 3# 0.8209 0.6075 0.1833 0.7423 None

Tangjiahui 6 0.5229 0.4412 0.3754 0.7415 None

Fengyuan 2 0.4617 0.5586 0.1840 0.6923 None

Fig. 6 Relationship between rockburst level and catastrophe level

value
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As shown in Table 6, when the catastrophe level values

calculated by the improved combined weighting catastro-

phe progression method for sample data are substituted to

the rockburst intensity level, the rockburst results assessed

for all 10 samples are consistent with the rockburst

propensity identification results, achieving a risk assess-

ment accuracy of 100%. However, in the single indicator

risk assessment method, the risk assessment accuracy of

the results obtained based on the uniaxial compressive

strength, impact energy indicator, and bending energy

indicator are 90, 80, and 70%, respectively. The accuracy

of the risk assessment results using the unimproved

catastrophe progression method is 70%. Therefore, the

combined weighting catastrophe progression method

model established in this paper is accurate and reliable for

assessing rockburst intensity level.

4 Discussion

The risk assessment results of different methods show that

the accuracy of the risk assessment results obtained from

uniaxial compressive strength in the single indicator risk

assessment method is up to 90%. Moreover, through

comparing and analyzing the uniaxial compressive strength

in the original data with the catastrophe level values

obtained from the model in the paper, it can be concluded

that the variation trend of the uniaxial compressive strength

and the catastrophe levels is highly similar (except for

individual cases, such as sample 5), as shown in Fig. 7.

Therefore, it can be considered that uniaxial compressive

strength plays an important role in assessing the propensity

Table 5 Classification criteria

for assessing rockburst with a

single indicator

Impact propensity None Weak Strong

Uniaxial compressive strength /MPa C1\ 7 7 B C1\ 14 C1 C 14

Bending energy indicator /kJ C2 B 15 15\C2 B 120 C2[ 120

Impact energy indicator C3\ 1.5 1.5 B C3\ 5 C3 C 5

Table 6 Comparison of risk assessment results by different methods

Sample Single indicator risk assessment results Risk assessment results

of the catastrophe

progression method

Identification

results

Uniaxial compressive

strength

Impact energy

indicator

Bending energy

indicator

unimproved improved

Ji’er 3upper Strong Strong Weak Strong Strong Strong

Dongxia 6–1# Strong Strong Weak Strong Strong Strong

Junde 17# Strong Strong Strong Strong Strong Strong

Xing’an 11# Weak Weak Weak Strong Weak Weak

Xiaozhuang 4 Strong Weak Weak Weak Weak Weak

Pengzhuang

3down

Weak Weak Weak Strong Weak Weak

Shanjiacun 3# Weak Weak Weak Weak Weak Weak

Panxi 3# None Weak None Weak None None

Tangjiahui 6 None Weak None None None None

Fengyuan 2 None None Weak None None None

Fig. 7 Relationship between uniaxial compressive strength and

catastrophe level
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for rockburst in coal mines. Reducing the uniaxial com-

pressive strength of coal can effectively prevent the

occurrence of rockburst, which is consistent with the

research results of many scholars who have reduced the

strength of coal seams by means of water injection (Liu

et al. 2021) and microwave radiation (Guozhong et al.

2021). This further verifies the feasibility and accuracy of

the rockburst risk assessment model.

In this paper, a risk assessment model for rockburst

based on combined weighting catastrophe progression

method is established and applied to an engineering

example, which is verified to be feasible and effective.

However, due to the complexity of rockburst and numerous

influencing factors, although the risk assessment model

selects 10 key indicators of three influencing factors,

namely, in-situ stress distribution, geological conditions,

and mechanical properties, for analysis, the conditions for

occurrence of rockburst in practical projects are far more

complex and involve various evaluation indicators. Fur-

thermore, there is also a coupling effect between various

evaluation indicators. Therefore, to assess the intensity

level of rockburst more scientifically and accurately, it is

also necessary to improve the selection of evaluation

indicators for the impact factors of rockburst, so as to

continuously optimize the risk assessment indicator system

and the calculation method of weight. In addition, while the

model has been applied and verified in this case, its

applicability to other cases needs to be verified.

5 Conclusions

In this paper, ten main factors affecting rockburst are

selected to develop an evaluation indicator system for

rockburst risk assessment based on the combined weighting

method and catastrophe progression method. Subsequently,

this model is applied to engineering practice. The follow-

ing conclusions can be drawn from this study.

(1) Based on selecting 8 commonly used indicators such

as maximum principal stress, coal seam burial depth,

inclination angle, complexity, thickness, uniaxial

compressive strength, impact energy index, and roof

bending energy index, and considering the minimum

principal stress and coefficient of variation that are

not commonly used but have a large influence on

rockburst, they are collectively used as the main

evaluation indicators for assessing rockburst, making

the evaluation index system more comprehensive.

(2) The combined weighting method of objective

weighting of variation coefficient and subjective

weighting of the analytic hierarchy process is used to

weight each evaluation indicator determine the

relative importance of each indicator at the indicator

layer and criterion layer, which can effectively avoid

the problem of absoluteness and subjectivity in the

process of traditional weight distribution.

(3) By applying the evaluation indicator data of 10

mines to the rockburst risk assessment model based

on the combined weighting catastrophe progression

method and comparing it with the risk assessment

results from the unimproved catastrophe progression

method, the accuracy of the risk assessment is

improved by 42.85%. Therefore, it can be concluded

that the risk assessment model established in this

paper is both accurate and reliable.

(4) According to the comparative analysis between the

model risk assessment results and the original

indicators, it is concluded that the intensity level of

coal mine rockburst can be reduced by decreasing the

uniaxial compressive strength of the coal seam. This

finding confirms the research results of other scholars

and verifies the accuracy of the model once again.
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