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Abstract
Natural disasters like landslides risk people’s lives and the environment. To mitigate these hazards, scientists employ

landslide susceptibility mapping that evaluates zones prone to landslides and identifies contributing factors. This study

aimed to introduce ensemble landslide susceptibility models based on a statistical model (analytical hierarchy process) and

a machine learning model (support vector machine) for predicting landslides in a part of the Darjeeling district, West

Bengal, India. A total of 114 landslide locations were identified and randomly divided into training and validation

databases, with proportions of 70% and 30%, respectively. Ten conditioning factors were considered, including rainfall,

soil texture, slope, aspect, geomorphology, lithology, curvature, land use and land cover, drainage density, and lineament

density. The AHP-SVM model, employing linear, polynomial, radial basis function (RBF), and sigmoid function algo-

rithms, was applied using the training landslide and non-landslide datasets along with the spatial database of conditioning

factors. Four landslide susceptibility maps were generated using this model, and their accuracy was assessed using the area

under the curve (AUC) of the receiver operating characteristic (ROC) tool with the validation dataset. Among the four

ensemble methods tested (AHP-SVM_Sigmoid, AHP-SVM_RBF, AHP-SVM_Polynomial, and AHP-SVM_Linear), the

AHP-SVM_Sigmoid model demonstrated the highest degree-of-fit and prediction performance, achieving a prediction

capability of 86.2%. Consequently, it is concluded that the AHP-SVM_Sigmoid ensemble model holds promise as a novel

technique for spatial landslide prediction in future studies. The findings of this study are valuable for local planning and

decision-makers and can be utilized to implement landslide susceptibility methods in other regions.
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1 Introduction

The enormous energy, unpredictability, and instability of

masses in mountainous regions of the planet, landslides

commonly occur there (Roy and Saha 2019). Land-

slide zones are widespread in the Indian Himalayan area,

including those in Jammu and Kashmir, Himachal Pradesh,

Kumaon, Darjeeling, Sikkim, and the hilly states in the

northeast (Bhandari 2006). A landslide is a geological

phenomenon that involves the movement of rock, earth, or

debris down a slope due to gravity (Achour et al. 2017;

Dang et al. 2020). Landslides play a major role in geo-

morphological change and geological catastrophes, which

are ongoing hazards to the environment and human civi-

lizations all over the globe (Chowdhuri et al. 2022a). Due

to slope instability, intense rainfall, enormous masses,
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and seismic activity, landslides are most vulnerable and

most common in mountainous areas. Landslides often

occur in the mountainous Himalayan area compared to

worldwide occurrences (Froude and Petley 2018; Chakra-

bortty et al. 2022). Several types of landslides include rock

falls, rock slides, debris flows, mudslides, and creep. The

type of landslide that occurs depends on the properties of

the material, the slope angle, and the amount of water

present. Landslides can occur naturally or as a result of

human activities such as excavation, deforestation, and the

construction of roads and buildings (Fan et al. 2019).

Landslides can significantly impact communities, causing

property damage, loss of life, and economic disruption

(Kjekstad and Highland 2009; Petley 2012; Skilodimou

et al. 2018). They can also cause disruption to transporta-

tion networks, water supplies, and energy infrastructure.

Worldwide research states that between 1995 and 2014,

there were more than 3876 landslides, causing almost

163,658 fatalities and 11,689 injuries (Haque et al. 2019).

According to another source, approximately 55,000 people

died as a result of landslides worldwide between 2004 and

2016(Froude and Petley 2018). According to studies,

landslides have resulted in around 66,438 fatalities and

10.8 billion dollars in economic damages throughout the

globe (Chakrabortty et al. 2022; Chowdhuri et al. 2022a).

Over 12% of India’s land surface area, according to studies

by the Geological Survey of India (GSI), is very suscep-

tible to landslides. According to earlier research, sev-

eral locations in the Indian Himalayan areas are more

prone to frequent landslides (Pal and Chowdhuri 2019;

Saha et al. 2022a). Around 80% of landslides in India occur

in the Himalayas, renowned as an area with landslide

problems (Chowdhuri et al. 2022b). Most landslides in the

Darjeeling Himalayan ranges happen during the rainy

monsoon season (June to August) as a result of precipita-

tion seeping through lithological fractures, which affects

slope instability and landslide occurrences (Chowdhuri

et al. 2022b, c). The bulk of the northeastern Himalayan

landslides have occurred in the Darjeeling area of West

Bengal and Sikkim (Saha et al. 2022a). 72, 127, and 667

people died in historical landslides in this region in 1899,

1950, and 1968, respectively (Mandal and Mondal 2019).

A landslide has significantly affected the connection of the

national roads in the northeastern Himalayas, including

NH-40, NH-44, and NH-44A (Mandal and Mondal 2019).

The landslide events in this area are to blame for soil sat-

uration, excessive rainfall, fractural lithology, settlement

area growth, and deforestation. The Darjeeling Himalaya

experiences the highest number of landslides during

the monsoon season, much as the rest of the Himalayan

area. Landslides have become more frequent in the

Himalayan region as a result of extensive deforestation,

impromptu human settlement, expansion of agriculture in

landslide-prone areas, and intense development activities,

including the building of mountain roads (Chowdhuri et al.

2022b). In order to lessen the damage, suitable manage-

ment techniques should be used in landslide-prone loca-

tions. Landslide monitoring involves regularly observing

slopes to detect signs of instability and potential landslides.

This can be achieved through geotechnical sensors, remote

sensing, and ground-based monitoring. To reduce the risk

of landslides, it is essential to understand the causes and

triggers of these events (Devkota et al. 2013). This includes

landslide conditioning factors (LCFs) such as slope, land

use and land cover (LULC), geology, rainfall, earthquakes,

and human activities. Because to their destructive character

and negative economic effects, landslides and related

phenomena have been the subject of in-depth research. In

landslide-prone locations, vulnerability maps play a crucial

role in the evaluation of hazardous damage and mitigation

techniques. These methods are often used in regionally or

watershed scale landslide assessment and prevention (Roy

and Saha 2019; Das et al. 2023). Landslide-prone locations

should be identified and designated using geographic

information system (GIS) technology in order to compile a

geographic repository of landslide inventories.

The topographic region is divided into zones with

varying degrees of risk using landslide susceptibility

mapping (LSM) used by decision-makers and local offi-

cials. This technique, also known as ‘‘landslide risk zon-

ing,’’ is essential for managing and reducing the risks

related to current and potential future landslides. Using a

GIS application may improve the supervision of geo-

graphical data and increase your processing power (Mer-

ghadi et al. 2020). As a result, a plethora of quantitative

approaches and applications for LSM have been created.

The four main categories of LSM approaches now include

statistical-based models, heuristic models, physical-based

models, and machine learning (ML) modeling (Arabameri

et al. 2019d; Chang et al. 2019; Pham et al. 2019; Carabella

et al. 2022; Selamat et al. 2022; Saha et al. 2022b). It has

been demonstrated that each of these various techniques

has benefits and constraints of its own. Statistical models

are suitable for vast regions with geotechnical factors,

whereas physical-based models work well for small areas

when there is enough data for the analysis and mapping

process. These models, often used to forecast future land-

slides, depend on in-depth knowledge of the landslide

inventory obtained from adjacent subsurface and surface

research and monitoring systems (Whiteley et al. 2019).

Nevertheless, for lengthy research, physical-based models

need a substantial quantity of precise data to get correct

results (i.e., watershed up to regional level), which falls at

a major financial and computational cost. The paucity of

data on topography and environmental elements has an

influence on both statistical-based and knowledge-
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driven models, which, over the last 40 years, have domi-

nated the area of LSM. As a consequence, physical-based

models are not yet able to be used for substantial area

vulnerability zonation exercises (Guzzetti et al.

1999, 2012; Ghosh et al. 2012). Landslide risk assessments

involve the analysis of potential landslide locations and the

likelihood of an event occurring. This information can be

used to prioritize landslide mitigation measures, such as the

construction of retaining walls, the planting of vegetation,

and the management of land use. The management of

landslide risk requires a multi-disciplinary approach

involving collaboration between geologists, engineers,

planners, and emergency responders. Effective landslide

risk management requires a proactive approach, including

the development of land-use plans, the implementation of

best-practice engineering solutions, and the preparation of

emergency response plans (Aleotti and Chowdhury 1999).

Landslides are a serious risk that may significantly affect

civilizations. It is important to recognize the roots and

triggers, carry out risk assessments, and implement effec-

tive risk management strategies to reduce the risk of

landslides and minimize the influence of these effects. This

approach could be troublesome since it might be difficult to

objectively assess or measure a result. To better understand

the procedure of the patterns of landslide and triggering

approaches, a number of quantitative-based models have

been developed and successfully utilized. The previous ten

years’ GIS advancements have mostly benefited statistical-

based models (Dou et al. 2019). With the introduction of

statistical-based predictive models, our understanding of

the susceptibility of landslides has advanced in an

astoundingly short period. After the model has been built

with minimal information, the landslide conditioning

components in opinion-driven models (such as the analyt-

ical hierarchy process (AHP)) are ordered and weighted

based on expert judgment and knowledge (Ahmed 2015).

In order to create precise susceptibility zone maps, a range

of LSM from various statistical-based approaches have

been utilized during the last 20 years. Many authors have

used these techniques for landslide mapping, and examples

include the recognition of landslides with digital elevation

model (DEM) derivative conditioning factors using sup-

port vector machines (SVM) technique, convolutional

neural networks (CNN) for the automated detection of

landslides from imagery, satellite imagery for the detection

of texture changes both before and after a landslide, and

valuation of the performance of SVM, random forest (RF),

Principle component analysis (PCA), ANN, and CNN

models (Van Den Eeckhaut et al. 2012; Kumar et al. 2017;

Yu et al. 2017; Saha et al. 2020, 2021b). Different hybrid

models are developed nowadays for the assessment of

landslide susceptibility mapping (Shirzadi et al. 2017;

Arabameri et al. 2020b; Pham et al. 2020).

Landslide susceptibility mapping in Darjeeling results

from combining multiple factors in the region. Different

thematic layers are derived from various sources, such as

high-resolution DEM, satellite data, and published data

from different organizations to facilitate accurate delin-

eation. The area’s high population density, dynamic land-

use changes, and challenging topography make it an

intriguing case study for understanding the intricate inter-

play among topography, land use, and population growth,

all contributing to the risk of landslides in the Himalayan

region. This research has the potential to offer valuable

insights to guide land-use planning decisions and minimize

the impact of landslides on local communities. The primary

focus of this study is to identify vulnerable landslide areas

to ensure citizens’ safety and facilitate future development

in the region in a large-scale area. The research’s main

novelty is to develop a hybrid model AHP-SVM for LSM

that uses AHP and SVM to classify areas into different

susceptibility classes, which is never applied.

Furthermore, numerous studies employed the AHP and

SVM methods to map landslide susceptibility. Still,

according to the previous literature, none combined the two

approaches to forecasting the probability of quantitative

landslides. The receiver operating characteristic (ROC) is

used to assess the models. We anticipate that site planners

and local government decision-makers will utilize our

research’s results to lessen the risk of landslides in the

region. The findings also be used by West Bengal tourism

authorities to inform controlled habitation and future

development strategies in areas prone to landslides.

2 Material and methods

2.1 Study area

Our research area is situated in the Darjeeling Himalayan

region of India, especially in the district of Darjeeling. The

study region is between latitudes 26�1503300N and

27�102200N and longitudes 88�205100E and 88�5042.600E
(Fig. 1). Both the plain and the mountainous topographies

have distinct characteristics in this area. The research area

covers a total area of 165.92 km2. The height in the region

ranges from 15 to 2584 m above mean sea level (Roy and

Saha 2019). The Darjeeling Himalayas are part of the

Lesser and Sub-Himalayan belts. The tectonic units in the

area are superposed stratigraphically in the opposite

direction. Local recognition has been given to several rock

bands (Kanungo et al. 2006). This area has various geo-

morphological features, including steep slopes and divided

hills with valleys. Darjeeling’s average annual temperature

is approximately 14.9 �C; however, during the winter, it

dips to almost 1 �C because of the steep terrain. The
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current record low is 5 �C. Because of the area’s cold

climate, there is a lot of rain every year from the middle of

April until the end of August. The average annual rainfall

in the study region is 2074.08 mm. Significant cities like

Kurseong, Darjeeling, Ghum, and Sonada exist in this area.

The tea plantation and horticulture are the two features that

need the most outstanding acreage. Tea, mountains, and

tourism are all well-known attractions of Darjeeling.

Nearly 500,000 people from India and 50,000 tourists from

other countries visit Darjeeling and their surrounding areas

annually. The population density is around 12,000 persons

per km2.

2.2 Data used

Various data sources were employed in this research to

provide multiple types of data (Table 1). These facts were

discovered via fieldwork and historical records (data

releases from the Geological Survey of India (GSI)). High-

resolution satellite imagery, such as Cartosat-2D (multi-

spectral) data with a resolution of 1.6 m and Advanced

Land Observing Satellite-1 (ALOS) Phased Array type

L-band Synthetic Aperture Radar (PALSAR) DEM data

with a resolution of 12.5 m. Data on precipitation were

gathered from the Current Research Unit (CRU). For the

Indian region, soil data were taken from the ISLSCP Ini-

tiative II Data Collection (http://www.gewex.org/is-lscp.

Fig. 1 The study area represents a part of the Darjeeling district
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html), and geomorphology and lithology data were col-

lected from the website called BHUKOSH (https://www.

bhukosh.gsi.gov.in).

2.3 Methodology

Figure 2 presents the current study’s approach. The

flowchart is broken down into the following four key

stages. Step 1: The first step was to create a map of the

landslide inventory that has occurred in our area based on

the historical data from 114 landslide locations and the

same number of randomly selected training and validation

points used to determine our study’s accuracy. Ten land-

slide conditioning factors (LCFs), including slope, aspect,

curvature, lithology, lineament density, drainage density,

rainfall, geomorphology, soil, and land use and land cover

(LULC), were chosen for landslide susceptibility

mapping based on the results of the previous research study

(Pal and Chowdhuri 2019; Arabameri et al. 2020a;

Chowdhuri et al. 2020, 2022d, e) and while taking into

account the topographical, climatological, and hydrological

characteristics of the area. Step 2: We then used the multi-

collinearity test, a statistical approach, to determine the

correlation between various LCFs. The variance inflation

factor (VIF) and tolerance (T) values were used to conduct

the multi-collinearity test. Step 3: To create the landslide

susceptibility maps (LSMs), a new AHP-SVM hybrid

model was used in conjunction with ensembles of the AHP

and SVM models. Step 4: To assess the models’ perfor-

mance and choose the most appropriate model, LSMs were

verified using the receiver operating characteristic (ROC)

approach. In this research investigation, the robustness

approach was also used to validate and verify the accuracy

of how each model’s maps were computed.

Table 1 Various data sources

Sl.No Input data Resolution (spatial) LCF maps

1 ALOS PALSAR DEM 12.5 Aspect, curvature, slope, lineament density, drainage density

2 Cartosat-2 series (MX) 1.6 LULC map

3 CRU Numerical Rainfall

4 Lithological and geomorphological data – Lithology and geomorphology map

5 Soil data – Soil map

Fig. 2 Graphical representation of methodology
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2.4 Landslide inventory

It is essential to precisely identify the location and size of

the landslide while developing the landslide susceptibility

maps. The landslide inventory is a crucial and fundamental

piece of data for every landslide zoning, including sus-

ceptibility, risk, and hazard zoning. It has to do with the

location, kind, quantity, travel distance, level of activity,

and timing of land sliding in a particular region (Fell et al.

2008). There are many different techniques to spot land-

slides. Among these are field observations, satellite images,

book reviews for information on prior landslides, and aerial

photography. The landslide inventory map was made using

field data, visual interpretation of aerial pictures, and

satellite photography (Selamat et al. 2022). The Geological

Survey of India released India’s comprehensive landslide

inventory data. The Geological Survey of India’s published

data was resampled and used to create the inventory map of

the research region. This research has identified 114

landslides using the published data (Fig. 1). Most of the

landslides in this region that have been documented have

occurred on cliffs, banks, and roadways. Landslides at

cliffsides are typically brought on by erosion, terrain with

steep slopes, and lack of vegetation.

2.5 Landslide conditioning factor

Appropriate LCFs must be considered in the scientific

modeling of landslide susceptibility. The LCFs are chosen

according to no set criteria. The initial literature on land-

slides has been reviewed in this article. The landslide

conditioning elements were selected based mainly on the

availability and applicability of data on a landslide occur-

rence. The following provides details on the 10 LCFs that

were chosen for the research.

2.5.1 Slope

When analyzing a location’s probability of experiencing a

landslide, the slope is a key consideration. The study area is

characterized by its hilly topography and steep slopes. That

explains why there are several slopes around the basin. In

the research region, the slope was divided into five classes:

very high, high, moderate, low, and very low slope. Sig-

nificantly few locations in the study region have very

low slopes (\ 15�) (Fig. 3a). The range of low slope class

slope angles varies from 15� to 25�. High slopes were

classified as those between 35� and 45�, and very high

slopes as higher than 45�. Landslides usually happen in

areas with high slopes; hence areas with high and very high

slopes have a higher likelihood of experiencing landslides.

On the other hand, landslide incidence is more or less

consistent in areas with a moderate to low slope (Tanyaş

et al. 2019).

2.5.2 Aspect

The slope direction aspect is a crucial feature in assessing

landslide susceptibility. The study area is situated in the

northern hemisphere between latitudes 26�1503300 and

27�0102200, where precipitation level and brightness of sun

rays are each relatively high for slopes heading east,

south, or west, respectively (Achour et al. 2017; Saha et al.

2022b). The slope that faces south is the one that is

exposed to the sunlight, so evaporation happens rapidly,

and it is safe than north facing slope. According to the

aforementioned criteria, the slope orientation towards the

north receives the lowest sun rays, which results in the

highest probability of landslide, while the slope orientation

towards the south receives the most sun rays and has the

lowest probability of landslide. The majority of them

merely experience minor effects (Mallick et al. 2018). The

slope direction is shown using a 360-degree full-circle

compass. A DEM was used to create the aspect map, which

was then divided into nine directions as shown in Fig. 3b:

(1) flat (- 1), (2) north (0 degrees to 22.5 degrees and

337.5 degrees to 360 degrees), (3) north-east (22.5 degrees

to 67.5 degrees), (4) east (67.5 degrees to 112.5 degrees),

(5) south-east (112.5 degrees to 157.5 degrees), (6) south

(157.5 degrees to 202.5 degrees), (7) south-west (202.5

degrees to 247.5 degrees), (8) west (247.5 degrees to 292.5

degrees), and (9) north-west (292.5 degrees to 337.5

degrees). The slope facing east and south makes up a sig-

nificant component of the study area. A slope angle facing

west covers the lowest part of this basin, whereas the slope

angle towards the north encompasses a moderate to low

slope zone.

2.5.3 Curvature

For landslides, the curvature is a crucial topographic

characteristic (Fig. 3c) (Lee and Sambath 2006; Greco

et al. 2007). Landslides are less likely to occur when the

curvature value lowers. The concavity (negative curvature)

or convexity (positive curvature) of soil determines how

much moisture it can store. The curvature value represents

the topography’s morphology. A positive curvature value

shows an upwardly convex surface at the pixel, a negative

curvature value indicates an upwardly concave surface and

a flat surface is indicated by a value of 0. Convex slopes

have positive curvature values, whereas concave slopes

have negative curvature values (Kanwal et al. 2017). Slope

segments having a higher value of either a negative or

positive curvature contribute to slope saturation, drainage

density, and slope instabilities. Concave slopes gather
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more water, which thoroughly infuses the soil and reduces

its cohesiveness (Arabameri et al. 2019a). When repeated

contraction and extension cycles occur, a rock is more

likely to fracture and disintegrate on a convex slope. On a

convex slope, water may percolate through loosening or

decomposing materials, increasing water pressure and

consequential slope instability.

2.5.4 Lithology

The lithological characteristic of the mountain slopes sig-

nificantly impacts the incidence of landslides. Lithology,

which also shows the permeability and strength of the

rocks, determines the characteristics of the in-situ soil that

have an impact on the process of landslide (Selamat et al.

Fig. 3 Different landslide conditioning factors used for LSM: a slope; b aspect; c curvature; d lithology; e lineament density; f drainage density;

g geomorphology; h rainfall; i LULC; j soil texture
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2022). Its composition and lithological structure determi-

nes the strength of the rock. Since they provide more sig-

nificant obstruction to driving forces, stronger rocks slide

less often than weaker rocks. The inverse is also applicable.

To generate the lithology data, the polygons of the geo-

logical map were digitally converted into a vector layer

(Fig. 3d). Three lithological types are included in this data

layer: Chungthang gneiss, Kanchenjunga gneiss, and Dar-

jeeling gneiss.

2.5.5 Lineament density

In subsurface rock bodies, the visible indication of dis-

continuities, cracks, joints, and shear zones is called a

lineament. Landslides are more likely to occur when there

Fig. 3 continued
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are lineaments that are tightly spaced. Lineaments are

structural traits that show where faults, fractures, and

unstable zones or planes are most prone to experience

landslides. Lineaments cause slope failures by affecting the

permeability of the terrain and the materials of sur-

face structures, which have often been found to increase

the chance of landslides in surrounding places (Basu and

Pal 2019). Lineaments have been decoded using ALOS

PALSAR DEM images. Linear stream courses that are

noted for abrupt course changes, rectilinear inclina-

tions, structural alignments of morphological characteris-

tics, and tonal contrast were used to analyze the lineaments.

Despite discovering huge lineaments, no substantial thrusts

or faults have been observed in the study area. The inter-

preted lineaments were digitally recorded on-screen and

then rasterized to provide the lineament data layer. The

lineament data layer was used to construct the lineament

density map (Fig. 3e), which was then separated into five

classes in GIS using the natural break technique.

2.5.6 Drainage density

Drainage density (DD) is the number of streams per square

foot in an area of a drainage basin (Fig. 3f) (Mandal and

Mondal 2019). The material becomes near the base of the

slope as a result of soaking up the water, which reduces the

stability of the slope (Saha et al. 2022b). How much

drainage density there is affects how much streams are

impacted by landslides. The DD was obtained using Eq. (1)

below.

DD ¼ Lend

Sb

ð1Þ

where Lend is the drainage system’s overall dimension and

Sb is the drainage basin’s size. The method of Euclidean

distance was used to construct drainage density maps,

broken down into five categories for GIS use: 0 m–150 m,

150 m–250 m, 250 m–350 m, 350 m–450 m, and above

450 m.

2.5.7 Geomorphology

Geomorphology plays an essential role in determining land

vulnerability. Geomorphological maps were acquired by

the Indian government from the website named BHU-

KOSH (https://www.bhukosh.gsi.gov.in). The area’s

strongly divided hills and valleys play a vital role in the

area’s structural genesis. It stands out due to its incline, the

existence of an elevation, and the presence of a cliff that

can be seen (Mandal and Mandal 2018). A unique kind of

geomorphology may be found in the bottom half of the

study region, which consists of a structural genesis of

moderately dissected hills and valleys (Fig. 3g). The val-

leys in this area distinguish between terrain with high to

moderate slopes and terrain with moderate to low slopes.

The remaining land is covered by waterbodies (river) and

waterbodies (others).

Fig. 3 continued
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2.5.8 Rainfall

Rainfall is a significant initiator of landslide events in the

research region (Fig. 3h) (Arabameri et al. 2020b). Rainfall

causes unexpected floods and minor landslides. Water

infiltrates fast due to heavy rainfall, raising the saturation

level. It is an exterior trigger, and too much of it might

make the slope heavier and raise pore water pressure,

which could cause downhill slides. High rainfall levels

change soil by increasing soil saturation, which increases

the incidence of landslides. It is underlined that there is a

high likelihood of a landslide occurring since severe rains

have significantly separated the soil from the rock. Using

Climate Research Unit (CRU) records, the method called

theissen Polygon generated a rainfall distribution map.

After that, it was separated into five groups using the nat-

ural breaks method, yielding the following ranges:

2005.35 mm–2032.85 mm, 2032.85 mm–2060.34 mm,

2060.34 mm–2087.83 mm, 2087.83 mm–2115.32 mm,

and 2115.32 mm–2142.81 mm, since this method increases

the difference between classes while minimizing the vari-

ability of data range inside a class.

2.5.9 Land use and land cover

The structure of a region’s land use and land cover (LULC)

is crucial in assessing the hazard of landslides. The LULC

pattern of a region is important in the analysis of landslide

danger. Land use practices in hilly areas have an enormous

impact on landslide regulating elements such as cohesive-

ness, pore water pressure, angle of internal friction,

weathering rate, and so on. Deforestation and uncontrolled

building disrupt slope’s natural stability, making them

vulnerable to landslides in the future. Because it regulates

the rate of weather and erosion, LULC is an indirect

indicator of the strength of the slope. It is one of the most

important elements determining the incidence of landslides

in mountainous terrain. In this work, the LULC map

(Fig. 3i) was produced using the CARTOSAT-2 series

(MX) image. The LULC layer was digitized and rasterized

with a pixel size of 30 * 30 m. Rural areas, agricultural

land, tea plantation, barren land, sparse woodland, urban

area, and waterbody are all represented on the LULC map.

Most of the area is covered in forestry, with agricultural

land and development sections with strong road connec-

tions in the south. Due to inaccessibility, human influence

is more widespread in the southern area but less so in the

northern section.

2.5.10 Soil

The depth and kind of soil significantly influence land-

slide’s susceptibility. The coarse-grain soil particles are

more prone to fracture due to their poor cohesion. Since the

cohesiveness of soil particles is weaker than that of rock

particles, the danger of a landslide rises as soil depth

increases. The second non-satellite collection, the Inter-

national Satellite Land Surface Climatology Project

(ISLSCP) Initiative II Data Collection, provides gridded

data for 18 selected soil characteristics. These data sets

have a quarter-degree resolution and are available via the

Distributed Active Archive Center at Oak Ridge National

Laboratory (http://daac.ornl.gov/). In this experiment, the

soil texture (Fig. 3j) is an important consideration. There

are three distinct textural groups: fine loams, skeletal

loams, and coarse loams.

2.6 Methods

2.6.1 Analytical hierarchy process (AHP)

The multi-criteria decision analysis (MCDA) technique,

commonly referred to as the AHP, is a structured approach

for reviewing and analyzing difficult choices with a

mathematical foundation. The three concepts of decon-

struction, comparison, and synthesizing of the independent

elements of any dependent element were the main focuses

of this methodology. AHP is a qualitative and quantitative

assessment approach to choosing the best option out of all

available options, and it is often used to determine the

relative consequence based on a pairwise comparison of

the many components that are responsible for a given issue

(Das et al. 2022; Saha et al. 2022b). The susceptibility-

impacting factors must be included in the susceptibility

map. The strata have been assigned varying weights based

on their importance (Bera et al. 2019). AHP uses the

pairwise comparison approach for decision-making

frameworks that take a variety of criteria into account.

Both subjective (qualitative) and objective (quantitative)

decision-making assessments are carried out using the AHP

technique (Rawat et al. 2022). The comparison matrix has

an equal number of rows and columns, and one side of the

matrix has the scores, while the diagonal of the matrix has

a value of 1. To create a pairwise confusion matrix, the

performance of each layer should be contrasted with the

results of the other layers. The scale runs from 1 to 9. Each

value of the pairwise comparison matrix demonstrates the

significance of the two components. It was decided if

feature A is given a score of 9, meaning it is more

important than feature B, feature B must get a score of 1,

meaning it is less important than A. kEv is the principal

eigenvalue, m is the number of elements, and It is equal to

the totals of the priority vector’s individual components

and the column totals.

Calculations of the consistency index (CI) and consis-

tency ratio (CR) are necessary to verify a pairwise
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comparison matrix (Chen et al. 2010; Kolat et al. 2012;

Feizizadeh and Blaschke 2013). Knowing the value of the

proposed random consistency index (RI) is necessary to

calculate the CR (Table 2) (Saaty 2008). If the value of CR

is less than 0.10, the pairwise comparison matrix may be

accepted. Using the CI and CR calculation formula (Li

et al. 2021),

CI ¼ kEv � m

m� 1
ð2Þ

Consistency RationðCRÞ ¼ CI

RI
ð3Þ

2.6.2 Support vector machine (SVM)

The supervised machine learning (ML) technique SVM,

which is based on statistical-based learning theory, is

particularly well-liked. One of the popular ML models for

predicting different natural hazards is SVM, which is also

used for mapping flood vulnerability and forecasting

landslides. SVM is a supervised machine learning tech-

nique that provides excellent performance in a variety of

fields, including the bio-informatics sector, remote sensing

image categorization, pattern recognition, prediction,

image processing, etc. (Saha et al. 2022c). Compared to

logistic regression, which fits the data to a logistic curve

and uses the existing model to estimate occurrence (Yu

et al. 2010). SVM determines the best separating decision

surface across classes using different training classes while

attempting to maximize the margin between classes rela-

tive to the training sample (Fig. 4). The SVM technique is

robust because it is model-free and data-driven, particularly

for short training sets (Huang et al. 2002; Foody and

Mathur 2004; Yu et al. 2010). Particularly in situations

when there are more variables and fewer trainees, it offers

important classification power. Support vectors (SV), a

small subset of the training data points, are used as the

basis for the SVM decision function (Wang et al. 2007).

This method separates the construction of the hyper-plane

from the training dataset. The dividing hyper-plane (HyPl)

is set up between the points of two distinct classes in the

real space of m coordinates (Ai parameters in vector A).

SVM reveals the highest limit of separation among the

classes, and as a result, it builds a classification HyPl in the

center of the highest limit.

Take into consideration a collection of linearly separa-

ble training vectors, Ai(i = 1, 2,…, m). The notation

identifies the two classes that make up the training vectors

Yi= ± 1. Searching for an n-dimensional hyper-plane to

separate the two classes based on their maximum gap is the

aim of SVM. It may be mathematically stated as follows

(Yao et al. 2008; Xu et al. 2012):

1=2 Vk k2 ð4Þ
Yi V � Aið Þ þ bð Þ� 1 ð5Þ

where kVk is HyPl’s norm and b is the scaler base.

The issue is resolved by using a Lagrangian formulation

(Eq. 6). This involves adding Lagrange multipliers ki to the

constraint. As a result, the objective is now to maximize

with respect to ki while minimizing the Lagrangian Lm with

respect to V and b. For this purpose, we used the equation

below:

Lm ¼ 1=2kVk2 �
Xm

i¼1

kiðYi V � Aið Þ þ bð Þ � 1Þ ð6Þ

Four kernels—polynomial, linear, sigmoid, and radial

basis function—have been employed in the current work to

create the LSMs. Polynomial based kernels and radial

based function kernels are mostly used kernels and are also

known as Gaussian kernels. The mathematical calculation

of each kernel is given below.

Linear : K Ai;Aj

� �
¼ AT

i Aj ð7Þ

Polynomial : K Ai;Aj

� �
¼ ðcAT

i Aj þ rÞd; c[ 0 ð8Þ

Radial basis function : K Ai;Aj

� �
¼ �ckAi � Ajk

� �
; c[ 0

ð9Þ

Sigmoid : K Ai;Aj

� �
¼ tanh cAT

i Xj þ r
� �

ð10Þ

c is the gamma function of the kernel despite of linear

kernel. In the polynomial kernel, d represents the degree of

a polynomial. Function r is the bias term in the sigmoid and

polynomial kernel function. c, d and r are user-controlled

parameters since a proper specification significantly

improves the SVM solution’s accuracy.

2.6.3 Multi-collinearity analysis

Ghosh et al. (2011) express for LSM evaluation that there

are no guidelines for factor selection. Increasing the

Table 2 Given random consistency index (RI) for CR calculation (Wind and Saaty 1980)

Sl.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.42 1.45 1.49 1.51 1.48 1.56 1.57
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number of variables in the model’s design does not con-

stantly improve the assessment’s correctness. Therefore,

the first job before building the model is to examine the

multi-collinearity of the chosen components (Kalantar

et al. 2020). Variance inflation factor and Pearson’s cor-

relation coefficient were employed in earlier LSM research

to analyze multi-collinearity (Arabameri et al. 2019a; Roy

and Saha 2019; Kalantar et al. 2020; Shi et al. 2020).

Multi-collinearity approaches are used in the current

research to identify any collinearity among the chosen geo-

environmental parameters. In the least squares regression

analysis, the variance inflation factor (VIF) is used to

assess the level of multi-collinearity. The exponent repre-

sents the coefficient increase calculated by multi-

collinearity. The magnitude of the VIF may be used to

evaluate the degree of multi-collinearity. An experimental

rule states that multi-collinearity is strong if the VIF value

exceeds 5 (Saha et al. 2022b). The second approach to

investigating multi-collinearity is the tolerance margin of

error (T). Tolerance is a broadly applicable kind of mul-

tiple correlation coefficient. Fully multicollinear variables

have zero margins of error because they are utterly pre-

dictable from other independent variables. If a variable’s

tolerance value is 1, it is evident that it does not correlate

with the other independent variables. Using the criteria VIF

and T, it was discovered that the research was multi-

collinear. The formula for computing T and VIF,

T ¼ 1 � Rj
2 ð11Þ

VIF ¼ 1

Tolerance
ð12Þ

For Rj
2, R is the model’s coefficient of determination

(R-squared), where j is a descriptive variable that serves as

the response variable and other explanatory variables serve

as the independent variables.

2.6.4 Model validation using receiver operating
characteristics curve (ROC)

The efficacy of different models for landslide susceptibility

may be calculated using a variety of statistically based

metrics. In this work, the ROC curve of the validation

model was used to evaluate the performance of the pre-

dictive model. Recently, the ROC curves approach has

been used widely to evaluate the efficacy of land-

slide prediction (Sengupta and Nath 2022; Zhao et al.

2022). The inputs used to create the ROC curve were true

positive, which on the X-axis represents a landslide that

was correctly expected, and false positive, which on the

Y-axis represents a landslide that was wrongly predicted.

The entire efficacy of the models was quantitatively

Fig. 4 Schematic diagram of the

optimal separating hyperplane
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evaluated using ROC for the side-by-side comparison.

ROC model’s accuracy is assigned the following grades:

poor, moderate, good, excellent, and exceptional for values

between 0.5 and 0.6, 0.6 and 0.7, 0.7 and 0.8, and 0.8 to 0.9

and above 0.9 (Tien Bui et al. 2016; Pham et al. 2020).

ROC values may thus be used as a standard for assessing

the accuracy of a prediction model.

The part of landslide sites that are appropriately cate-

gorized as landslides is the general definition of sensitivity

ðSeÞ. While the percentage of non-landslide sites that are

consistently recognized as non-landslide occurrences is the

general definition of specificity (SpÞ:Mokhtari and Abedian

2019; Nhu et al. 2020). Moreover, the accuracy of models

assesses by the proportion of accurately detected non-

landslide and landslide areas (Gautam et al. 2021). Equa-

tions used for investigation are,

SensitivityðSeÞ ¼
TP

TP þ FN
ð13Þ

SpecificityðSpÞ ¼
TN

TN þ FP
ð14Þ

AccuracyðAcÞ ¼
TP þ TN

TP þ TN þ FP þ FN
ð15Þ

True negative (TN) refers to the number of correctly

classified non-landslide sites, while true positive refers to

the number of correctly detected landslide locations (TP).

False positive (FP) and false negative (FN) points,

respectively, refer to the number of landslide sites that

were incorrectly recognized as non-landslide or landslide

locations.

3 Results

3.1 Multi-collinearity analysis
and the correlation result

A multi-collinearity analysis is used to cross-check the

validation of the implicit assumption used to choose LFCs

based on the non-dependence of the components. The 10

LCFs were examined for multi-collinearity using T and

VIF. When it comes to the selected independent variables,

values of T less than 0.2 only weakly suggest multi-

collinearity; however, T values of less than 0.1 strongly

recommend it (Sujatha and Sridhar 2021; Youssef et al.

2022). The findings showed that 1.431 was the maximum

VIF value, and the minimum VIF—statistic was 1.039. All

VIF readings were below the theoretical threshold (5 or

10), indicating that there was no multi-collinearity among

the ten conditioning variables. The maximum VIF value of

the aspect was 1.431, and the minimum VIF value of 1.039

got from profile curvature, while the minimum and

maximum tolerance values were 0.743 and 0.961, respec-

tively. As a consequence, none of the selected conditioning

components exhibit multi-collinearity (Table 3).

3.2 Assessment using AHP-SVM models

An important machine learning algorithm support vector

machine used to determine a region’s vulnerability to

landslides and other natural hazards (Ma et al. 2020). The

SVM classification and AHP were combined in the current

investigation. The AHP-SVM classification used the land-

slide conditioning factors as input, including slope, aspect,

drainage density, curvature, lithology, LULC, lineament

density, rainfall, soil, and geomorphology. The AHP model

in the GIS context provided weights to each sub-layer of

the various LCFs (Table 4). The map of landslide suscep-

tibility was then created using the weighted layers as a

raster layer. The support vector machine’s input data layers

for ensembling with AHP were categorized as weighted

layers by AHP, and a hybrid AHP-SVM approach was

developed before the mapping of landslide susceptibility.

The SVM classification’s probabilities range from 0 to 1.

The landslide susceptibility index is represented by pixels

of images or conditioning variables. It has two values,

ranging from 0 to 1, where 0 denotes stable conditions, and

1 indicates a high likelihood of landslides occurring. The

four kinds of kernels utilized in SVM classification are the

sigmoid kernel, linear kernel, radial basis function kernel,

and polynomial kernel. The SVM classification utilized

these functions. The landslide susceptibility maps were

built in the GIS atmosphere using the combined output

produced by the SVM classification. Python programing

language is used for developing codes for SVM. Figure 5

shows the correlation heatmap of the AHP-SVM model

developed in Google Collaboratory. A processor of

Intel(R) Xeon(R) CPU E3-1245 v3 with a 3.40 GHz

Table 3 The multi-collinearity test result of LCFs

Sl. No. Conditioning factor T VIF

01 Soil 0.857 1.167

02 Curvature 0.961 1.039

03 Slope 0.876 1.147

04 Rainfall 0.796 1.251

05 Drainage density 0.922 1.085

06 Geomorphology 0.826 1.215

07 Lithology 0.944 1.060

08 Aspect 0.743 1.431

09 Lineament density 0.869 1.151

10 LULC 0.853 1.176
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Table 4 Pairwise comparison matrix of sub-factor of each landslide conditioning factor (LCF)

Factor 1 2 3 4 5 6 7 8 9 Weight

Slope (in degree)

0–15 1 1/

3

1/

5

1/

7

1/

9

3.48

15–25 3 1 1/

3

1/

5

1/

7

6.77

25–35 5 3 1 1/

3

0.2 13.44

35–45 7 5 3 1 1/

3

26.02

[ 45 9 7 5 3 1 50.29

CI = 0.092 RI = 1.12 CR = 0.083

Aspect

Flat 1 1/

3

1/

5

1/

7

1/

8

1/

9

1/

7

1/

3

1/

2

1.88

North 3 1 1/

3

1/

5

1/

7

1/

5

1/

5

1 1 3.68

North-East 5 3 1 1/

3

1/

4

1/

7

1/

3

3 3 7.43

East 7 5 3 1 1 1/

2

1 1 4 14.16

South-East 8 7 4 1 1 1 3 7 9 23.92

South 9 5 7 2 1 1 5 4 8 26.96

South-West 7 5 3 1 1/

3

1/

5

1 5 5 13.65

West 3 1 1/

3

1 1/

7

1/

4

1/

5

1 1 5.12

North-West 2 1 1/

3

1/

4

1/

9

1/

8

1/

5

1 1 3.19

CI = 0.121 RI = 1.45 CR = 0.083

Curvature

Linear 1 1/

3

1/

7

8.32

Concave 3 1 1/

5

19.32

Convex 7 5 1 72.36

CI = 0.055 RI = 0.58 CR = 0.094

Lithology

Chungthang 1 1/

3

1/

7

8.99

Darjeeling Gneiss 3 1 1/

5

21.34

Kanchanjunga Gneiss 7 5 1 69.67

CI = 0.047 RI = 0.58 CR = 0.082

Lineament density

1.6594–2.074 1 1/

3

1/

5

1/

7

1/

9

3.50

1.244–1.6594 3 1 1/

3

1/

5

1/

7

6.81

0.8297–1.244 5 3 1 1/

3

1/

4

14.17

0.4148–0.8297 7 5 3 1 1/

3

26.63

0–0.4148 9 7 4 3 1 48.89

Stochastic Environmental Research and Risk Assessment

123



Table 4 (continued)

Factor 1 2 3 4 5 6 7 8 9 Weight

CI = 0.084 RI = 1.12 CR = 0.075

Drainage density

[ 450 1 1/

3

1/

5

1/

7

1/

9

3.48

350–450 3 1 1/

3

1/

5

1/

7

6.77

250–350 5 3 1 1/

3

1/

5

13.44

150–250 7 5 3 1 1/

3

26.02

0–150 9 7 5 3 1 50.29

CI = 0.092 RI = 1.12 CR = 0.083

Geomorphology

Waterbody (other) 1 1/

3

1/

5

1/

7

5.69

Waterbody (river) 3 1 1/

3

1/

5

12.19

Moderate dissected hill and valley 5 3 1 1/

5

26.33

High-dissected hill and valley 7 5 3 1 55.79

CI = 0.058 RI = 0.9 CR = 0.065

Rainfall (in mm)

2005.35–2032.85 1 1/

3

1/

5

1/

7

1/

9

3.64

2032.85–2060.34 3 1 1/

3

1/

5

1/

6

7.31

2060.34–2087.83 5 3 1 1/

3

1/

5

13.92

2087.83–2115.32 7 5 3 1 1/

3

24.35

2115.32–2142.81 9 6 5 3 1 50.77

CI = 0.078 RI = 1.12 CR = 0.070

Land use and land cover

Waterbody 1 1/

2

1/

3

1/

4

1/

5

1/

7

1/

9

2.76

Urban 2 1 1/

2

1/

3

1/

5

1/

7

1/

8

3.81

Rural 3 2 1 1/

2

1/

3

1/

5

1/

7

5.91

Agricultural land 4 3 2 1 1/

2

1/

3

1/

5

9.31

Tea plantation 5 5 3 2 1 1/

2

1/

3

15.07

Sparse forest 7 7 5 3 2 1 1/

3

23.09

Barren land 9 8 7 5 3 3 1 40.05

CI = 0.052 RI = 1.32 CR = 0.040

Soil

Fine loamy 1 1/

3

1/

5

10.60

Coarse loamy 3 1 1/

3

26.00

Loamy skeletal 5 3 1 63.40
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processor and 12 GB RAM is used for the performance of

these models.

The four AHP-SVM hybrid models, AHP-SVM_RBF,

AHP-SVM_Linear, AHP-SVM_Polynomial, and AHP-

SVM_Sigmoid, were used to create the four LSMs dis-

played in Fig. 6a–d is produced in GIS environment after

successful training, testing and successful validation of the

database. These susceptibility maps were categorized into

five categories: very low, low, moderate, high, and very

high landslide susceptibility using the natural breaks clas-

sification technique. The five landslide susceptibility clas-

ses in the AHP-SV_RBF ensemble map were very high,

high, moderate, low, and very low. These classes, respec-

tively, covered 8917.56 hectors (53.06%), 1165.05 hectors

(6.93%), 809.91 hectors (4.82%), 1201.41 hectors (7.15%),

and 4713.84 hectors (28.05%) of the region. The very high,

high, moderate, low, and very low landslide susceptibility

classes in the AHP-SVM_Linear model, respectively,

encompassed an area of 8795.97 hectors (52.33%), 679.5

hectors (4.04%), 476.64 hectors (2.82%), 816.3 hectors

(4.86%), and 6039.36 hectors (35.93%). The very high,

high, moderate, low, and very low susceptibility classes in

the AHP-SVM_Polynomial model encompassed areas of

8420.67 hectors (50.10%), 364.32 hectors (2.17%), 88.11

hectors (0.52%), 335.43 hectors (2.00%), and 7599.24

hectors (45.21%), respectively. The groups of very high,

high, moderate, low, and very low landslide susceptibility

covered 7677.81 hectors (45.68%), 1696.14 hectors

(10.09%), 848.16 hectors (5.05%), 1277.10 hector (7.60%),

and 5308.56 hectors (31.58%), respectively, of the area in

the AHP-SVM_Sigmoid ensemble landslide susceptible

map.

3.3 Result of model validation using ROC-AUC

The use of the ROC-AUC method was to assess how well

the predictions made by the AHP-SVM kernel-based

models performed. A validation dataset was used to build

Table 4 (continued)

Factor 1 2 3 4 5 6 7 8 9 Weight

CI = 0.025 RI = 0.58 CR = 0.043

Fig. 5 Correlation heatmap of

the AHP-SVM model
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the curve for prediction (Azarafza et al. 2021; Xing et al.

2021; Das et al. 2022). Thirty percent of the total landslide

regions (testing datasets) were used in the current study for

the model’s validation (Fig. 7). The results display that the

AHP-SVM_Sigmoid (AUC = 86.2%) based kernel per-

forms better than the AHP-SVM_RBF (AUC = 85.6%)

based kernel, the AHP-SVM_Linear (AUC = 74.2%)

based kernel, and the AHP-SVM_Polynomial based kernel

(AUC = 73.2%). We grouped the AUC values into various

groups to provide context for the assessment values.

Acceptable AUC ranges are between 0.75 and 0.8, con-

sidered fair, 0.8 and 0.9 are regarded as strong suscepti-

bility, and AUC values above 0.9 are considered

extraordinary. Our findings show the four models we used

Fig. 6 Maps of landslide susceptibility generated by various hybrid models—a. AHP-SVM_Linear; b. AHP-SVM_Polynomial, c. AHP-

SVM_RBF, d. AHP-SVM_Sigmoid
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had ROC-AUC values ranging from 73% to 87%, which

indicates fair to strong models for all functionality and

susceptibility. The results of the ROC analysis show that

the AHP-SVM_Sigmoid-based kernel functions

effectively.

4 Discussion

Landslides have jeopardized people’s safety and done

significant economic harm in rugged and hilly areas. The

identification of sites vulnerable to landslides in hilly ter-

rain is one of the most crucial challenges in land use

planning. LSM has been used with effectiveness during the

last 30 years to address the geographic mapping of land-

slides (Chowdhuri et al. 2021a). While making choices in

landslide-prone locations, stakeholders heavily rely on

maps of landslide susceptibility. In addition to claiming

human lives, landslides often devastate neighborhoods,

roadways, and agricultural fields (Roccati et al. 2021). An

essential tool for minimizing the risk of landslides, pro-

tecting the environmental aspect, and assisting the people

of high-risk landslide susceptibility zones is the evaluation

of landslide hazards using LSMs carried out in this work

(van Westen et al. 2006). Landslide susceptibility evalua-

tions are crucial in these areas because they provide a first

line of defense for planners and decision-makers (Roccati

et al. 2021). It is challenging to create a precise LSM that

can be used to identify areas at risk for landslides (Mandal

et al. 2021). As a consequence, several tactics are regularly

developed globally to manage these challenges with pre-

cision and reliability (Prakash et al. 2021). To create the

landslide susceptibility maps (LSMs) in this work, a hybrid

model AHP-SVM is introduced by the ensemble of AHP

and SVM. To pinpoint the landslide-prone areas, a variety

of statistically infused, knowledge-based, probabilistic, and

machine-learning methods were used. Previous studies

have produced landslide susceptibility maps using a variety

of quantitative and qualitative methods, including AHP

(Saha et al. 2023), frequency ratio (FR) (Wubalem 2021),

landslide numerical risk factor (LNRF) (Roy and Saha

2019), ANN (Selamat et al. 2022; Saha et al. 2022b), SVM

(Saha et al. 2022c), logistic regression (LR) (Arabameri

et al. 2019c; Chowdhuri et al. 2021b), and boosted

regression tree (BRT) (Arabameri et al. 2019b) model etc.

These studies identified the key landslide risk zones in the

areas under consideration. Multi-hazard susceptibility

modeling was adopted in Eastern Himalayas (Sikkim),

where rainfall, earthquake, and high slope are the major

triggering factors to happen hazards like landslides, floods,

etc. (Saha et al. 2021a). Chowdhuri et al. (2021a) predict

landslide susceptibility using stand-alone model LR, FR,

BRT, and ensemble model BRT-FR and BRT-TR at the

upper Rangit basin in Sikkim, India. This model’s output

was then validated with the SRC-AUC curve. ROC of

stand-alone model FR, LR, and BRT are 90.1%, 86.8%,

and 88.5%, respectively, and with ensemble model BRT-

LR and BRT-FR get ROC of SRC-AUC are 92.4% and

94.3% respectively where it was clearly visible that

ensemble methods get higher accuracy than stand-alone

methods. A hybrid data mining approach was attempted by

Islam et al. (2022) to generate landslide susceptibility

mapping in the complex mountain region of Sikkim, India,

where stand-alone method RF, Alternating Decision Tree

(ADTree), and Quantum-Principle Swamp Optimization

(QPSO) and ensemble approaches QSPO-ADTree were

adopted, and the result shows that QPSO-ADTree outper-

forms others models as AUC value consists of 88.20%,

82.90%, 85.4%, and 87.60% respectively. A number of

LCFs interact with triggering factors and help initiate

landslides. It is crucial to choose appropriate LCFs in order

to develop an accurate landslide susceptibility model.

Models with high predictive potential and low error are

therefore generated. There are various LCFs, and they vary

based on local geographic characteristics. These landslide

indicators relate to the geological aspect, climatic charac-

teristics, and geomorphological factors that influence

landslides. The area’s border is dominated by a convex

slope, the center is dominated by a straight slope, and a

concave slope dominates the bottom part. There are no

such detailed guidelines for choosing LCFs because of the

various indicators and local characteristics (Park and Kim

Fig. 7 The overall accuracy of AHP-SVM_Linear, AHP-SVM_Poly-

nomial, AHP-SVM_RBF, and AHP-SVM _Sigmoid
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2019). It took a lot of time and effort to choose the most

appropriate LCFs. One of these projects is the multi-

collinearity test, which seeks out relationships between

LCFs that can impact the model’s accuracy. Ten LCFs

were chosen as a separate criterion in the present research

to assess the study area’s susceptibility to landslides. The

VIF was used to assess the LCFs’ multi-collinearity. Our

findings show that the variables we chose don’t have

multicollinear behavior. As a result, the models included

all of the factors.

The research results show that AHP and SVM are reli-

able techniques for mapping landslide susceptibility zones.

The AHP-SVM model uses four kernel-based algorithms:

linear, polynomial, RBF, and sigmoid. The study area was

divided into separate landslide susceptibility zones using

ten conditioning factors, including aspect, slope, rainfall,

drainage density, curvature, lineament density, soil texture,

geomorphology, lithology, and LULC. The statistically

generated LSMs seen in Fig. 6a–d were observed by the

landslide susceptibility index (LSI) values. The mean LSI

value of AHP-SVM_Linear was 0.41, with a standard

deviation (Sd) of 0.47, while the lowest and highest LSI

values were 0 and 1, respectively (Fig. 8a). AHP-

SVM_Polynomial has mean and Sd values of 0.48 and

0.49, respectively (Fig. 8b). The LSI values for the mean,

s.d, min, and max of AHP-SVM_RBF were 0.35, 0.43, 0,

and 1, respectively (Fig. 8c). AHP-SVM_Sigmoid mean

and standard deviation values are 0.44 and 0.45 (Fig. 8d).

According to the histogram profile, the LSI was separated

into a number of zones. The histogram pattern, which

offers statistical data about the cell value of LSI, illustrates

the frequency of scatter data. The histogram showed that

the spread values were unevenly distributed. Hence the

natural break classification method was utilized for zona-

tion mapping. Five classifications of landslide risk zones

were identified and mapped as a result: very low suscep-

tibility, low susceptibility, moderate susceptibility, high

susceptibility, and very high susceptibility (Fig. 6a–d). The

analysis area percentage of the very low susceptibility zone

for AHP-SVM_Linear, AHP-SVM_Polynomial, AHP-

Fig. 8 Histogram analysis of

different hybrid models: a.
AHP-SVM_Linear; b. AHP-

SVM_Polynomial, c. AHP-

SVM_RBF, d. AHP-

SVM_Sigmoid
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SVM_RBF, and AHP-SVM_Sigmoid is 35.93%, 45.21%,

28.05%, and 31.58%, respectively and for very high sus-

ceptibility zone the area percentage for AHP-SVM_Linear,

AHP-SVM_Polynomial, AHP-SVM_RBF, and AHP-

SVM_Sigmoid is 52.33%, 50.10%, 53.06%, and 45.68%,

respectively (Fig. 9). The percentage of the analysis area

falls in the moderate to very high range for AHP-

SVM_Linear, AHP-SVM_Polynomial, AHP-SVM_RBF,

and AHP-SVM_Sigmoid is, respectively, 59.21%, 52.79%,

64.81%, and 60.82% and for AHP-SVM_Linear, AHP-

SVM_Polynomial, AHP-SVM_RBF, and AHP-SVM_Sig-

moid, the area falls in very low to low susceptibility zone is

40.79%, 47.21%, 35.19%, and 39.18%, respectively. As a

result, we may assume that the whole study area is in a

moderate zone.

The ROC-AUC was also used to evaluate the reliability

of the findings using four hybrid susceptibility maps. The

Geological Survey of India’s public data was used to create

a map of the inventory of landslides. One hundred fourteen

landslides were observed in this area; 79 out of 114 (70%)

were used as training data, and the rest 35 landslide loca-

tions were used as testing data. The AUC values of 86.2%,

74.2%, 73.2%, and 85.6 percent for AHP-SVM_Sigmoid,

AHP-SVM_Linear, AHP-SVM_Polynomial, and AHP-

SVM_RBF models, respectively, suggest that the maps

produced by the Sigmoid kernel model is more accurate

than the maps produced by the Linear, Polynomial, and

RBF (Fig. 7). This result is helpful in an emergency since

timing is a crucial component for hazard studies. It is

reasonable to draw a final conclusion that the accuracy of

all hybrid models is quite good. Improved accuracy,

robustness, and handling of complex decision-making

scenarios and intricate data relationships are the major

advantages of the AHP-SVM model, as AHP is a tool for

dealing with complex decision-making problems, and

SVM is effective in handling nonlinear relationships

between datasets. Though, AHP and SVM in an ensemble

method require careful training and optimization of the

individual models as well as determining the appropriate

weights or combination strategy. This process can be

increased complexity as well as time-consuming and may

require extensive experimentation and tuning. We recom-

mend using AHP-SVM_Linear, AHP-SVM_Polynomial,

AHP-SVM_RBF, and AHP-SVM_Sigmoid models in

landslide investigations because, for risk mitigation and

planning of disaster management, they can provide precise

and comprehensive output. The AHP-SVM_Sig-

moid model, which is also suitable and promising, may be

used to build a map of the susceptibility of landslides in a

particular location.

5 Conclusion

In mountainous terrain, a landslide is one of the most

common and worst natural hazards. Landslides threaten the

severely damaged mountainous terrain due to natural (such

as earthquakes and climate change) and man-made activi-

ties. These threats are turning West Bengal’s northern

Himalayan regions into a never-ending nightmare for the

locals. Landslides are hazardous natural disasters that result

in human fatalities and extensive damage to roads, homes,

gardens, and agricultural land. A temporary and long-term

solution to lessening the risk of landslides in this region is

required to protect lives and property. In order to support

future infrastructural development and urban planning, we

must identify the vulnerable areas and map them. LSM

may thus be an essential strategic tool for assessing risk

management in hilly terrain. MCDA models have produced

amazingly accurate and efficient findings for landslide

susceptibility evaluations for many years. Machine learn-

ing (ML) approaches are advanced techniques developed

recently. The AHP and SVM models were combined in this

work to create a hybrid AHP-SVM model, which produced

Very High High Moderate Low Very Low
Linear 52.33 4.04 2.84 4.86 35.93
Polynomial 50.10 2.17 0.52 2.00 45.21
RBF 53.06 6.93 4.82 7.15 28.05
Sigmoid 45.68 10.09 5.05 7.60 31.58
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Fig. 9 Graph displaying the

area % distribution for each

model’s classifications
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LSMs for selected part of Darjeeling districts. The hybrid

approach is a suitable technique for landslide susceptibility

mapping that yields superior outcomes than a solo model.

The four LSMs created in this research were divided into

five groups according to their sensitivity to landslides: very

low, low, moderate, high, and very high.

The following models represented the very high sus-

ceptibility class: 31.5% AHP-SVM_Sigmoid, 35.93%

AHP-SVM_Linear, 45.21% AHP-SVM_Polynomial, and

28.05% AHP-SVM_RBF. ROC techniques were used to

verify the ensemble model findings. The validation tech-

niques validated the quality and appropriateness of the

LSMs generated by the AHP-SVM_Sigmoid, AHP-

SVM_Linear, AHP-SVM_Polynomial, and AHP-

SVM_RBF hybrid methods. The AHP-SVM_Sigmoid

model was more accurate than other ensemble models

among the four hybrid models. Landslide hazards may be

decreased by locating faults and weak geological zones,

managing drainage effectively, and implementing

afforestation initiatives. Overall, this study performed a

great job of locating the optimal planning and development

zones in the mountainous Darjeeling districts of West

Bengal, India, as well as the landslide-prone locations. This

study’s ability to forecast landslides’ timing, severity, or

frequency was one of its limitations. In addition, future

research in the domain of LSM study should test and use

deep learning models or hybrid-constructed deep learning

methods by increasing adequate datasets. The newly

introduced ensemble model can be used globally, where we

need to segregate different classification zones from the

aspect of socio-economic conditions. Darjeeling and its

surroundings are one of the tourist hotspots of West Ben-

gal, India, and tourism is one of the major economic

sources for Darjeeling and its surroundings. So, all of the

LSMs developed in this study may eventually be used by

decision-makers, land-use planners, and government and

non-government organizations as helpful tools to maxi-

mize infrastructural and socio-economic-development,

various resource management, and human activity in the

study area.
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