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Abstract
Energy sources are of paramount significance in the contemporary landscape, categorically classified into two main types:

(i) primary sources, encompassing a wide spectrum ranging from nuclear energy to fossil fuels like natural gas and oil; and

(ii) renewable sources, including geothermal, hydropower, solar, and wind energies. Governments have taken proactive

measures since 2010, culminating in the establishment of the Bureau of Energy Efficiency under the Energy Conservation

Act, aimed at curtailing energy consumption across diverse economic sectors. The interconnectedness of energy con-

sumption, environmental ramifications, and economic progress is undeniable. A noteworthy project originating in 2010 is

rooted in the pioneering market-based mechanism known as the perform, achieve, and trade (PAT) framework, which

predominantly targets industrial energy utilization. Given the substantial role of energy costs within the broader spectrum

of total production expenses, it becomes imperative to gauge the profit margin intensity (PMI) within energy-intensive

sectors and industries encompassed by the PAT initiative. This entails an exploration of the influence exerted by these

sectors on PMI. Consequently, the identification of variables influencing industrial profitability with respect to energy

employment becomes pivotal. This article introduces a methodology grounded in panel data analysis, applied to a specific

case study involving Indian energy-intensive corporations. The investigation takes into account the impact of both

the Energy Conservation Act (ECA) and PAT as dichotomous covariates. Notably, the ambit of PAT encompasses the

eight most energy-intensive industries in India, spanning the years 2012 to 2015. India stands among the world’s foremost

energy consumers, with its industrial sector notably emerging as the largest energy consumer in 2015. Evidently, energy

serves as a driving force behind the country’s manufacturing costs. The findings of this study underscore a negative

correlation between energy costs and profitability. While the overall impact of PAT on industry performance appears

limited, the ECA emerges as a potent factor significantly affecting earnings. Moreover, a compelling indirect relationship

between energy costs and profitability is discerned, wherein rising revenues correspondingly lead to amplified energy costs.

Consequently, the implications drawn from our study are intricately linked to the efficacy of energy utilization regulations

within energy-intensive industrial contexts. The statistical analyses integral to this study were diligently carried out using

the R software.

Keywords Energy Conservation Act � Indian energy-intensive industries � Panel data analysis � Primary and renewable

energy sources � Profit intensity � Sustainable development � Trade mechanism

1 Motivations, bibliography, and aims

This section provides the literature, motivations, and

objectives of the study.

1.1 Introduction

The industrial sector stands as the driving force propelling

economic advancement across various domains. The nexus

between energy consumption, environmental impact, and

economic progress is well-documented (Wang et al. 2010).

In numerous nations, the industrial sector commands over

fifty percent of total energy consumption (Mukherjee 2008;

Carmona et al. 2017). A case in point is India, which holds

a prominent position as a primary global energy consumer.
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Within India, specific industries such as cement, chlor-al-

kali, fertilizers, metals, paper, and power plants account for

more than seventy percent of the nation’s industrial energy

consumption.

Energy expenses constitute a significant segment of the

overall production expenditure across diverse global

industries. Studies have underscored a correlation between

diminishing energy intensity and augmenting profitability.

The World Steel Association (www.worldsteel.org) notes

that enhanced energy consumption efficiency directly

translates into reduced production costs, thereby bolstering

competitiveness. Consequently, enterprises and manufac-

turing facilities are encouraged to channel investments into

energy-efficient practices. These strategic practices serve a

dual purpose: curbing energy intensity, thereby elevating

industry profits, and concurrently enhancing both compet-

itiveness and the trajectory towards sustainable develop-

ment (de Andrade Guerra et al. 2021). This purpose is

echoed in the Industrial Development Report 2011

(UNIDO 2012), which accentuates that energy efficiency

emerges as a straightforward yet potent approach to

simultaneously combat climate change, ameliorate air

quality, heighten business competitiveness, and curtail

energy expenditures.

In UNIDO (2012), the pivotal significance of energy

efficiency is put into perspective for its potential to yield

both tangible and intangible advantages. This perspective

aligns with findings from various studies, indicating that

energy efficiency has the potential to amplify firm prof-

itability. The previous assertion is reinforced by insights

from Dutta and Mukherjee (2010), which highlight how

elevated energy expenses and substantial production vol-

umes can serve as barriers to entry, exerting an impact on

the competitive landscape of industries. A pertinent illus-

tration can be observed in the Indian context, particularly

within the aluminum industry. Furthermore, it is worth

noting that energy-related expenditures within these

industries have surged to encompass approximately 40

percent of the manufacturing sector. Consequently, energy

costs stand as a relevant factor significantly shaping

industrial performance and competitiveness.

1.2 State-of-the-art

Accurate quantification of energy consumption holds

immense concern spanning a wide array of industries,

garnering heightened attention from both countries and

corporations alike. This mounting concern is indicative of

the growing emphasis on sustainable energy practices. In

Mukherjee (2008), a comprehensive analysis of energy

efficiency within the manufacturing sector was conducted,

with a specific focus on the Indian context. The analysis

delved into the intricate fabric of interstate disparities in

energy intensity, shedding light on pronounced variations

that manifest across different geographical regions.

Remarkably, the findings unveiled a discernible trend:

industries characterized by elevated energy consumption

exhibited diminished energy efficiency when gauged

against manufacturing output metrics. Furthermore, an

intriguing correlation emerged; regions boasting a highly

skilled workforce were seen to align with superior levels of

energy efficiency. This underscores the interplay between

human capital and energy optimization, implying that a

proficient workforce can contribute positively to achieving

enhanced energy efficiency levels.

In Sahu and Narayanan (2014), the manufacturing per-

formance and consumption of energy were studied, finding

that energy intensity was directly associated with produc-

tivity/manufacturing performance. Other factors that may

affect the energy intensity were studied in Kumar (2003)

and Sahu and Narayanan (2009). To understand the critical

factors affecting the dependent (response) variable related

to energy intensity in industrial firms, multiple regression

models were used in Kumar (2003) and Sahu and Nar-

ayanan (2009) to estimate the coefficients of other critical

independent variables (covariates).

Prowess is an essential database of the Centre for

Monitoring Indian Economy (CMIE), which is available at

prowessiq.cmie.com. We are also using the data from

Prowess for the present study. In the study presented

in Kumar (2003), data of 1342 firms for eight years were

collected from the CMIE-Prowess related to: capital

intensity, firm age, firm size, integration degree, ownership

pattern, profit margin, research and development (R&D)

intensity, repair intensity, and technology import intensity

as covariates. In that study, it was concluded that the firm

size and energy intensity are negatively related, which can

be accelerated to economies of scale. In the same study

(Kumar 2003), it was also identified that energy intensity is

positively related to repair intensity and technology import

intensity, as opposed to what was expected. Furthermore,

also in that study, it was investigated that the ownership

pattern affects the energy intensity. Moreover, foreign and

state ownership is associated with low and high energy

intensity, respectively.

In Sahu and Narayanan (2009), data from 2350 firms in

2008 were extracted from the Prowess database. These data

were analyzed, concluding that energy intensity and firm

size have an inverted U-shaped relationship, whereas

energy intensity is negatively associated with both export

intensity and profit margin. Also, it was investigated that

energy intensity is positively related to capital and repair

intensities, as supported in Kumar (2003). Most of the

results presented in Kumar (2003) and Sahu and Narayanan

(2009) are similar, except for the relations between firm

age and energy intensity. The covariates considered in
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Sahu and Narayanan (2009) included sales (in logarithmic

scale), capital, labor, and repair intensities, and firm age.

Other covariates are related to R&D and technology import

intensities, foreign ownership (dummy variable), export

intensity, and profit margin. Therefore, many of the

covariates considered in Sahu and Narayanan (2009) are

the same as those employed in Kumar (2003). In Sahu and

Narayanan (2009), firm size and its square were used as

covariates. The squared term was included to relate firm

size and energy intensity as it does not need to be increased

or decreased.

Another similarity between the studies of Kumar (2003)

and Sahu and Narayanan (2009) was that both detected a

direct relation between technology import and energy

intensities, as opposed to what was expected. In Sahu and

Narayanan (2009), a direct relationship was identified

between firm age and energy intensity. This direct rela-

tionship is to be expected since older companies also have

older plants and machinery. The results presented in Kumar

(2003) are opposed to what was reported in Sahu and

Narayanan (2009). In the investigation provided in Kumar

(2003), a nonsignificant coefficient with negative sign of

the age covariate was detected. In that investigation, a

study of the energy intensity at an industry level was car-

ried out, similar to what was established in Sahu and

Narayanan (2009).

In Bertoldi et al. (2010), it was identified that instru-

ments based on the market are one of relevant tools in the

policy portfolio for calamite change mitigation and for

further obtaining a tradable white certificate in the Euro-

pean Union. However, not only in the European Union, but

it received importance in the United Kingdom (UK) as well

(Hamrin et al. 2007; Clarkson et al. 2015). The UK sear-

ched for other methods to enhance energy efficiency and

increase profitability. In 2002, the UK introduced a new

method that enhances energy efficiency (Langniss and

Praetorius 2006; Hamrin et al. 2007; Vine and Hamrin

2008). Furthermore, in 2003, Australia introduced the

trading system of energy efficiency under the scheme of

greenhouse gas abatement. This system permitted green-

house abatement projects to reduce emissions generating

national greenhouse certificates that are tradable (Zhang

1998; Christiansen and Wettestad 2003; Springer and

Varilek 2004; Hamrin et al. 2007).

In the same line, France and Italy, in the year 2005,

established their tradable systems with different energy-

saving targets for the future (Hamrin et al. 2007; Franzò

et al. 2019). Similarly, India was trying to decrease the

energy intensity. In 2012, India presented a similar market-

based measure to enhance energy efficiency under the

Perform, Achieve, and Trade (PAT) mechanism (Huded-

mani et al. 2019). This measure can permit for saving of

between 6.5 and 10.0 Mtoe of consumption of energy

during 2012–2015 (Kumar and Agarwala 2013; Bhandari

and Shrimali 2018; de la Rue du Can et al. 2019), where

Mtoe corresponds to millions of tonne of oil equivalent (1

toe = 10 millions of calories). The PAT is a method of

several phases that covers the majority of economical

sectors that consume high energy.

One of the principal users of primary energy in the globe

is India, consuming coal, oil, and other fossil fuels (Liming

2009; Gaurav et al. 2017). In 2013, Indian total energy

consumption was 527 Mtoe, with the industrial sector

accounting for roughly 30% equivalent to 158 Mtoe

(Sharma et al. 2019). In 2015, Indian total primary energy

consumption was 107 Mtoe (Sharma et al. 2019). After

China and the United States, the third emitter of green-

house gases in the world is India (Saikawa et al. 2017). In

2016, Indian greenhouse gas emissions increased by 4.7 %

over the previous year. Indian industries produce 25% of

the greenhouse gas emissions generated in the country (Vig

and Datta 2022).

In Oak (2017), the researchers studied firm-level data of

Indian industries sourced from the Prowess repository. The

objective of that study was to identify the variables that

potentially influence the energy intensity in the Indian

cement industry. To quantify the impact of the PAT

mechanism, a fixed effect (FE) model based on panel data

was employed, with the robustness of the model assessed

using propensity score matching.

The Indian Ministry of Power (powermin.gov.in) uti-

lized the PAT mechanism to identify the designated con-

sumers (DCs) within the Indian cement industries. They

highlighted that these industries exhibit inefficiency in

terms of energy consumption. In Bhandari and Shrimali

(2017), the efficacy of the PAT initiative was evaluated

through semi-structured interviews conducted with DCs

between May and July 2013. The impact of R&D on

enhancing industrial energy utilization in China was

examined in Teng (2012).

A secondary source of information was provided by the

Indian Ministry of Power, concluding that: (i) the set tar-

gets are not rigorous and sufficient to make the industries

more efficient in terms of energy; (ii) the long-term

investment for efficiency in terms of energy is not possible;

(iii) the PAT market cannot be constituted; (iv) several

equity issues were not apparent or addressed; and (v) it is

early to detect costs of transaction. Moreover, according to

the report presented in Bhandari and Shrimali (2017),

policy implications have as objectives: (a) to set new tar-

gets for rising energy costs; (b) to encourage long-term

investments; (c) to introduce the PAT market platform for

cost efficiency; (d) to reduce the equity concerns; and (e) to

keep the costs of the low transition.
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1.3 Motivations, objectives, and plan
of the article

Our motivations for conducting the present study are

described next. India is following relevant steps to control

the energy intensity in its industries. First, India launched

the Energy Conservation Act (ECA) in 2001. Second, the

Bureau of Energy Efficiency (BEE) of India has been

stated under the ECA to promote Indian energy efficiency.

Moreover, third, India launched a plan of action for the

climate change. The National Mission for Enhanced

Energy Efficiency was formed to promote the energy

efficiency using diverse mechanisms.

The PAT framework is related to the industries. The

PAT tries to enhance the energy efficiency and it is

ambitious in the Indian context since the country elabo-

rated tools based on the market to solve problems related to

environmental issues. The Indian Ministry of Power and

the BEE identified the eight firms which are the most

energy-intensive, as reported in Table 1. For these firms,

the plants that were most energy-intensive have been stated

as DCs. The SEC indicator (related to energy consumption

in a specific order) is established as the proportion of input

employing net energy for the DCs about output from the

DCs, such that the sum of the targets for all DCs within a

firm is equal to the firm target. These targets are associated

with the heterogeneity in each industry concerning firm

age, energy consumption trends, and energy saving

potential, among others. The DC is needed to decrease its

SEC by a fixed value, using this SEC indicator for the

corresponding year, formulated as the SEC averaged

starting in April 2007 until March 2010. Observe that the

PAT phase I (PAT-1) started in the period between April

2012 and March 2015. When this period finished, a trad-

able energy saving certificate was obtained if the DC sur-

passed its target. The PAT-1 was stated to decrease the

SEC in energy-intensive sectors from 478 DCs based on

eight industries. The sub-sectors included were aluminum,

cement, chlor-alkali, fertilizers, paper, steel, and thermal

power plants. These DCs currently are 25% of the Indian

gross domestic product, with about 45% of utilization of

Indian industrial energy. In the PAT-1, about 8.67 Mtoe of

energy saving was reached versus around 6.68 Mtoe of

targeted saving energy, that is less than 30% on the target

and similar to economic savings of approximately 9.5

billion rupees.

As the energy cost is the central part of the total pro-

duction cost, estimating the profit margin intensity (PMI)

of energy-intensive sectors/industries covered under PAT-1

is an aspect of interest. Also, another aspect of interest, it is

needed to study the impact on PMI of these sectors due to

the implementation of the ECA in 2001 and PAT in 2012,

accounting for these covariates in dummy variable form.

Based on the present extensive bibliographical review, no

investigations exist about these aspects in Indian energy-

intensive industries. Therefore, it is essential to state what

variables affect the industries’ profitability in terms of their

energy usage.

The principal objective of the present investigation is to

propose and derive a methodology to determine the rela-

tionship between the profitability of energy-intensive

industries considering the effect of PAT-1 and ECA toge-

ther. We employ a panel data methodology to analyze a

case study of Indian energy-intensive industries.

Panel data, by blending the inter-individual differences

and intra-individual dynamics, have the following advan-

tages over cross-sectional or time-series data: (i) more

accurate inference of model parameters, as panel data often

contain more degrees of freedom (DF) and more sample

variability than cross-sectional data that may be viewed as

a panel with T ¼ 1, or time series data which are a panel

with N ¼ 1, hence improving the efficiency of econometric

estimates (Hsiao et al. 1995); and (ii) greater capacity for

capturing the complexity of human behavior than single

cross-section or time series data.

When considering the influence of omitted variables, a

common argument is that the true cause behind discovering

(or not discovering) specific effects lies in the oversight of

certain variables in the model specification. These vari-

ables are correlated with the included covariates. Panel

data, as highlighted by Hsiao (2007), provide insights into

both inter-temporal dynamics and individual entities,

offering the potential to mitigate the impact of missing or

unobserved variables.

After this introduction, the plan of our article is formed

as follows. Section 2 presents the theoretical aspects of the

proposed methodology. In Sect. 3, a case study of the

Indian energy-intensive industries is developed. In Sect. 4,

Table 1 Energy cost as a percentage of production cost for the

indicated industry

Sector/industry Energy cost (in %)

Aluminum 33.4

Cement 40.0

Chlor alkali 60.0

Fertilizer 60.0

Steel 30.0

Paper 25.0

Textil 17.0

Source: AEEE, Shakti Foundation December 2011, PAT Booklet,

Ministry of Power July 2012, ASSOCHAM 2006 (Vasudevan et al.

2011)
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we report the findings found in this investigation. Some

conclusions are stated in the final part (Sect. 5).

2 Methodology

This study employed a quantitative research design utiliz-

ing FE and random effect (RE) linear models to investigate

the relationship between variables PMI and a sequence of

covariates as detailed in Table 2, while accounting for

individual-level and group-level variations.

In this section, we detail the theoretical background of

the statistical methods applied in the present study.

2.1 Types of data

Definition 1 Time series data are time-dependent obser-

vations of a random variable X over t (time), denoted as xt,

for t 2 f1; . . .; Tg.

Definition 2 Cross-sectional data are observations of a

random variable X at a single point ‘‘i’’ of time denoted as

xi, for i 2 f1; . . .;Ng. We refer to ‘‘i’’ as an individual. We

are interested in modeling the heterogeneity across

N individuals.

Definition 3 Panel data, sometimes named longitudinal

data, correspond to a set with both cross-sectional unit and

a time-series dimension. In panel data, all cross-section

units i 2 f1; . . .;Ng of a random variable X are observed

during a time t 2 f1; . . .; Tg, denoted as xit. A panel data

set is balanced if all individuals are observed a common

number of times. Otherwise, it is unbalanced.

2.2 Types of models

Definition 4 Let N and T be a number of individuals and

periods of time, respectively. A panel data model is for-

mulated as

Yit ¼b0 þ x>it bþ eit;

ði; tÞ 2 f1; . . .;Ng � f1; . . .; Tg;

with:

• Yit being a response associated with individual i at time

t.

• b0 being the model intercept, which does not depend on

i nor t.

• xit being a K � 1 vector corresponding to observed

values of K covariates for individual i at t (time).

• b being a vector of K regression parameters.

• eit being the model error related to individual i at time t.

If some individual characteristics (variables) zi, that do not

vary over time, are available (observable), the model can

be written as

Yit ¼b0 þ x>it b1 þ z>i b2 þ eit;

ði; tÞ 2 f1; . . .;Ng � f1; . . .; Tg;

where zi is a time-invariant K � 1 vector of individual i,

and b1 and b2 are K � 1 vectors of model coefficients.

If not all variables zi are available, these unobserved

individual characteristics can be modeled by a parameter

ai. In that case, eit can be decomposed as

eit ¼ai þ uit;

ði; tÞ 2 f1; . . .;Ng � f1; . . .; Tg;

where uit �Fð0; r2uÞ, that is, uit are independent identically
distributed random variables according to F, with zero

mean and variance r2u. In fact, all individuals characteris-

tics (time-invariant), observable or not, are captured by ai.

Definition 5 An FE model is defined as

Yit ¼x>it bþ ai þ uit;

ði; tÞ 2 f1; . . .;Ng � f1; . . .; Tg;

with ai (individual intercepts) being fixed for each

i 2 f1; . . .;Ng.

Table 2 Identification of

variables
Response variable Covariate

PMI Energy intensity (EI)

Capital intensity (CI)

Labor intensity (LI)

Firm size (SI)

Firm age (A)

Technology import intensity (TMI)

Repair intensity (RI)

PAT, where 1 = 2012 to 2015, and 0 = otherwise

ECA, where 1 = 2001 to 2015, and 0 = otherwise
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When an FE model is used, it is assumed that there is

something within individuals affecting the response vari-

able Y, and therefore, it needs to be controlled. Because of

this, it is not required that individual intercepts and the

terms uit are uncorrelated. However, E½Xit; uit� ¼ 0 must

hold. Since the time-invariant characteristics are related to

each individual, they should not be associated with other

characteristics of the individual. There are popular esti-

mation techniques for the FE model that can be considered

as: least square dummy variable and pooled ordinary least

square (OLS).

Definition 6 An RE model is stated as

Yit ¼b0 þ x>it bþ ai þ uit;

ði; tÞ 2 f1; . . .;Ng � f1; . . .; Tg;

with uit �Fð0; r2uÞ and ai �Gð0; r2aÞ, that is, uit and ai are
independent identically distributed random variables

according to F and G, with zero mean and variances r2u and
r2a, respectively. Note that ai (individual intercepts) are

fixed for each i 2 f1; . . .;Ng, where ai þ uit are considered

as an error term based on two elements: (i) an individual

specific one that does not vary in time t; and (ii) another

one that is uncorrelated over time t.

2.3 Hypothesis testing

When an RE model is employed, we assume that the dis-

tribution of a is nearly normal. Also, we assume indepen-

dence between ai and uit, as well as independence of all

components of xit. The RE model can be estimated with the

OLS technique. To decide between an FE model and an RE

model, we can apply the Hausman test, which uses the

statistic bbFE � bbRE to contrast the hypotheses given by

H0: E½Xit; ai� ¼ 0

ðthe RE model must be chosenÞ
versus

H1: E½Xit; ai� 6¼ 0

ðthe FE model must be chosenÞ;

with the test statistic stated as

ðbbFE � bbREÞ> ðbV
bbFE

� bV
bbRE

ÞðbbFE � bbREÞ� v2ðKÞ;

where bV is the estimated covariance matrix. Note that the

Hausman statistic is chi-square distributed considering a

number of DF equal to K, denoted as v2ðKÞ, with K being

the number of model parameters, as mentioned.

To verify for homogeneity of slope coefficients, we can

employ a poolability test. The null hypothesis is that

bi ¼ b, for i 2 f1; . . .;Ng, that is, no panel data are nec-

essary. In this work, we utilize the Chow test (to the case of

N linear regressions) given in Chow (1960). Furthermore,

we use the Breusch–Pagan (BP) test to check

heteroskedasticity of the error term in FE models. Addi-

tional information about estimates of the FE and RE

models, unit-root (stationarity) test, poolability test and BP

test, can be found in Verbeek (2008) and Baltagi (2021).

For details about the Hausman test, see Hausman (1978)

and Greene (2008).

3 Case study in India

This section describes the case study in three steps. Then,

we formulate the econometric model and summarize the

methodology in a pseudo algorithm by means of a

flowchart.

3.1 Methodology: variables, industries, and time

Step 1: Identification of variables

The variables affecting profitability of firms (see

Table 2) are:

X1 Energy intensity.

X2 Capital intensity.

X3 Labor intensity.

X4 Firm size.

X5 Firm age.

X6 Technology import intensity.

X7 Repair intensity.

Step 2: Identification of industries

The eight energy-intensive sectors used in the present

study covered under PAT-1 mechanism (2012–2015) are:

I1 Aluminum.

I2 Cement.

I3 Chlor-alkali.

I4 Fertilizer.

I5 Steel.

I6 Paper.

I7 Textil.

I8 Thermal power plants.

Note that all the eight sectors have been included for

analysis in this study. Since the seven variables and eight

energy intensive sectors are included in the PAT-1, and the

eight sectors utilize over 70% of the industrial consumption

of energy in India and 25% in the Indian gross domestic

product, we have selected the same variables and all eight

sectors in our analysis.

As mentioned, the data were taken from CMIE-Prowess

(prowessiq.cmie.com). Under PAT, plants of various

companies have been considered, but as the data of the

plant level are not available, we take data of the company

level for our analysis.
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Based on their energy consumption to be called a DC

under the PAT, the sectors are divided into two datasets

utilizing the PAT booklet of the Indian Ministry of Power,

published in July 2012 (see Table 3). This division also

needs to be done for solving the problem of availability of

data only for few companies covered under the PAT on

CMIE-Prowess. For each sector, the companies included in

the study are presented in Tables 4 and 5, with these

companies being covered under the PAT-1.

Step 3: Identification of time period

The following energy efficiency policies have been

implemented by India:

2001: Energy Conversation Act.

2012–2015: Perform, Achieve and Trade in phase I.

Therefore, the time period selected for the present

investigation is since 1995 to 2015, because it helps us to

study the influence of policies for energy efficiency on

energy intensity, profitability, and emission intensity of

industries.

3.2 Statistical model

As mentioned, a model of panel data is employed to esti-

mate PMI of the selected Indian industries. To get the most

robust/appropriate results in all scenarios, an econometric

model is applied to both datasets 1 and 2 considering OLS

estimation, as well as FE and RE structures. To estimate

PMI, the model is defined as PMI ¼
f ðEI, A, LI, CI, RI, SI, TMI, PAT, ECAÞ; where the

covariates EI, A, LI, CI, RI, SI, TMI, PAT, and ECA are

defined in Table 2. The data set is balanced and indexed by

i 2 f1; . . .;Ng, where N is the number of companies, and

t 2 f1; . . .; 21g. The variables are defined in Table 6.

All the variables, except firm age, are measured in

Ruppies million (as extracted from CMIE-Prowess: pro

wessiq.cmie.com). Therefore, to correct it for inflation, we

employ the index of industrial production (IIP) data (se-

cured from indiastat.com) expressed as

ðCurrent value of variable/IIP)� 100:

3.3 Summary of the methodology

Figure 1 summarizes the methodology in a pseudo algo-

rithm by means of a flowchart to help with the under-

standing of our methodology.

4 Results

The section reports the findings obtained from our analysis

for the case study in three subsections. The first two ones

introduce exploratory data analyses of the two datasets

considered in this investigation. The third one presents the

models described in Sect. 3.2.

4.1 Stationarity test

The unit-root test is initially employed in the panel data

methodology to assess the stationarity characteristics of the

relevant variables. Various approaches can be utilized for

conducting panel unit-root testing. To enhance result

robustness, we utilize two unit-root tests: the Levin–Lin–

Chu (LLC) test and the Im–Pesaran–Shin (IPS) test.

The LLC test considers variability, although its power

diminishes in small sample sizes due to potential serial

correlation, which is challenging to completely mitigate.

These unit-root methods evaluate hypotheses regarding the

stationarity of the variables. The outcomes of the unit-root

tests for each variable are presented in Tables 7 and 8. The

results reported in these tables indicate that each variable

Table 3 Description of the indicated dataset

Dataset Energy consumption in the DC (Mtoe as annual minimum) Sector/industry Number of companies under analysis

1 3000–29,000 Aluminum 26

Chlor-alkali

Textil

2 30,000 and above Cement 62

Fertilizer

Paper

Steel

Thermal power plant
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demonstrates stationarity in certain tests, while not meeting

the stationarity criteria in others.

4.2 Heterogeneity analysis

Figures 2 and 3 depict the heterogeneity across years for

dataset 1. Both figures distinctly illustrate noticeable dif-

ferences between the groups. Given this heterogeneity, the

application of pooled OLS is not suitable, thus warranting

the utilization of FE or RE models. The blue lines within

the figures represent the 95% confidence intervals sur-

rounding the mean within each group.

Similarly, in dataset 2, Figs. 4 and 5 also reveal evident

heterogeneity across companies and years. This hetero-

geneity further reinforces the need to avoid pooled OLS

and consider the FE or RE models. Table 9 shows the

results of the poolability test (Chow test) for datasets 1 and

2 by years. The test supports the application of a different

approach than choosing a pooling model, as it can be

detected from near-zero p-values.

4.3 Regression results

To ensure the robustness of our findings across various

scenarios, we have employed three distinct models: OLS,

FE, and RE. In Table 10 and Fig. 6, we present the com-

prehensive impact of all covariates on the PMI, considering

both the dummy variables PAT and ECA together.

As evident from the results in Table 10, the energy

intensity exhibits statistical significance across the majority

of the models, displaying an inverse relationship with PMI.

This suggests that an increase in energy intensity is asso-

ciated with a decrease in profits. In other words, a rise in

the energy intensity of the production process within

industries is likely to lead to a reduction in PMI.

In accordance with the pooled OLS model, a 1%

increase in energy intensity corresponds to a 0.266%

decrease in PMI. Compared to the FE model, a 1% growth

in energy intensity results in a 0.344% reduction in PMI.

Similarly, based on the RE model, a 1% increase in energy

intensity is associated with a 0.323% decrease in PMI.

Table 4 Sector of the indicated

company in dataset 1
Sector/industry ID Company

Aluminum 1 Bharat

2 Hindalco

3 National

Chlor-alkali 4 Aditya Birla Chemicals

5 Aditya Birla Nuvo

6 Chemplast Sanmar

7 DCM Shriram

8 DCW

9 Gujarat Alkalies and Chemicals

10 Gujarat Fluorochemicals

11 Kanoria Chemicals

12 Punjab Alkalies and Chemicals

13 Reliance Industries

14 Sree Rayalaseema Alkalies and Allied Chemicals

15 Travancore Cochin Chemicals

16 UPL

Textil 17 Alok

18 Bombay Dyeing

19 DCM

20 Grasim

21 Loyal

22 Mafatlal

23 Raymond

24 Suryalakshmi Cotton

25 Vardhman Holdings

26 Vardhman

5016 Stochastic Environmental Research and Risk Assessment (2023) 37:5009–5027

123



Firm age exhibits an indirect correlation with PMI,

where an increase in the age of the company leads to a

decrease in PMI. This trend might be attributed to the aging

of equipment and production methods over time, poten-

tially resulting in increased energy intensity and reduced

profits.

According to the pooled OLS model, a 1% increase in

age leads to a 0.072% decrease in PMI. In line with the RE

model, a 1% age increase is linked to a 0.06% decrease in

PMI.

The coefficient of labor intensity lacks statistical sig-

nificance across all models and appears to be positively or

negatively related to PMI. Similarly, the coefficient of

capital intensity is also statistically nonsignificant in all

models and appears to have a positive or negative relation

to PMI.

All models consistently indicate a direct relationship

between PMI and repair intensity. This signifies that as

industries allocate more resources to operational repairs,

their PMI tends to rise. However, it is important to note that

the significance of the PMI coefficient is observed in only a

subset of these models. The relationship between firm size

and PMI remains uncertain due to varying outcomes. In

some instances, the correlation is negative, while in others,

it is positive. Additionally, the coefficient demonstrates

significance with both signs across different models. In

addition, the coefficient for technological import intensity

lacks significance in all models, indicating that this vari-

able has minimal impact on PMI.

The dummy variable representing PAT has demon-

strated weak significance in only a few models, displaying

a negative correlation with energy intensity. This suggests

Table 5 Sector of the indicated company in dataset 2

Sector/industry ID Company

Cement 1 Chettinad

2 Gujarat Sidhee

3 Heidelberg

4 India

5 JK Lakshmi

6 Kalyanpur

7 KCP

8 Malabar

9 Mangalam

10 OCL

11 Panyam

12 Sanghi

13 Saurashtra

14 Shree

15 Shree Digvijay

Fertilizer 16 Chambal

17 Travancore

18 Gujarat Narmada Valley

19 Gujarat State

20 Indian Farmers

21 Madras

22 Mangalore

23 Tata Chemicals

24 National

25 Rashtriya

26 Zuari Global

Paper 27 Ballarpur

28 International APPM

29 JK

30 Orient

31 Seshasayee

32 Star

33 Tamil Nadu

34 West Coast

Steel 35 Bhushan

36 Essar

37 Rashtriya Ispat Nigam

38 Steel Authority

39 Tata Sponge Iron

40 Tata

41 Welspun

42 Aarti

43 Balasore Alloys

44 Hira Ferro Alloys

45 JSW Ispat

46 Monnet Ispat and Energy

Table 5 (continued)

Sector/industry ID Company

47 Orissa Sponge Steel/Iron

48 Sunflag Steel/Iron

49 Usha Martin

50 Bhilai Engineering

51 Mukand

52 Sharda Ispat

Thermal power plants 53 NTPC

54 North Eastern

55 CESC

56 NLC

57 TCP

58 Gujarat Mineral Development

59 Madras

60 Odisha

61 Reliance

62 Tata Power
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Table 6 Definition of the

indicated variable
Variable Definition

Profitability/PMI Profit discounting taxes in relation to sales

Energy intensity Expenses of power and fuel in relation to sales

Labor intensity Salary ratio in relation to sales

Capital intensity Net assets relative to sales

Firm size Assets and sales during the last three years

Repair intensity Repair ratio on expenditures of plant and machinery in relation to sales

Technology import intensity Ratio of the sum to sales

Age Current year–year of incorporation

Fig. 1 Flowchart of the

methodology
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that during years when PAT is in effect, there has been an

increase in the PMI of companies. Conversely, the coeffi-

cient for the dummy variable ECA exhibits significance or

weak significance across the majority of models. It appears

to elevate PMI during years when ECA is in effect for

companies. This indicates that the implementation of ECA

seems to be yielding the intended impact on the energy

intensity of companies and consequently influencing PMI.

In the pooled OLS model, the presence of an ECA year

is associated with a 0.03% increase in PMI. In comparison

to the FE model, the presence of an ECA year corresponds

to a PMI increase of 0.02%. In relation to the RE model,

the presence of an ECA year results in a PMI increase of

0.33%.

As shown in Table 11 and Fig. 7, energy intensity holds

statistical significance in the majority of the models,

revealing an inverse relationship with PMI. This suggests

that as energy intensity increases, profits tend to decrease.

In other words, if the production process within industries

witnesses a rise in this intensity, it is likely to correspond

with a reduction in profit intensity.

Comparing to the pooled OLS model, a 1% increase in

energy intensity is associated with a 0.464% decrease in

PMI. In alignment with the FE model, a 1% growth in

energy intensity corresponds to a PMI reduction of 0.411%.

As per the RE model, a 1% rise in energy intensity is linked

to a PMI decrease of 0.421%. Furthermore, there exists a

negative correlation between the variable age and PMI.

Table 7 Unit-root test results for dataset 1

Variable LLC test IPS test

No-trend (intercept) Trend (intercept þ trend) No-trend (intercept) Trend (intercept þ trend)

tadjusted level Difference

tadjusted

tadjusted level Difference

tadjusted

Wt level Difference Wt Wt level Difference Wt

ln(A) - 41.4705*** - 29.1303*** - 32.2958*** - 29.1303*** - 180*** - 62.6137*** - 110*** - 50.5740***

ln(PMI) - 4.0057*** - 11.9566*** - 2.9542*** - 9.5657*** - 4.0605*** - 12.8083*** - 2.5238*** - 9.5364***

ln(EI) - 5.6751*** - 10.3395*** - 2.4852*** - 9.5188*** - 3.2321*** - 10.8596*** 0.1530* - 9.6151***

ln(LI) - 3.9352*** - 8.1449*** - 3.2199*** - 6.1636*** - 2.3812*** - 9.5357*** - 0.6108* - 7.2640***

ln(RI) - 3.6196*** - 12.2109*** - 4.1349*** - 9.9942*** - 3.0034*** - 11.9752*** - 1.6412** - 9.3743***

ln(SI) - 4.0043*** - 4.3330*** - 5.4695*** - 3.1609*** - 0.7285* - 3.4260*** - 1.6325** - 0.7002*

ln(CI) - 3.5630*** - 6.9005*** - 2.8171*** - 5.0697*** - 2.5976*** - 8.0031*** - 0.6547* - 5.2601***

ln(TMI) 0.4220* - 10.1707*** 0.2337* - 9.2974*** - 2.8803*** - 15.5727*** - 2.6340*** - 13.4961***

ln(SI) - 3.4444*** - 6.0764*** - 0.3408* - 5.5583*** 0.2572* - 7.2253*** 2.0919* - 5.2079***

where � � � ¼ 1%, �� ¼ 5%, and � ¼ 10% are the levels of significance, and ‘‘ln’’ is the natural logarithm

Table 8 Unit-root test results for dataset 2

Variable LLC test IPS test

No-trend (intercept) Trend (intercept þ trend) No-trend (intercept) Trend (intercept þ trend)

tadjusted level Difference

tadjusted

tadjusted level Difference

tadjusted

Wt level Difference Wt Wt level Difference Wt

ln(A) -65.7891*** - 56.0136*** - 48.8812*** - 41.8938*** - 280*** - 110*** - 190*** - 86.8068***

ln(PMI) - 1.5108* - 13.9821*** 0.2216* - 12.0481*** - 3.6825*** - 17.6178*** - 0.3266* - 13.8048***

ln(EI) - 18.6864*** - 10.0069*** - 8.2331*** - 8.4027*** - 4.5312*** - 15.9300*** - 2.6540*** - 12.5461***

ln(LI) - 7.0467*** - 16.7220*** - 8.4313*** - 13.9771*** - 4.5312*** - 15.9300*** - 2.6540*** - 12.5461***

ln(RI) - 5.1008*** - 13.9119*** - 6.5754*** - 10.4014*** - 3.1329*** - 18.3147*** - 3.0392*** - 14.6378***

ln(SI) - 6.3675*** - 62.7548*** - 20.7404*** - 54.2105*** - 4.5011*** - 21.7134*** - 13.6716*** - 16.7342***

ln(CI) - 2.3035*** - 17.7108*** - 3.0678*** - 14.2698*** - 0.1303* - 14.3860*** 0.1057* - 10.5104***

ln(TMI) - 1.8355** - 7.7369*** 0.2482* - 4.4009*** - 3.1329*** - 18.3147*** - 3.0392*** - 14.6378***

ln(SI) - 6.0501*** - 14.1256*** - 4.3480*** - 12.2327*** - 0.1303* - 14.3860*** 0.1057* - 10.5104***

where � � � ¼ 1%, �� ¼ 5%, and � ¼ 10% are the levels of significance, and ‘‘ln’’ is the natural logarithm
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Fig. 2 Plot of heterogeneity for the indicated company according to its ID as in Table 4 for dataset 1, where the blue lines are 95% confidence

intervals around the mean within each group

Fig. 3 Plot of heterogeneity for the indicated year with dataset 1, where the blue lines are 95% confidence intervals around the mean within each

group

Fig. 4 Plot of heterogeneity for the indicated company according to its ID as in Table 5 for dataset 2, where the blue lines are 95% confidence

intervals around the mean within each group
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This suggests that as a company’s age increases, its PMI

experiences a decline. This phenomenon could potentially

be attributed to the progression of time leading to the

obsolescence of equipment and production methods within

the company. This aging process might render them less

efficient, culminating in heightened energy intensity and

consequently reduced profitability.

Based on the FE model, a 1% increase in age is asso-

ciated with a PMI reduction of 0.079%. In comparison to

the RE model, a 1% growth in age corresponds to a PMI

decrease of 0.041%. The coefficient of labor intensity holds

significance in certain models and appears to demonstrate a

negative correlation with PMI. This suggests that as labor

intensity increases, PMI decreases, possibly due to the

presence of surplus or redundant labor.

As per the pooled OLS model, a 1% increase in labor

intensity corresponds to a PMI reduction of 0.318%. In

comparison to the FE model, a 1% growth in labor inten-

sity leads to a more substantial PMI reduction of 1.109.

Similarly, when applying the RE model, a 1% rise in labor

intensity is linked to a PMI decrease of 0.880%.

The coefficient associated with capital intensity exhibits

statistical significance in the models and showcases a

negative relationship with PMI. This indicates that as

capital intensity increases, PMI decreases, potentially due

to the higher energy consumption of machinery and

equipment, resulting in reduced profits.

Utilizing the pooled OLS model, a 1% increase in

capital intensity is linked to a PMI decrease of 0.074.

Correspondingly, with the FE model, a 1% growth in

capital intensity leads to a PMI reduction of 0.233%. In

alignment with the RE model, a 1% rise in capital intensity

results in a PMI decrease of 0.192%.

All models consistently highlight a direct relationship

between PMI and repair intensity. This implies that as

industries allocate more resources to operational repairs,

their PMI tends to increase.

Comparing to the pooled OLS model, a 1% increase in

repair intensity is associated with a PMI increase of

1.378%. In alignment with the FE model, a 1% growth in

repair intensity corresponds to a PMI increase of 1.531%.

Similarly, based on the RE model, a 1% rise in repair

intensity results in a PMI increase of 1.642%.

Regarding the relationship between technology import

intensity and PMI, its exact nature remains unclear as it

exhibits varying signs across different scenarios.

The dummy variable representing PAT years holds

significance in the models and demonstrates a negative

correlation with PMI. This implies that during years when

PAT is in effect, there is a reduction in companies’ PMI. In

addition, for the ECA dummy variable, its coefficient is

significant across most models and indicates an increase in

PMI during ECA years for companies. This suggests that

the ECA has the intended impact on companies’ energy

intensity and subsequently on PMI.

Comparatively, utilizing the pooled OLS model, the

presence of an ECA year is associated with a PMI increase

of 0.024%. In line with the FE model, the presence of an

ECA year leads to a PMI increase of 0.050%. Similarly,

Fig. 5 Plot of heterogeneity for the indicated year with dataset 2, where the blue lines are 95% confidence intervals around the mean within each

group

Table 9 Chow poolability test results for the indicated dataset

Indicator Dataset 1 Dataset 2

F-statistic value 5.278 4.788

Numerator DF 225 549

Denominator DF 286 682

p-value \
0.001***

\
0.001***

Stochastic Environmental Research and Risk Assessment (2023) 37:5009–5027 5021

123



with the RE model, the presence of an ECA year results in

a PMI increase of 0.037%.

The p-values of the Hausman test for datasets 1 and 2

are 0.00469 and less than 0.0001, respectively, under the

null hypothesis H0:the RE model is appropriate. Conse-

quently, with a significance level of 5%, the null

hypotheses are rejected, indicating that the FE model is the

preferred choice for describing PMI. These results are

summarized in Table 12.

We deduce that the within-group intercepts ai depend on

the covariates denoted as Xit, implying that variations

across entities are not randomly distributed. We assume

Table 10 Regression results for

dataset 1 with estimate and

standard error in parenthesis for

the indicated coefficient and

model

Variable/indicator Model

Pooled OLS FE RE

ln(PMI) ln(PMI) ln(PMI)

ln(EI) - 0.2669411*** - 0.3444267*** - 0.323385***

(0.058874) (0.0822532) (0.0759607)

ln(A) - 0.0720701*** 0.0410489 - 0.0562105**

(0.012012) (0.0451909) (0.0243078)

ln(LI) 0.1564516 - 0.0538582 0.0125798

(0.1443184) (0.1581731) (0.1531805)

ln(CI) 0.0156037 - 0.0182136 - 0.0200714

(0.0241061) (0.0245059) (0.0239782)

ln(RI) 1.511616*** 1.129155*

(0.445091) (0.7084217) (0.6291479)

ln(SI) 0.0098924*** - 0.0286174*** - 0.0052397

(0.0038879) (0.0102016) (0.0068029)

ln(TMI) 0.0250999 0.0290429 0.0316238

(0.0379749) (0.0406122) (0.0395528)

constant 0.2304562* 0.3280556*** 0.1920963***

(0.0635433) (0.1332064) (0.0986081)

PAT - 0.0143799 - 0.0246651* - 0.0161547

(0.0141259) (0.0136535) (0.0127824)

ECA 0.0303353** 0.0198761* 0.0337327***

(0.0132280) (0.0154243) (0.0131083)

Number of cases 546 546 546

Number of groups 26 26 26

Statistic value F(9, 536) = 11.22 F(9,511) = 4.42 v2ð9Þ ¼ 39:76

p-value \ 0.001*** \ 0.001*** \ 0.001***

Fig. 6 Plot of estimated

coefficients for dataset 1 with

the indicated method and

variable
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that these inter-entity differences do not exert an influence

on our dependent variable PMI. Moreover, since the

intercept in the FE model accounts for the unobserved,

non-time-dependent variables, there is no necessity to

incorporate these variables explicitly.

Figure 8 displays a visualization of the residuals. The BP

test outcomes presented in Table 13 and Fig. 9 affirm a

common occurrence in panel data analysis: heteroskedas-

ticity. This occurrence is addressed by adopting a

heteroskedasticity-consistent estimation approach for the

covariance matrix of the estimated coefficients, as presented

Table 11 Regression results for

dataset 2 with estimate and

standard error in parenthesis for

the indicated coefficient and

model

Variable/indicator Model

Pooled OLS FE RE

ln(PMI) ln(PMI) ln(PMI)

ln(EI) - 0.4640543*** - 0.4106149*** - 0.4214922***

(0.0492338) (0.0863746) (0.0734565)

ln(A) - 0.0096929 - 0.0791424*** - 0.041841**

(0.0096682) (0.0281379) (0.0179895)

ln(LI) - 0.3177158** - 1.108547*** - 0.8808985***

(0.1325241) (0.1521356) (0.1464623)

ln(CI) - 0.0737293*** - 0.2334842*** - 0.1920391***

(0.0168316) (0.0192299) (0.018515)

ln(RI) 1.378035*** 1.530923*** 1.642588***

(0.3532529) (0.4260221) (0.40707)

ln(SI) 0.0133727*** 0.0094043* 0.0101762**

(0.0030807) (0.0057008) (0.0045072)

ln(TMI) - 0.0700587** 0.0971013** 0.0556608

(0.0361767) (0.039804) (0.0386914)

constant 0.004871 0.3678896*** 0.2077951***

(0.0405611) (0.0815416) (0.0632642)

PAT - 0.0403238*** - 0.0199512** - 0.0294257**

(0.0123117) (0.0109762) (0.0106419)

ECA 0.0237674** 0.0501326*** 0.0375444***

(0.0112308) (0.0114055) (0.0103986)

number of cases 1302 1302 1302

number of groups 62 62 62

statistic value F(9, 1292) = 23.00 F(9, 1231) = 34.05 v2ð9Þ ¼ 260:14

p-value \0:001*** \0:001*** \0:001***

Fig. 7 Plot of estimated

coefficients for dataset 2 with

the indicated method and

variable
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in Table 14. The revised t-test outcomes reveal a fresh array

of significant variables, with the standard errors adapted to

account for the presence of heteroskedasticity, as detailed in

Baltagi (2021, ch. 2) for more comprehensive insights.

5 Discussion, conclusion and visions

This section encompasses a comprehensive analysis and

interpretation of the study’s findings, followed by our

derived conclusions. Moreover, we acknowledge certain

limitations inherent to our research and propose potential

avenues for future research.

5.1 Discussion and conclusions

In this article, we have introduced a novel methodology for

assessing profitability in energy-intensive industries

through the lens of panel data analysis. Our approach has

been applied to a case study involving Indian energy-in-

tensive enterprises, incorporating the dynamic influences of

the PAT in phase I and the ECA as dummy covariates.

A crucial finding of our study underscores the adverse

impact of energy costs on the profitability of energy-inten-

sive industries. Our results reveal a robust and negative

relationship between energy costs and profits, indicating that

as energy expenditures rise, profits correspondingly decline.

Additionally, our analysis indicates a negative correlation

between a firm’s age and its profitability. This highlights the

significance for mature companies to invest in energy-effi-

cient measures, thereby curbing energy intensity, elevating

industry profits, and enhancing competitiveness. The

imperative for industries to curtail energy consumption as a

means of boosting profitability is also evident.

An integral strength of our analysis lies in its incorpo-

ration of the influence of the PAT in phase I and ECA

while elucidating the intricate relationship between energy

intensity and profitability. In contrast, existing literature,

such as Kumar and Agarwala (2013), Bhandari and Shri-

mali (2017, 2018), and Sharma et al. (2019), tends to focus

on generalized relationships between energy intensity and

profitability.

While the impact of the PAT appears relatively muted on

overall industry performance, our findings highlight the positive

influence of the ECA. The legislation has been shown to

effectively lower energy intensity, leading to increasedprofits—

a trend that can potentially be attributed to technological

advancements fostering greater energy efficiency.

As highlighted by Bhandari and Shrimali (2017), the

initial phase of the PAT demonstrated easily attainable tar-

gets, resulting in energy savings surpassing expectations and

leading to an abundance of energy savings certificates.

However, it is evident that such achievements may not suf-

fice to drive enduring energy efficiency improvements

within industries in the long term (Dasgupta and Roy 2017).

Therefore, it becomes apparent that a comprehensive eval-

uation of the policy’s effectiveness necessitates adjustments

and enhancements across subsequent phases of the PAT.

Furthermore, considering the relatively recent conclusion of

its first phase (2012–2015), it is essential to refrain from

prematurely forming a final judgment on the policy’s overall

impact and effectiveness within the Indian context.

5.2 Limitations of the study

A notable limitation of our study lies in its focus on a

specific subset of companies within the timeframe of

the PAT in phase I (2012–2015), drawing data primarily

from the CMIE-Prowess database. Additionally, our

investigation exclusively examines the impact of the PAT

in phase I and ECA on the performance of Indian energy-

intensive industries. Other limitations of our study are as

follows:

(1) The study’s temporal scope encompasses 21 years

(1995–2015), primarily due to our concentrated

interest in investigating the effects of the PAT

during its phase I (2012–2015).

(2) The utilization of firm-level data stems from the

unavailability of plant-level data within the CMIE-

Prowess database.

(3) The study is confined to companies falling under the

purview of the PAT, aligning with our objective of

assessing the influence of the PAT’s first phase on

industrial energy consumption.

The unavailability of data significantly limits the scope of

our study. Notwithstanding this limitation, upon reviewing

the broader literature, it is reasonable to suggest that even

with expanded data availability, the fundamental relation-

ship between the profitability and energy costs of energy-

intensive industries would likely persist. However, the

inclusion of additional data could potentially provide a

more comprehensive understanding of the effects of the -

PAT in phase I and ECA on industrial energy intensity.

Furthermore, the acquisition of data would allow us to

explore the interplay between profitability and other inde-

pendent variables within individual industries, thereby

enhancing the depth of our analysis.

Table 12 Hausman test results for the indicated dataset

Indicator Dataset 1 Dataset 2

Chi-square statistic value 23.764 87.237

DF 9 9

p-value 0.00469 \0:001***
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5.3 Scope for future research and policy
implications

Possible extensions of this study encompass an exploration

of subsequent phases of the PAT, either in combination or

individually. Similarly, an avenue for research involves

dissecting various sectors under the PAT phases I and II

separately. The study’s scope can be broadened by intro-

Fig. 8 Plots of residuals versus their year for FE models with the indicated dataset

Table 13 BP test results for the indicated dataset

Indicator Dataset 1 Dataset 2

BP statistic value 346.18 1815

DF 9 9

p-value \0:001*** \0:001***

Fig. 9 Plots of fitted-values versus their residual for FE models with the indicated dataset
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ducing additional independent variables, thereby yielding

more nuanced outcomes. Moreover, a comprehensive

analysis of the impact of various policy measures on

industrial performance could yield valuable insights. We

anticipate sharing the results of these potential analyses

through future publications.

In terms of policy implications, our study underscores

the importance for all eight energy-intensive industries—

namely aluminum, cement, chlor-alkali, fertilizer, steel,

paper, and textil—to make substantial investments in

energy efficiency measures. Such initiatives are poised to

significantly enhance industry profitability, aligning with

the overarching objective of any industrial endeavor.

Government bodies, including India, may consider taking

proactive measures to facilitate the adoption of these ini-

tiatives by energy-intensive industries, and even potentially

mandate their implementation.

An imminent future endeavor on our agenda is the

development of an R software package, thereby facilitating

the accessibility and applicability of our proposed

methodology for other researchers in the field. This step

could contribute to a more standardized and streamlined

approach to analyzing profitability and energy intensity

dynamics within energy-intensive industries.
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