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Abstract
Drought is a complex combination of natural, physical, and social phenomena. Prolonged drought can result in significant

socioeconomic damage. Because the impact of drought varies according to the regional ability to cope with drought, it is

necessary to assess the risk of drought by considering regional impact and response capacity. This study aims to improve

the conventional drought risk (CDR) assessment method, which typically combines drought hazard and drought vulner-

ability. We proposed a modified drought risk (MDR) assessment that couples the regional response capacity with the local

water supply system, in addition to drought hazard and vulnerability. The application results for South Korea indicated that

the MDR coupled with regional response capacity (MDR-RC) was high in the central and northeastern regions, whereas the

CDR was high in the southwest regions. A comparison of the regions characterized by high MDR-RC and those that

experienced actual drought events and took measures in response indicated that MDR-RC will be useful in drought

planning and risk-based decision-making.
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1 Introduction

Drought is generally defined as a recurring phenomenon

caused by a long-term lack of precipitation, leading to

water shortages (Zhao et al. 2020). Because droughts

progress gradually over extended periods, they can affect

ecosystems, agriculture, human society, and economies.

Drought is typically classified as meteorological, agricul-

tural, hydrological, or socioeconomic. However, each type

of drought occurs in a particular sequence or in combina-

tion. Drought is influenced by a range of climate-related

factors, including rainfall, evapotranspiration, and tem-

perature, as well as human-induced changes in hydrologi-

cal processes and physical environments (Van Loon et al.

2016; Frischen et al. 2020). In addition, because the

impacts of drought are often complex, indirect, and invis-

ible, identifying the causes and effects of drought can entail

significant efforts.

In general, risk is described as the possibility of adverse

consequences or expected losses resulting from interactions

between hazards and vulnerable conditions (Wilhite 2000).

Being defined as the potential losses from a particular

hazard imposed by a drought event (Brooks et al. 2005;

Cardona et al. 2012), drought risk is quantified by the

product of the probability of drought occurrence and the

negative consequences from the drought. Drought risk is

often driven by and comes from interactions among a

variety of context- and impact-specific factors, including

environmental, social, economic, cultural, physical, and/or

governance-related aspects (Birkmann et al. 2013).

Drought risk consists of hazard (i.e., the probability of

drought occurrence), vulnerability (i.e., the sensitivity of

regional system affected by drought), and response

capacity (i.e., the ability to cope with drought). Because

drought risk varies greatly depending on the combination

of these factors, a drought risk assessment is essential to
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understand and reduce the negative impacts of a drought

(Hagenlocher et al. 2019).

Studies of drought risk have been conducted around the

world, and the basic framework for assessing drought risk

is relatively well developed. Nasrollahi et al. (2018)

attempted to identify the spatial and temporal patterns of

drought hazard and risk in Semnan province, Iran, using a

conceptual framework that combines hazard and vulnera-

bility. Yu et al. (2021) employed principal component

analysis (PCA) to aggregate a drought vulnerability index

(DVI) using multiple socio-economic indicators, per-

formed copula-based drought frequency analysis to calcu-

late a drought hazard index (DHI), and multiplied the DVI

by the DHI to produce a drought risk index (DRI). These

drought risks are typically assessed by combining only

drought hazard and vulnerability, as it is difficult to

incorporate drought response capacity into a drought risk

framework (Dabanli 2018; Nasrollahi et al. 2018; Buurman

et al. 2020; Zhao et al. 2020; Yu et al. 2021).

Drought is closely related to the availability of water

resources and has a significant impact on the water supply

in a region. If a drought continues, damages that people can

feel directly such as restrictions on drinking water, agri-

cultural and industrial water, and hydroelectric power

generation. However, drought damage may differ across a

region depending on the ability to supply water. It is

therefore necessary to determine the water supply capacity

when assessing drought risk through the drought response

capacity of the region.

Studies conducted in Korea have demonstrated that

drought risk analysis without considering the water supply

system can yield different results from the actual damage

(Kim et al. 2015; Yu et al. 2021). This is because many

regions in Korea rely on regional and municipal systems

for their water supply. Drought-affected regions where

people suffer from water shortages are directly related to

water supply. In this study, we assessed the drought risk in

two ways: by considering drought hazard and vulnerability,

i.e., the conventional drought risk (CDR), and by modify-

ing CDR coupled with the response capacity (MDR-RC).

The latter presents the potential impact associated with

water supply and demand that results from drought in a

region. An assessment of the MDR-RC must therefore

consider the regional water supply system.

Most studies related to water supply systems evaluate

only the water supply capacity, which has not been linked

to the drought risk framework. For example, Nam et al.

(2015) applied an assessment model of irrigation vulnera-

bility to predict the impacts of agricultural water demand

and supply on reservoir operations. The model evaluated

the performance of water supplies in agricultural reservoirs

in governing local water management decisions. Murga-

troyd et al. (2022) developed a coupled simulation model

combining climate simulations, hydrological models, and

water resource systems at a national scale. To explore the

effectiveness of strategic water supplies, they demonstrated

how extreme meteorological droughts propagated into

hydrological droughts and water shortages. Choi et al.

(2022) developed a framework for calculating the available

days of water supply from upstream intakes using a soil

and water assessment tool. However, an evaluation of

water supply capacity that is not linked to a drought risk

framework will not accurately represent the drought risk

because it does not account for the actual regional drought

occurrence and water resources conditions. Thus, it is

necessary to assess drought hazard, vulnerability, and

response capacity together for a comprehensive drought

risk assessment.

Although not directly connected to water supply,

drought vulnerability assessment is important as drought

vulnerability indicates the negative impact of drought on

the socioeconomic sectors of region. Drought vulnerability

assessment is also useful in planning policy measures to

reduce drought damage (Rajsekhar et al. 2015). In addition,

droughts with higher socioeconomic vulnerability are

expected to cause more losses (Mishra and Singh 2010).

As a vulnerability assessment integrates various

socioeconomic factors, it focuses on how to weigh the

factors. Equal weights are widely used to exclude the

subjective elements of surveys. However, they cannot

incorporate the contribution of each indicator to a vulner-

ability index. Recently, various statistical methods have

been used to secure the objectivity of factor weights and

include the contribution of indicators to the vulnerability.

Yu et al. (2021) used principal component analysis (PCA)

to aggregate a drought vulnerability index (DVI) using

multiple socioeconomic indicators and copula-based

drought frequency analysis to calculate a drought hazard

index (DHI) that considers the occurrence probability of

meteorological drought. Zhou et al. (2022) applied an

entropy fuzzy pattern recognition model to quantitatively

evaluate regional agricultural drought vulnerability and

deal effectively with the fuzziness and randomness

between evaluation samples and evaluation grades. Kim

et al. (2021) evaluated the performance of PCA, a Gaussian

mixture model (GMM), and the equal-weighting method to

objectively determine the weights of drought vulnerability

factors.

To summarize, most previous research efforts separated

drought risk assessment from water supply capacity

assessment. Drought response capacity is a key factor in

mitigating drought risk, but often focuses on finances,

governance, and policy, rather than hydrological capacity.

Water supply capacity is rarely included in drought risk

assessments. Considering people feel drought impacts

when water supply fails, CDR does not appropriately
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reflect the drought impact or damage in the region, as well

as the response capacity to drought.

It is increasingly understood that drought risk assess-

ment should be tailored to the needs of specific users so

that management plans can be developed to reduce impacts

(Vogt et al. 2018). In this study, we evaluate MDR-RC by

synthesizing drought risk, vulnerability, and drought

response capacity considering local water supply systems.

This can quantify drought damage, impact, and risk in the

region. MDR-RC is the risk that people actually feel

beyond the combining of drought hazard and vulnerability

for the CDR. It integrates drought hazard due to water

supply failures, drought vulnerability, and the capacity to

respond to water supply failures. The final purpose of this

study is to assess regional drought risks based on the MDR-

RC and compare the performance with the CDR.

2 Study area and data collection

South Korea covers 100,210 km2 of Northeast Asia

(33–38 �N and 126–131 �E; Fig. 1) and has a population of
51.47 million people. The average annual precipitation is

1270 mm and the average annual temperature is 13.2 �C.
The climate of South Korea is strongly influenced by the

Asian monsoon, with an average annual temperature of

13.2 �C. As two-thirds of the annual rainfall is concen-

trated in summer, from late June to early September, severe

droughts are likely to occur in the rest of the year (i.e., from

autumn to the next spring) (Yoo et al. 2015). During the

past 30 years, South Korea suffered from severe droughts

at least once every 5–8 years, and moderate droughts have

happened annually in regional and national scales since

1990 (Bae et al. 2018). For this reason, the necessity for

drought risk assessment is increasing. This study assessed

the regional drought risk of 160 administrative districts in

South Korea, as shown in the right panel of Fig. 1.

To assess drought risk, we selected indicators appro-

priate for the purposes of the study and the concepts of

drought hazard, vulnerability, response capacity, and risk.

Terms related to drought risk assessment were defined

based on various references and the universally quoted

Intergovernmental Panel on Climate Change (IPCC 2014).

After reviewing previous studies and considering the ease

of data collection, we selected non-redundant evaluation

indicators. For the CDR, drought hazard is a meteorolog-

ical aspect of drought occurrence probability, and drought

vulnerability is a socioeconomic aspect of the regional

systems that are negatively associated with drought. Daily

precipitation data from 1973 to 2019 provided by the Korea

Meteorological Administration were used to assess the

drought hazard. The drought vulnerability indicators

selected for the study were population, area, farm

population, agricultural land area, area of industrial com-

plexes, amount of domestic water usage, amount of agri-

cultural water usage, amount of industrial water usage,

daily water supply per capita, and water supply ratio. For

the MDR-RC, drought hazard is the probability of the

occurrence of a water supply failure, drought vulnerability

is the socioeconomic sensitivity for the regional system to

adversely affect or receive during the drought, and drought

response capacity is the regional water supply capacity that

can mitigate the impact of drought. Accordingly, drought

hazard was assessed based on discharge data for calculat-

ing the water deficiency. Unlike drought vulnerability of

CDR, drought vulnerability assessment indicators were

selected to provide a detailed understanding of vulnera-

bility, excluding water usage. The selected indicators

included population, farm population, recipients of basic

living, solitary senior citizens, total area of the district,

agricultural area, area of industrial complex, ratio of water

leakage, daily water supply per capita, and water supply

ratio. For the response capacity, dams, reservoirs,

groundwater, and water intake related to water supply and

demand were used (Table 1).

Considering the temporal range, period, and update

interval of the data, the temporal resolution of the evalu-

ation indicators was set on an annual basis from 2001 to

2019. The spatial range of data was set for 160 adminis-

trative districts. These indicators were collected from water

supply statistics, National Statistical Office and Water

Resources Management Information System.

3 Methodology

3.1 Drought hazard index

Drought hazard, the probability of the occurrence of

drought, is commonly quantified using a drought index.

Among various drought indices used for drought moni-

toring and risk assessments in South Korea (Kim et al.

2014, 2020; Azam et al. 2018; Yu et al. 2021), we chose

the standardized precipitation index (SPI-6) for CDR and

the joint management drought index (JMDI) for MDR-RC.

The SPI is widely used to determine the drought hazard

by fitting and transforming long-term precipitation series

into a normal distribution. The SPI can be computed at

different time scales. Short-term (e.g., 1 month, 3 months)

accumulation periods are generally used for identifying

meteorological droughts and whereas long-term (more than

3 months) accumulation periods are considered to identify

agricultural and hydrological droughts. In this study, the

six-month SPI(SPI-6) was used for CDR, because it fits

well with the dry and wet conditions in South Korea and

has been successfully applied to drought monitoring (Kim
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et al. 2014; Azam et al. 2018), and represents different

attributes of droughts in terms of duration, magnitude,

intensity, and consequently manifest the hazard (Yu et al.

2021). A drought event is identified by the SPI consecu-

tively lower than –1.0. After calculating the drought

duration and magnitude for individual events, the optimal

marginal distributions of duration and magnitude were

determined based on a Kolmogorov–Smirnov test. Using

Archimedean copula functions such as Clayton, Frank, and

Gumbel, as given in Eq. (1), the joint probability distri-

bution was estimated. A drought hazard index of CDR

(DHICDR) was determined by applying the ranking method

and considering the drought frequency and severity

developed by Yu et al. (2021). The nine classes of drought

severity were ranked, and their weights were determined by

rank, which ranged from zero to unity, as described in

Fig. 1 Map of the study area

Table 1 Indicators for drought

response capacity
Id Indicator Id Indicator

I1 Water resources retention Dam I13 Amount of agricultural water usage

I2 River I14 Amount of groundwater usage

I3 Reservoir I15 Potential groundwater development

I4 Groundwater I16 Ratio of sewage reuse

I5 Water intake Regional dam I17 Amount of sewage treatment

I6 Local dam I18 Amount of rainwater reuse

I7 Surface water I19 Effluents of sewage treatment

I8 Subsurface water I20 Amount of sewage inflow

I9 Reservoir I21 Area

I10 Groundwater I22 Annual precipitation

I11 Amount of domestic water usage I23 Population

I12 Amount of industrial water usage I24 Water supply ratio

966 Stochastic Environmental Research and Risk Assessment (2024) 38:963–980
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Table 2 (Yu et al. 2021). The DHICDR was calculated by

weighting the probability of occurrence of each drought

class as expressed in Eq. (2).

F x; yð Þ ¼ CðFX xð Þ;FYðyÞÞ ð1Þ

DHICDR ¼
Xrank

k¼1
rkf dk;mkð Þ ð2Þ

where FX xð Þ and FY yð Þ are the marginal distributions of

duration and magnitude, respectively, rk is the weight of

the k th drought stage, and f dk;mkð Þ is the occurrence

probability of drought with duration (dk) and intensity (mk).

The drought hazard of MDR-RC indicates the possibil-

ity of water supply failure, and can be quantified by the

JDMI, which was developed by Yu et al. (2019) to quantify

the potential occurrence of water supply failure. If the

drought hazard of MDR-RC is assessed with streamflow

data, the results can be distorted by regional differences in

the presence or absence of observed streamflow, i.e., the

probability of drought occurrence can be overestimated in

regions that have low average streamflow, short-period

data, or no observation points. The JDMI can overcome

these limitations and calculate the probabilistic possibility

of water supply failure. The JDMI combined the proba-

bility that the water system can normally supply water

during a specific planned period (i.e., reliability) and the

quantitative risk of water shortage (i.e., volumetric failure).

The water supply safety indicators were calculated for a

certain operation period of the water supply facility. In this

study, the data period (2001–2019) was divided to deter-

mine the water supply safety of the water system over time

using a five-year moving window (MV), i.e., MV1(2001–

2005), MV2(2002–2006), and so on. The joint cumulative

distribution function (JCDF) is expressed using the copula

of two random variables (i.e., the reliability of water supply

and the risk of water shortage), and the JDMI can produce

an estimate by reducing the information of the multi-di-

mensional JCDF into one-dimension using a Kendall dis-

tribution function. The drought hazard index of MDR-RC

(DHIMDR-RC) was calculated using the JDMI by applying

the grading method, which takes into account both the

magnitude of drought severity and the frequency of

occurrence because it is a function that combines the

weight of severity and the rating of the associated fre-

quency of drought occurrence. Weight scores were deter-

mined by considering SPI intervals, such that 1 for normal

drought, 2 for moderate drought, 3 for severe drought, 4 for

extreme drought, and 0 for wet conditions. Similarly, rating

scores were assigned from 1 to 4 in increasing order,

dividing the interval of cumulative probabilities in each

drought range (Dabanli 2018). This was done using Jenks

natural break optimization, which divided the actual

occurrence probabilities calculated for all the grids that lie

within the same planning region identified by Rajsekhar

et al. (2012) into four ratings (Rajsekhar et al. 2015). The

DHIMDR-RC was calculated as Eq. (3) and rescaled to the 0–

1 range.

DHIMDR�RC ¼ NDr � NDwð Þ þ MDr �MDwð Þ
þ SD� SDwð Þ þ EDr � EDwð Þ ð3Þ

where, NDr, MDr, SDr, and EDr (NDw, MDw, SDw, and

EDw) refer to the rating (weight) corresponding to normal

(- 1.0\ SPI\ 0), moderate (- 1.5\ SPI B 1.0), severe

(- 2.0\ SPI B 1.5), and extreme (SPI B 2.0) drought,

respectively.

3.2 Drought vulnerability index

Drought vulnerability is quantified based on regional

socioeconomic data and involves a weighting allocation

that integrates various indicators. In this study, the weights

of drought vulnerability assessment indicators were cal-

culated by applying entropy, PCA, and GMM methods.

Because each method reflects specific information in

weighting, it is more appropriate to consider all methods

than to adopt one. For the drought vulnerability for CDR

and MDR-RC, the integrated weight was calculated by

arithmetically averaging the weights of three methods.

Entropy weighting is a method of finding a signal with

high cohesion based on the information of a signal and

assigning the high weights. The entropy method evaluates

Table 2 Description of drought

weights corresponding to

ranking

Ranking Intensity (mk) Duration (dk) (Days) Weight (rk)

1 –1.0 (moderate drought) 30 0.1

2 90 0.2

3 120 0.3

4 –1.5 (severe drought) 30 0.4

5 90 0.6

6 120 0.7

7 –2.0 (extreme drought) 30 0.8

8 90 0.9

9 120 1.0
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value by measuring the degree of differentiation. The

greater the degree of dispersion of the measured value, the

greater the degree of differentiation of the index, and more

information can be derived (Zhu et al. 2020). The entropy

weight for DVI (wj,entropy) can be obtained by using the

information entropy, as given in Eq. (4).

wj;entropy ¼
1� EjPn

j¼1ð1� EjÞ
ð4Þ

Ej ¼ �k
Xm

i¼1
PijlnPij; k ¼

1

ln mð Þ forj ¼ 1; 2; � � � ; n: ð5Þ

Pij ¼

x11 � � � x1j � � � x1n

..

.

xi1
..
.

xm1

. .
. ..

.
. .
. ..

.

� � � xij � � � xin

. .
. ..

.
. .
. ..

.

� � � xmj � � � xmn

2
66666664

3
77777775

ð6Þ

where, Ej is the information entropy, Pij is the decision(-

correlation) matrix, xij is the jth indicator of ith region, m is

the number of regions, n is the number of regions indica-

tors, respectively.

The DVIentropy is calculated as the weights multiplied by

normalized indicators, as described in Eq. (7).

DVIentropy ¼
Xn

j¼1

wj;entropy � Pij ð7Þ

PCA combines various correlated indicators to include

as much information as possible and assigns a high weight

to indicators with significant information. Each of the

correlated indicators (e.g., population, area, and water

supply ratio, etc.) that consist of one factor (drought vul-

nerability) has a different contribution. PCA efficiently

recognizes data patterns and minimizes information loss

while reducing the high dimensionality of the dataset (Liu

and Schisterman 2004). The PCA weight (wj,PCA) is

determined by combining principal component loadings

and variance explanation, as described in Eq. (8).

wj;PCA ¼ cjvkPn
j¼1 cjvk

ð8Þ

where cj denotes the principal component loadings of the

jth indicator, and vk is the variance explanation of the kth

principal component including the jth indicator.

After creating correlation matrices of the indicators, the

principal component loadings and the variance explanation

can be calculated by estimating the eigenvalues and

eigenvectors (Kim et al. 2021). Principal component scores

(weights) of the indicators are determined by combining

the loadings and variance explanation, as described in

Eq. (8).

The DVIPCA is the sum of the weights multiplied by

normalized indicators, as given in Eq. (9).

DVIPCA ¼
Xn

j¼1

wj;PCA � Pij ð9Þ

The GMM method estimates the model parameter using

an expectation–maximization (EM) algorithm, in which

each indicator has a Gaussian distribution. Because the

GMM method is a parametric statistical model that

assumes the data originate from a weighted sum of several

Gaussian sources, it assigns the weight by estimating the

model parameters (Kim et al. 2021). The weights of the

GMM (wj,GMM) are determined by estimating the model

parameter to satisfy Eq. (10):

p hjxð Þ ¼
Xn

j¼1

wj;GMMp xjhj
� �

ð10Þ

where p xjhj
� �

is the probability density function of the

component of a mixed model, hj is its respective parameter,

and n is the number of Gaussian sources in the GMM equal

to the number of indicators (Shental et al. 2004).

In a GMM, it is important to estimate model parameters

such as the weight wj of the jth element to distinguish the

categories to which the data belong (Moraru et al. 2019).

To estimate the parameters, an EM algorithm alternately

applies an expectation step (E-step) of calculating the

expectation of the log-likelihood and a maximization step

(M-step) of obtaining the variable value that maximizes

this expectation. It is possible to draw confidence ellipsoids

for multivariate models and compute the Bayesian infor-

mation criterion (BIC) to evaluate the characteristics of

GMM in the indicators (Kim et al. 2021). After deter-

mining the weights from the EM algorithm and the BIC,

DVIGMM can be calculated as the sum of the weights

multiplied by normalized indicators, as described in

Eq. (11).

DVIGMM ¼
Xn

j¼1

wj;GMM � Pij ð11Þ

3.3 Drought response capacity index

Because drought response capacity is related to water

resources and water supply capabilities of regional sys-

tems, it can be quantified using information on regional

water resource. However, there is a limit to basing the

value of a regional water supply capacity on raw data of the

water resource information. Qin and Zhang (2018) estab-

lished a formula for a supply matching index to measure a

regions’ ability to provide water resources using water

supply, water demand, water utilization rate, and
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groundwater. Referring to Qin and Zhang (2018), we

introduced the formulas to calculate the drought response

capacity based on the water supply capacity in considera-

tion of the regional water supply system and integrated the

water supply capacity and various water resources infor-

mation employing the Bayesian network. Indicators of the

drought response capacity are composed largely of water

supply capacity, the amount of availability water resources,

and ratio of reuse. The amount of available water resources

is a measure of regional water resource conditions, which

can be calculated using precipitation per capita (i.e., annual

precipitation(I22)/population(I23)) and potential ground-

water development per capita (i.e., potential groundwater

development(I15)/population(I23)). The ratio of reuse can

be calculated by considering the ratio of effluents of sew-

age treatment (effluents of sewage treatment(I19)/amount

of sewage inflow(I20)), sewage reuse (I16), and rainwater

reuse (amount of rainwater reuse(I18)/(area(I21)� annual

precipitation(I22))).

Water supply capacity (WSC) is based on the amount of

water supply and the amount of water usage in the region

(Qin and Zhang 2018), as given in Eqs. (12)–(16).

WSC ¼ ðWSdam þWSriver þWSreservoirÞ �WSRþWSground
� �

�
R
districtWIR
regionWI

ð12Þ

WSdam ¼ WRdam

WUdomestic þWUindustrial
� WIdamR

districtWI
ð13Þ

WSriver ¼
WRriver

WUdomestic þWUindustrial
� WIriverR

districtWI
ð14Þ

WSreservoir ¼
WRreservoir

WUagricultural
�WIreservoirR

districtWI
ð15Þ

WSground ¼
GW

WUground
� WIdamR

districtWI
ð16Þ

where WS dam, WSriver, WSreservoir, and WSground are the

water stress that represents the ratio of retention to water

usage corresponding to dam, river, reservoir, and ground,

respectively. WRdam, WRriver, and WRreservoir are the water

retention of dam, river, and reservoir, and WUdomestic,

WUindustrial, WUagricultural, and WUground are the amounts of

usage of domestic water, industrial water, agricultural

water, and groundwater, respectively. GW is the amount of

groundwater. WI represents the amount of water intake by

each type of water retention,
R
districtWI is the total amount

of water intake of the district and
R
regionWI is the total

amount of water intake of the region. WSC is the water

supply capacity and WSR is the water supply ratio.

Applying the water intake ratio and the water supply rate

allowed us to consider the dependence of the region on the

source of water intake or water supply.

The indicators were integrated into drought response

capacity index (DRCI) using a Bayesian network (Fig. 2).

The Bayesian network consisted of nodes representing

various variables and arcs representing dependencies

between variables. the causal relationships between nodes

were represented by probability information, as given in

Eq. (17).

P ZjYð Þ ¼ PðZÞP YjZð Þ
PðYÞ ¼ PðZ ¼ z; Y ¼ yÞ

PðY ¼ yÞ ð17Þ

where PðZÞ is the prior probability, P ZjYð Þ is the posterior
probability, and PðYÞ is the marginal distribution.

Among inference algorithms such as likelihood

weighting, rejection sampling, and Gibbs sampling, like-

lihood weighting is often applied because it is simple to use

and can estimate the posterior probability even in a con-

tinuous probability distribution. Assuming that the con-

verging network consists of Y and Z, the likelihood-

weighting method only samples the non-evidence variables

while fixing the values of the evidence variables (Russell

and Norvig 2009). In general, the prior probability is

estimated using empirical values or observations.

3.4 Drought risk assessment

In this study, the drought risk is defined as the potential

damage linked with the water supply and demand that may

be occurred by drought in a specific region. It generally

quantifies the impact of meteorological drought. However,

MDR-RC refers to the impact of the failure of water sup-

ply. CDR can be characterized by combining drought

hazard and vulnerability, and MDR-RC includes the

response capacity to hazard and vulnerability. In practice, it

is appropriate that the components of risk are geometrically

averaged because they have multiplicative effects on the

drought risk. In this study, the drought risk index for CDR

(DRICDR) was calculated by multiplying a root of DHICDR
and DVICDR as given in Eq. (18). In addition, DRIMDR-RC

was calculated by multiplying a cubic root of DHIMDR-RC,

DVIMDR-RC, and DRCIMDR-RC, where DRCIMDR-RC was

modified as shown in Eq. (19) due to the opposite nature of

risk, unlike hazard and vulnerability.

DRICDR ¼ DHI
1=2
CDR � DVI

1=2
CDR ð18Þ

DRIMDR�RC ¼ DHI
1=3
MDR�RC � DVI

1=3
MDR�RC

� ð1� DRCIÞ1=3 ð19Þ

As the drought risk can be affected by two or three

factors, it was assessed by multiplying all the factors.

Drought hazard, vulnerability, response capacity, and risk

all have values ranging from 0.00 to 1.00. In addition,
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drought hazard, vulnerability, and risk, except for response

capacity, mean that the closer to 1.00, the more dangerous

the situation is, and the closer to 0.00, the less dangerous.

4 Results and discussion

4.1 Drought hazard assessment

For the drought hazard of CDR, the SPI-6 was adopted to

determine the occurrence probability of meteorological

drought. Drought duration and magnitude were calculated

based on the SPI-6, and the optimum marginal distributions

of duration and magnitude were fitted based on the K-S test

for nine probability distributions (exponential, normal,

gamma, lognormal, Poison, Weibull, generalized extreme

value, generalized Pareto, and Gumbel distributions). The

probability of drought occurrence was quantified using a

copula function that combines the marginal distribution

functions. The DHICDR based on the ranking method was

calculated by applying the joint probability to Eq. (2).

Table 3 provides the drought characteristics and Fig. 3a

shows the drought hazard maps of drought hazard of CDR.

A gamma distribution was selected as the optimal marginal

probability distribution of duration and magnitude, and a

Clayton distribution was selected as the optimal joint

probability distribution. On average, 35 meteorological

droughts occurred in Korea, with an average duration of

2.63 months and an average magnitude of 3.96 months. In

particular, there were many droughts with a long average

duration and severe magnitude in the southern coastal

regions. The DHI was higher than 0.7 in the southern

coastal regions, and the highest region was H1 district with

0.79, as shown in Fig. 3a.

For the drought hazard of MDR-RC, the JDMI was used

to determine the possibility of water supply failure. Excess

water deficiency was calculated by taking the standard of

low flow from the daily discharge in the region. When a

drought event was identified, the duration and water

shortage were calculated as the water supply safety. The

JDMI was estimated by employing the water supply safety

indicators to the copula and Kendall distribution functions.

The DHIMDR-RC was calculated using the grading method

as in Eq. (3). Table 4 provides the drought characteristics

Fig. 2 Bayesian network model

for drought response capacity

index
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and water supply factors for DHIMDR-RC and Fig. 3b shows

the maps of DHIMDR-RC. For the optimal marginal proba-

bility distribution of duration and water shortage, lognor-

mal was mostly adopted. For the joint probability

distribution, the Clayton distribution was adopted. On

average, 67 hydrological droughts occurred in Korea, with

an average duration of 31.89 days and an average water

shortage of 2,085.21 cms-day. Most of the water shortages

were in central and southwest Korea. Regarding the water

supply failure, the average probability of a normal water

supply in Korea during the data period was 0.64, and the

average resiliency from a water supply failure was 0.04. In

this study, the average volumetric failure was 0.32. Similar

to the drought characteristics, the DHI was high in the

western coastal region, especially highest at 1.00 in H2,

H3, H4, H5, H6, and H7 districts. These areas are expected

to have a very high risk of water supply failure.

The DHICDR and DHIMDR-RC results were markedly

different because only meteorological drought was differ-

ent from the drought or hazard of actual water shortage.

Because DHICDR was computed with the precipitation-

based SPI, it resembles the spatial distribution of meteo-

rological drought. DHIMDR-RC, by comparison, was calcu-

lated from the discharge-based JDMI, which is similar to

the spatial distribution of hydrological drought. Kim et al.

(2015) assessed the drought hazard using the effective

drought index as the hydrological drought index. The

results were similar to what DHIMDR-RC, the hydrological

drought index of this study, found. Water in Korea is pri-

marily taken from rivers and dams. The JDMI is useful for

catching water supply failure events where the streamflow

is below the streamflow requirement. It can be compared to

the number of drought forecasts and warnings of actual

water supply problems. The issued number of drought

forecasts and warnings is shown in Fig. 4. The DHIMDR-RC

captured the regions where the drought damage occurred.

Many of the forecasts and warnings were issued in the west

and southeast coastal areas, where DHIMDR-RC was high. In

conclusion, it is difficult to identify regions where water

supply failures occur based on precipitation alone. Pre-

cipitation cannot be controlled by humans except by

monitoring. Flow-based water supply can be controlled by

national policies and plans. DHIMDR-RC can help identify

and mitigate drought events related to regional water

supply.

4.2 Drought vulnerability assessment

Both drought vulnerabilities of CDR and MDR-RC are

associated with regional socioeconomic systems, regard-

less of drought type. However, the list of indicators will

vary according to the research purpose. The objective

weighting methods of entropy, PCA, and GMM were

employed for the drought vulnerability indicators presented

in Sect. 2. Before applying the weighting methods, the

standardization was necessary to combine the various

socioeconomic indicators with different properties and

units into a single index. We used the re-scaling method,

which is most suitable when the bounds of the index are

known and has the advantage that there are no negative

values.

In this study, the weight used for drought vulnerability

was obtained by averaging the three weights of entropy,

PCA, and GMM. The final weights of the drought vul-

nerabilities of CDR and MDR-RC are described in

Tables 5 and 6. The underlined values in Tables 5 and 6

indicate the highest values in each weight method. The

entropy method, considering the degree of diversity for

each attribute, produced high estimates in GV2 and WV2

for the drought vulnerabilities of CDR and MDR-RC,

respectively. PCA based on the information of indicators

produced results that were high in GV7 and WV2 for the

drought vulnerabilities of CDR and MDR-RC, respec-

tively. The GMM method, based on the contribution of the

distribution of indicators, was high in GV4 and WV8 for

the drought vulnerabilities of CDR and MDR-RC, respec-

tively. Because each weighting method has a distinct way

of assigning importance, the weights were slightly differ-

ent. The final weights of averaging integrated each weight

were calculated to comprehensively consider these con-

tents, and the results of the drought vulnerabilities of CDR

and MDR-RC were calculated to be high at GV7 and WV9,

respectively. In the DVICDR, the weights of agricultural

factors were high, whereas, in the DVIMDR-RC, the weights

Table 3 Summary of Drought characteristics for DHICDR

Number of drought event Average of drought duration Average of drought severity

Maximum 45 3.56 5.64

Minimum 24 2.03 3.03

Mean 34.56 2.63 3.96

Standard deviation 4.01 0.29 0.52
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Fig. 3 Drought hazard map.

a DHICDR, b DHIMDR-RC
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of water supply factors were high. The results of applying

the final weights to each indicator are shown in Fig. 5. The

DVICDR was high in the V1 district, an agricultural area,

and the DVIMDR-RC was high in the V2 district, where the

unit water supply was low. However, the overall results of

both drought vulnerabilities were generally high in the

central regions. Although the drought vulnerabilities

assessed by the DVIMDR-RC and Kim et al. (2015) differed

in detail, they were apparently vulnerable in the mid-west

regions. As the vulnerability characteristics of the region

were similar, the results of two vulnerabilities resembled

each other. However, unlike the DVICDR, vulnerable

information on water usage was not dealt with in the

DVIMDR-RC, so slightly different results were confirmed

depending on indicators. The results were similar because

more urbanized areas had larger agricultural and industrial

populations, which reduced the role of weights. To

decrease this effect in the future, we plan to analyze the

results using a ratio of the indicators, which will give a

distinct spatial distribution. Drought vulnerability

Table 4 Drought characteristics and water supply safety factors for DHIMDR-RC

Number of drought

event

Average of drought

duration

Average of water

deficiency

Reliability Resilience Volumetric

failure

Maximum 157 176.71 226,745.57 0.98 0.12 1.19

Minimum 12 8.29 0.05 0.03 0.01 0.04

Mean 66.76 31.89 2,085.21 0.64 0.04 0.32

Standard

deviation

30.04 21.65 15,805.75 0.19 0.02 0.21

Fig. 4 Drought forecasts and

warnings
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determines the magnitude of damage in the event of a

drought. It is difficult to validate with current damage and

impact information of drought. The results were signifi-

cant in prioritizing high-vulnerable areas and identifying

indicators that are more likely to be affected.

4.3 Drought response capacity assessment

In assessing the drought risk of MDR-RC, it is important to

identify the regional water supply system and determine

the drought response capacity. In this study, the regional

water supply networks were identified, and the corre-

sponding indicators were recalculated to estimate the

DRCI, which implied the region’s water supply capacity to

mitigate the effects of drought. The regional water supply

system can be displayed in a diagram, as shown in Fig. 6,

considering water sources such as rivers, dams, and

reservoirs and the water supply network. The water supply

capacity was calculated by applying the intake source,

intake ratio, and water supply ratio to Eqs. (12)–(16)

through the regional water supply system. As shown in

Fig. 2, the DRCI was determined by consolidating the

water supply capacity, the amount of availability water

resources, and the ratio of reuse with the Bayesian network.

Assuming a normal distribution, the prior probability

distribution reflected the latest information for the region.

The posterior probability distribution was inferred by

combining the latest information with other years and will

be updated as more information is added.

Standardization is necessary for combining the indica-

tors within the Bayesian network. Because the Bayesian

network was based on a normal distribution, a standard

normalization was applied to unify the range of the indi-

cators with different units by excluding outliers with 95%

confidence intervals. The estimated probability distribution

was applied to the Bayesian network model to determine

the DRCI, and it was standardized to indicate that values

closer to 0.00, unlike the DHI and DVI, are the worst.

As shown in Fig. 7, the response capacity was low in the

southeast regions, meaning that it would be difficult to

recover from a drought. In particular, RC1, RC2, and RC3

districts had the lowest response capacity, and these

regions had low water supply capacities. The central region

was irrigated by dams, but there was always a shortage of

storage of dams, and drought damage was frequent. The

southeastern region took most of its water from rivers, but

its capacity was low due to the lack of abundant river flow.

Based on the comparison, it can be confirmed that RC4,

RC5, and RC6 districts had the best response capacity, and

the water supply and the ratio of reuse were acceptable.

Table 5 Weights of indicators

for CDR
Indicators Entropy PCA GMM Final weights

GV1 Population 0.08 0.03 0.14 0.08

GV2 Area 0.14 0.14 0.08 0.12

GV3 Farm population 0.14 0.16 0.12 0.14

GV4 Agricultural land area 0.13 0.18 0.15 0.15

GV5 Area of industrial complex 0.06 0.04 0.03 0.05

GV6 Amount of domestic water usage 0.11 0.01 0.04 0.05

GV7 Amount of agricultural water usage 0.12 0.21 0.12 0.16

GV8 Amount of industrial water usage 0.04 0.02 0.14 0.06

GV9 Daily water supply per capita 0.07 0.06 0.07 0.06

GV10 Water supply ratio 0.10 0.14 0.11 0.12

Table 6 Weights of indicators

for MDR-RC
Indicators Entropy PCA GMM Final weights

WV1 Population 0.08 0.04 0.15 0.09

WV2 Farm population 0.14 0.14 0.10 0.13

WV3 Recipients of basic living 0.08 0.01 0.14 0.07

WV4 Solitary senior citizen 0.10 0.05 0.11 0.09

WV5 Total area of district 0.14 0.14 0.04 0.11

WV6 Agricultural area 0.13 0.13 0.00 0.09

WV7 Area of industrial complex 0.05 0.03 0.13 0.07

WV8 Ratio of water leakage 0.13 0.16 0.15 0.14

WV9 Daily water supply per capita 0.07 0.24 0.10 0.15

WV10 Water supply ratio 0.09 0.07 0.07 0.07
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Fig. 5 Drought vulnerability

map. a DVICDR, b DVIMDR-RC
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The RC4 and RC5 districts have large populations but are

rarely affected by droughts because of their abundant water

supply. The northeast region, which includes the RC6

district, was generally rich in substitute resources such as

groundwater. As a result, it had better drought response

capacity. The results of this study are highly reflective of

the regional characteristics of water supply and demand.

4.4 Drought risk assessment

In this study, CDR was defined as the potential damage and

MDR-RC was defined as the potential damage linked with

the water supply and demand. As shown in Fig. 8a, the

DRICDR indicated that the R1, R2, and R3 districts were

high, the risk in the southwest regions was generally high,

and the R4, R5, and R6 districts had low risks. In contrast,

the DRIMDR-RC was highest in the R7, R8, and R9 districts,

and generally high in the central and northeast regions, and

the R10, R11, and R12 districts had low risks. There was a

marked contrast between the DRICDR and the DRIMDR-RC;

the DRICDR was estimated only as DHI and DVI, and the

DRI was therefore calculated due to the great influence of

DHI, with a similar DVI for each region. However, the

DRIMDR-RC considered not only the DHI and DVI but also

the DRCI, and the risk was estimated differently due to

different vulnerable factors from region to region.

Comparing the drought risks with that of Kim et al.

(2015), although the drought risk was markedly different

depending on the purpose and indicators. The number of

drought response measures, such as restrictions on water

supply, is shown in Fig. 9 for comparison with areas that

are actually at risk of drought. The data were limited by the

short time-period for which they were collected and not

representative of all drought impacts. However, they can be

used to compare affected and non-affected districts, or to

prioritize among affected districts. Figure 9 demonstrated

that regions in the mid-west and northeast suffered the

most drought damage. This result was similar to MDR-RC

Fig. 6 Diagram of the water

supply system
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and different from CDR, where the southwest was at risk. It

is confirmed that regions where the actual drought damage

was severe are at high risk as MDR-RC reflects the water

supply system. For MDR-RC, the west-central region was

at risk in terms of hazard, vulnerability, and response

capacity, while the northeast region was at high risk of

hazard. Each region has different influencing factors and

requires different drought response measures. MDR-RC

was also valuable for quantifying patterns of drought due to

water supply and demand. In the future, more extensive

and reliable drought damage and impact data will improve

the validity of the results.

5 Conclusion

Drought is intimately linked with communities and can be

felt directly by humans. Calculating the drought risk

without considering the water supply system does not

accurately present actual drought risks. In this study, the

modified drought risk coupled with response capacity

considering the regional water supply system was assessed

and compared with the conventional drought risk.

For drought hazard assessment, the DHICDR was high in

the southern coastal regions, and the DHIMDR-RC was high

in the western coastal regions. In the western coastal

regions, there were more drought forecasts and warnings

than in the southern coastal regions. For drought vulnera-

bility, the main attribute of the DVICDR was agricultural

indicators, while the main attribute of the DVIMDR-RC was

the water supply indicators. However, drought vulnerabil-

ities that were less affected by drought types were similarly

high in inland regions. The drought response capacity was

low in the southwest regions and the capacity to recover

from drought was poor. Finally, for the drought risk

assessment, the DRICDR was high in the southwest, and the

DRIMDR-RC was high in the central and northeast regions.

The actual drought damage can be quantified by drought

articles, drought forecasts, warnings, and restrictions of

water supply, which are closely related to the regional

water supply and demand. Although the regions identified

by the DRICDR and DRIMDR-RC were different, the regions

of actual drought risk (the central and northeast regions)

were identified by the DRIMDR-RC.

We concluded that assessments of drought risk should

consider the regional water supply system to ensure that

local governments can cope with the regional impact of

drought. The DRIMDR-RC provides more detailed and

accurate results in terms of water supply and demand

compared with previous studies. The method used in this

study provides a practical framework for obtaining infor-

mation on drought impacts and risk related to water supply,

which can be used for drought measures, strategies, deci-

sion making. This means that on the drought hazard side,

Fig. 7 Drought response

capacity map
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Fig. 8 Drought risk map.

a DRICDR, b DRIMDR-RC
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water supply failure events can be monitored based on the

discharge. For the perspective of drought vulnerability,

indicators affected by drought can be managed by sug-

gesting policies for indicators with higher weighting. For

the perspective of drought response capacity, it can com-

pare supply adjustments and supplementary water sources

to the ratio water supply against usage. This framework of

regional drought risk assessment coupled with drought

response capacity will help decision-makers plan for

drought risk mitigation and prepare resource allocation

strategies.

Our research has some limitations that can be addressed

in further research. The factors are restricted in this study

because we focused on methodology development and

comparisons with existing methods. Different drought

indices can consider both hydrometeorological droughts as

well as water-related droughts. In the case of vulnerability

and response capacity, additional data from national and

local governments would be useful. In the process of

selecting indicators, the quality of the model can be

improved if objectivity supplied through PCA and

structural equation models. In addition, further research on

drought risk mitigation measures utilizing drought response

capabilities will enhance the applicability of this study.
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